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Abstract 

The spin lifetime anisotropy is an important quantity for investigating the spin relaxation 

mechanisms in graphene and in heterostructures of two-dimensional materials. We generalize the 

diffusive spin transport equations of oblique spin precession in a lateral spin valve with finite 

contact resistance. This yields a method to determine the spin lifetime anisotropy ratio ߦ ൌ  ,צ߬/ୄ߬

which is the ratio between lifetimes of spin polarized perpendicular and parallel to the graphene 

surface. By solving the steady-state Bloch equations, we show that the line-shape of the oblique 

spin precession signal can be described with six dimensionless parameters, which can be solved 

analytically. We demonstrate that the anisotropic spin precession characteristics can be strongly 

suppressed by contact induced spin relaxation originating from conductance mismatch between 

the channel material and electrodes. To extract the spin lifetime anisotropy ratio accurately, we 

develop a closed form equation that includes the effect of finite contact resistance. Furthermore, 

we demonstrate that in the high contact resistance regime, the minimum channel length required 

for accurately determining the spin lifetime anisotropy for a sufficiently low external magnetic 

field is only determined by the diffusion coefficient of the channel material, as opposed to the 

spin diffusion length. Our work provides an accurate model to extract the spin lifetime 

anisotropy ratio from the oblique spin precession measurement and can be used to guide the 

device design for such measurements. 
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I. INTRODUCTION 

Spintronics aims to utilize the spin degree freedom of charge carriers for logic operation and 

information storage [1]. In recent years, graphene has emerged as one of the most efficient spin 

channel materials [2], exhibiting gate tunable spin transport, long spin lifetimes and long spin 

diffusion lengths at room temperature [3-12]. These make graphene a promising material for 

spintronics applications [13-19]. What makes graphene even more special is the high tunability 

of its properties. Due to the atomically thin nature of graphene, its properties are strongly subject 

to the environment, such as surface flatness [20-25], adatom adsorption [26-33], or in proximity 

with other materials [34-50]. This allows manipulation of graphene's spin transport and magnetic 

properties, which further enriches the possibilities of graphene for spintronics.  

Among all the properties in graphene, spin-orbit coupling is of particular interest. The 

intrinsic spin-orbit coupling in graphene is predicted to be very weak, with a magnitude of only ~ 30 ܸ݁ߤ  [51-53]. However, this value can be enhanced by several orders of magnitude by 

modifying graphene surface with adatoms, hybridizing with metal, or in proximity with strong 

spin-orbit coupling material [35,37-40,47,54-58]. Such strong spin-orbit coupling interaction is 

essential for new phenomena, such as spin Hall effect (SHE) [59-64], anomalous Hall effect 

(AHE) [36,65] , quantum spin Hall effect (QSHE) [66,67] and quantum anomalous Hall effect 

(QAHE) [68-72] to appear in graphene. Some of the above effects have been observed in 

experiments [35,36,61,62,65]. Furthermore, spin-orbit coupling can play a crucial role in the spin 

relaxation mechanism in graphene [73-77]. Up to now, the experimentally observed spin lifetime 

(12 ns, in [7]) in graphene is still two orders of magnitude smaller than the theoretical predictions 

(~1 μs, [2]). While the dominating spin relaxation mechanism in graphene remains unclear, spin 

relaxation through spin-orbit coupling is one major candidate. A careful study of spin-orbit 
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coupling will be beneficial for determining the key limiting factors of spin transport in graphene. 

One consequence that spin-orbit coupling produces in graphene is the spin lifetime 

anisotropy, in which case the spin polarization perpendicular and parallel to the graphene sheet 

have different lifetimes [78]. Conventionally, the spin lifetime anisotropy ratio, ߦ ൌ צ߬/ୄ߬  is 

used to describe this phenomenon. The spin lifetime anisotropy originates from spin relaxation 

dominated by a directional spin orbit field (SOF): For the Rashba type of SOF, which lies 

parallel to the graphene sheet, ߦ ൏ 1 is expected; for the Kane-Mele type of SOF, which is 

perpendicular to the graphene sheet, ߦ ൐ 1 is expected. In the case for other spin relaxation 

mechanisms, such as resonant scattering from magnetic impurities, an isotropic spin relaxation is 

expected. Observing an anisotropic spin relaxation in graphene is the fingerprint of spin-orbit 

driven spin relaxation [79].  

Spin lifetime anisotropy was originally measured in graphene by applying a large magnetic 

field perpendicular to the graphene surface [80,81]. The applied magnetic field magnetizes the 

ferromagnetic electrodes into the field direction, which allows out-of-plane spin injection. 

However, it typically requires ൐ 1 ܶ of magnetic field to fully magnetize the electrodes out-of-

plane. Such a large magnetic field can cause side effects, such as ordinary magneto-resistance, 

that may contribute significantly to the signal. Recently, Raes et al. have demonstrated a new 

method to measure spin lifetime anisotropy in graphene with oblique spin precession in the 

lateral spin valve geometry [79]. In this geometry, an oblique magnetic field with relatively small 

magnitude (typically ~150 mT) is applied, and spin precession signal is measured. The oblique 

magnetic field makes spin in the graphene channel precess into the out-of-plane direction, thus 

sampling both the in-plane and out-of-plane components of spin relaxation. The much smaller 

magnitude of applied magnetic field avoids side effects mentioned previously, which allows a 
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more accurate measurement on the anisotropy ratio. However, two important issues still need to 

be addressed for the oblique spin precession measurement. First, the finite contact resistance 

between the ferromagnetic electrodes and graphene in the lateral spin valve can act as a spin sink, 

which has been shown to cause an underestimation of spin lifetime extracted from spin 

precession measurement [82-85]. Such underestimation can also exist in oblique spin precession 

measurement. A quantitative method should be introduced to account for such an effect. Second, 

to perform oblique spin precession measurement with small magnetic fields, it has been assumed 

that a relatively long spin diffusion channel is required, previously estimated as ܮ ൒ ௦ߣ2√ ൌඥ2߬ܦௌ  [79]. However, this makes the oblique spin precession method seemingly unsuitable for 

graphene devices with long spin lifetimes due to the requirement of extremely long device 

channels. To our knowledge, neither of these two issues have been thoroughly discussed. 

In this paper, we present our model on oblique spin precession in the lateral spin valve 

geometry to address the above two issues. First, we develop an analytical method for calculating 

the spin precession curves with finite contact resistance, and obtain a closed form expression for 

extracting the spin lifetime anisotropy ratio from the measurement. This provides a method for 

accurately determining the spin lifetime anisotropy in realistic lateral spin valve devices with 

finite contact resistance. Furthermore, we derive a closed form expression to determine the 

minimum channel length required for oblique spin precession measurement. Our result shows 

that only a moderate length of the spin channel is needed for graphene and is determined by the 

diffusion coefficient as opposed to the spin diffusion length. Overall, our result provides a means 

to extract the spin lifetime anisotropy ratio from the oblique spin precession geometry and also 

serves as a guide for designing devices for such a measurement. This formalism can also be 

applied to other channel materials such as graphene-transition metal dichalcogenide (TMDC) 
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heterostructures, which have recently exhibited strong spin lifetime anisotropy [49,50]. 

 

II. MODELING DETAILS 

The oblique spin precession measurement is performed in the non-local geometry. Figure 1(a) 

shows the schematics of such a device. To achieve spin transport, an electric current is applied 

from the left ferromagnetic (FM) electrode (injector) into the channel, which builds up spin 

accumulation underneath the injector. The spin accumulation can diffuse across the channel and 

reach the right FM electrode (detector). Depending on the magnitude and polarization direction 

of the diffusive spin accumulation relative to the FM detector electrode, a high (low) voltage 

signal can be measured at the detector. This voltage signal is the so-called non-local voltage 

( ேܸ௅), resulting from spin transport in the channel material. 

To perform oblique spin precession measurement, an external magnetic field is applied in the 

y-z plane, with an angle ߚ  from the channel surface (Figure 1(b)). The spin in the material 

precesses around the magnetic field while diffusing through the channel. The precession results 

in a reduction of ேܸ௅ as a function of applied field. A plot of ேܸ௅ as a function of magnetic field 

is defined as the non-local spin precession curve. For a material with anisotropic spin relaxation, 

the line-shape of the non-local spin precession curve will depend on the applied field angle, 

which is a signature of spin lifetime anisotropy. Furthermore, when the magnetic field is large 

enough (ܤௌ௔௧), the spin polarization perpendicular to the field will be fully dephased, and the 

signal will be saturated with the component parallel to the field. The curvature of VNL as function 

of field angle β can be used to determine the value of ξ. Both the line-shape of the non-local spin 

precession at different oblique angle and curvature of signal in the saturation limit are important 

for identifying the spin lifetime anisotropy in the spin diffusion channel.  
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To model oblique spin precession in lateral spin valves, we employ the one-dimensional 

steady state Bloch equation to describe spin transport in the device channel  

Ԧ௦ߤଶ׏ܦ  െ ௖ߛ · Ԧ௦ߤ ൈ ሬԦܤ െ ߬௦ି ଵതതതതത · Ԧ௦ߤ ൌ 0 (1) 

where ܦ is the spin diffusion coefficient of the channel, ߛ௖  is the gyro-magnetic ratio of the 

charge carrier, and ܤሬԦ is the oblique magnetic field. The spin dependent chemical potential ߤԦ௦ is a 

three-component vector, with each of the component describing the spin population projected 

along the corresponding Cartesian axes. The spin relaxation matrix ߬௦ି ଵതതതതത  describes the spin 

lifetime anisotropy with different in-plane and out-of-plane spin relaxation rates. 

A natural way to solve Eq. (1) is to transform to the Cartesian frame ൫݁௫, ݁஻צ, ݁஻఼൯ that is 

affixed with the applied field (figure 1b). This is because the applied magnetic field can only 

induce precession to the spin population perpendicular to it. In the new frame, ܤሬԦ ൌ ሺ0, ,ܤ 0ሻ, ߤԦ௦ ൌ ൫ߤ௫௦, ௦צ஻ߤ , ஻఼௦ߤ ൯, and the spin relaxation matrix ߬௦ି ଵതതതതത  can be written as 

 ߬௦ି ଵതതതതത ൌ צି߬ ଵ ቎1 0 00 1 ൅ ݂ሺߦሻ sinଶሺߚሻ ݂ሺߦሻ sinሺߚሻ cosሺߚሻ0 ݂ሺߦሻ sinሺߚሻ cosሺߚሻ 1 ൅ ݂ሺߦሻ cosଶሺߚሻ ቏ (2) 

with ݂ሺߦሻ ൌ ߦ/1 െ 1. 

We find that the steady-state Bloch equation in the new Cartesian frame can be solved 

analytically. By performing the Fourier transform to Eq. (1), we obtain 

 ቎צߣଶ݇ଶ ൅ 1 0 െ߬ߛצ௖0ܤ ଶ݇ଶצߣ ൅ 1 ൅ ݂ሺߦሻ sinଶሺߚሻ ݂ሺߦሻ sinሺߚሻ cosሺߚሻ߬ߛצ௖ܤ ݂ሺߦሻ sinሺߚሻ cosሺߚሻ ଶ݇ଶצߣ ൅ 1 ൅ ݂ሺߦሻ cosଶሺߚሻ቏ ቎ߤ௫௦צߤ௦ߤ௦ୄ ቏ ൌ 0 (3) 

where צߣ ൌ ඥצ߬ܦ is the spin diffusion length for spin polarized in-plane. Solving Eq. (3) leads to 

the general solution of the spin dependent chemical potential 

ఔ ௦ߤ  ൌ ∑ ௡,ఔേܥ  exp ሺെ݅݇௡േݔሻ௡  (4) 
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where n = 1, 2, 3 numbers the three modes (defined below), ݇௡േ are the corresponding wave 

vectors, and ߥ ൌ ݁௫, ݁஻צ, ݁஻఼  represent the different spatial components of the spin dependent 

chemical potential. To obtain the expression for Eq. (3), we define ܭ ൌ ଶ݇ଶצߣ ൅ 1 and solve Eq. 

(3). This leads to three different non-zero modes of spin diffusion in the channel given by 

௡ܭ  ൌ ߙ ൅ ݁௜೙ഏయ ቀ߭ ൅ ሺ߭ଶ ൅ ଷሻభమቁభయߛ ൅ ݁ି௜೙ഏయ ቀ߭ െ ሺ߭ଶ ൅ ଷሻభమቁభయߛ           ݊ ൌ 1,2,3 (5) 

and 

۔ۖەۖ 
ۓ ߙ ൌ െ ௙ሺకሻଷ߭ ൌ ௕మ௙ሺకሻ଺ െ ௙యሺకሻଶ଻ െ ௕మ௙ሺకሻ ௦௜௡మሺఉሻଶߛ ൌ ௕మଷ െ ௙మሺకሻଽ

 (6) 

Each mode in Eq. (5) contains two wave vectors (݇௡േ ൌ േצିߣ ଵඥܭ௡ െ 1, with ݊ ൌ 1,2,3). The ݇௡ାሺିሻ are complex numbers with a positive (negative) imaginary part, corresponding to a wave 

that decays [imaginary part] while oscillating [real part] as it transports to the െሺ൅ሻݔ direction. 

The general solution in Eq. (4) can then be written as 

ఔ௦ߤ  ൌ ∑ ቀܿ௡ା߁ఔሺܭ௡ሻ݁ି௜ఒצషభඥ௄೙ିଵ·௫ ൅ ܿ௡ି షభඥ௄೙ିଵ·௫ቁ௡ୀଵ,ଶ,ଷצ௡ሻ݁ା௜ఒܭఔሺ߁  (7) 

with 

 ቐ Γ௫ሺܭ௡ሻ ൌ െܾሾܭ௡ ൅ ݂ሺߦሻ sinଶሺߚሻሿΓ஻צሺܭ௡ሻ ൌ ሻߦ௡݂ሺܭ cosሺߚሻ sinሺߚሻΓ஻఼ሺܭ௡ሻ ൌ െܭ௡ሾܭ௡ ൅ ݂ሺߦሻ sinଶሺߚሻሿ (8) 

Eq. (7) fully describes the spin accumulation in each region of the spin transport channel 

between the ferromagnetic electrodes. 

To include the effect of spin absorption at both of the FM electrodes, we consider the 

continuity equation in the spin diffusion channel underneath the electrodes. For each FM 

electrode, 
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 ቊ ௖ିݔఔ௦ሺߤ ሻ ൌ ௖ିݔఔ௦ሺܫ௖ାሻݔఔ௦ሺߤ ሻ ൌ ఔሺୟୠୱ.ሻ௦ܫ ሺݔ௖ሻ ൅  ௖ାሻ (9)ݔఔ௦ሺܫ

The first equation relates to continuity of the spin dependent chemical potential, and the second 

equation represents the continuity of the spin current. The ݔ௖ in the equation is the position of the 

FM contact, with the superscript ൅ሺെሻ represents the position of the channel just to the right(left) 

of the contact. Assuming the spin absorption current into the FM, ܫఔሺୟୠୱ.ሻ௦ ሺݔ௖ሻ, is isotropic with 

the spin polarization (we will justify this assumption later in section III A), both the spin current 

in the channel material as well as the absorption current can be expressed with ߤఔ௦ሺݔ௖ሻ 

underneath the channel as 

 ቊ ఔ௦ܫ ൌ െܹ · ߪ · ఔሺୟୠୱ.ሻ௦ܫሻݔఔ௦ሺߤ׏ ሺݔ௖ሻ ൌ ෨ܴ௖ିଵ · ௖ሻݔఔ௦ሺߤ ൅ ܲ ·  ௖ (10)ܫ

where W is the width of the channel, ߪ is the electrical conductivity of the channel, and ܫ௖ is the 

charge current flow through the FM electrode. ෨ܴ௖ ൌ ܴ௖/ሺ1 െ ܲଶሻ ൅ ܴி/ሺ1 െ ܲଶሻ is the effective 

contact resistance of the electrode, with ܴ௖  the interfacial resistance, ܴி ൌ ிܣ/ிߩிߣ  the spin 

resistance of the electrode, and ܲ the spin polarization of the FM electrode. Combining Eq. (7), 

(9) and (10) generates a fully defined system of linear equations, and ߤఔ௦ሺݔሻ can be solved 

analytically at any given position and external magnetic field. The non-local voltage can then be 

extracted from ߤఔ௦ሺݔሻ 

 ேܸ௅ ൌ ܲୢ ୣ୲ · ൫ߤ஻צ௦ ሺݔௗ௘௧ሻ · cosሺߚሻ െ ஻఼௦ߤ ሺݔௗ௘௧ሻ · sinሺߚሻ൯ (11) 

To describe the line-shape of the oblique spin precession, we normalize the non-local signal 

with its zero-field value 

 ேܸ௅כ ൌ ௏ಿಽሺ஻ሻ௏ಿಽሺ஻ୀ଴ሻ (12) 

we find that ேܸ௅כ  can be fully described by six dimensionless parameters: magnetic field angle ߚ, 
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anisotropy ratio ߦ , normalized channel length ݈ ൌ צߣ/ܮ , normalized magnetic field strength ܾ ൌ ௖ ሻିଵߛצሺ߬/ܤ , normalized contact resistance for injector ݎ௜௡௝ ൌ ෨ܴ௜௡௝/ܴ௦ , and detector ݎௗ௘௧ ൌ ෨ܴௗ௘௧/ܴ௦ . Here ܮ  is the channel length between the injector and detector, צߣ  is the 

diffusion length for spin polarized in-plane, and ܴ௦ ൌ ܴீ௥ ·  is the spin resistance of the ܮ/צߣ

channel. This provides a generic description for oblique spin precession in materials with spin 

lifetime anisotropy. 

 

III. RESULTS AND DISCUSSION 

A. Anisotropic spin precession with finite contact resistance 

We first discuss the effect of finite contact resistance on the oblique spin precession signal 

with spin lifetime anisotropy. Figure 2 shows a set of non-local spin precession curves generated 

with different anisotropy ratio ߦ and normalized contact resistance ݎ ൌ ௜௡௝ݎ ൌ  ௗ௘௧. The externalݎ

magnetic field is set to be ߚ ൌ ל45  from the sample surface. In the case of large contact 

resistance (Figure 2(a)), the effect of spin absorption is suppressed, and a significant variation in 

the line-shape of the non-local spin signal as function of spin lifetime anisotropy ratio ߦ  is 

observed. As the contact resistance decreases, the conductance mismatch between the electrode 

and channel becomes prominent, and the effect of anisotropic spin precession is suppressed. 

When the device enters into the transparent contact regime, which is shown in figure 2(b), the 

contact induced spin relaxation dominates the overall spin relaxation. Under this condition, a set 

of wider spin precession curves is observed, with much less variation at different spin lifetime 

anisotropy ratio. 

The effect of finite contact resistance on anisotropic spin precession can be seen more clearly 

with the angular dependence of ேܸ௅כ ሺܾ ՜ ∞ሻ. By taking the approximation that ܾ ՜ ∞, a closed 
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form solution of ேܸ௅כ  can be calculated from our model 

 ேܸ௅כ ሺܾ ՜ ∞ሻ ൌ ௚ሺఉ,కሻ·ൣ൫ଵାଶ௥೔೙ೕ൯ሺଵାଶ௥೏೐೟ሻି௘షమ೗൧൫ଵାଶ௚ሺఉ,కሻ·௥೔೙ೕ൯ሺଵାଶ௚ሺఉ,కሻ·௥೏೐೟ሻି௘షమ೗·೒ሺഁ,഍ሻ · ݁ି௟·ሺ௚ሺఉ,కሻିଵሻ · cosଶሺߚሻ (13) 

with ݃ሺߚ, ሻߦ ൌ ቀ1 െ ଵకቁ cosଶሺߚሻ ൅ ଵక.  Eq. (13) should be used to fit the oblique spin precession 

signal at saturation vs. cos2(ߚ) to extract an accurate value for the spin lifetime anisotropy ratio ߚ.  

To check that this equation encompasses the previous model that does not include spin 

absorption, we take the limit of high contact resistance (ݎ௜௡௝, ௗ௘௧ݎ ب 1), and the expression can be 

simplified as 

 ேܸ௅כ ሺܾ ՜ ∞ሻ ൌ ݃ିଵሺߚ, ሻߦ · ݁ି௟·ሺ௚ሺఉ,కሻିଵሻ · cosଶሺߚሻ (14) 

Eq. (14) is the same as that in [79,86]. 

Figure 3 shows the angle dependent ேܸ௅כ ሺܾ ՜ ∞ሻ curves with different channel length and 

contact resistance generated with Eq. (11). In the case of a moderate channel length (ܮ ൌ  ,( צߣ 
the effect of anisotropic spin precession is clear in a high contact resistance device (figure 3(a)). 

However, the curves with different anisotropy ratio almost collapse onto a straight line 

representing ߦ ൌ 1 as the device enters the transparent contact regime (figure 3(b)). With a much 

longer channel length (ܮ ൌ  figure 3(c, d)), the effect of anisotropic spin precession becomes ,צߣ3

more prominent, and the suppression of anisotropic spin precession due to the low contact 

resistance becomes less effective. However, there is still an obvious discrepancy between high 

contact resistance and transparent contact devices. In terms of experiment, such a discrepancy 

from contact induced spin relaxation can lead to a strong underestimation of the spin lifetime 

anisotropy ratio in the oblique spin precession measurement. 

The suppression of anisotropic spin precession can be understood by contact induced spin 

relaxation, which originates from the conductance mismatch between the electrode and spin 
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diffusion channel. The spin current absorbed by an electrode with finite contact resistance can be 

expressed as 

ୟୠୱ.௦ܫ  ൌ /௦ߤ ෨ܴ௖ (15) 

where ߤ௦ is the spin dependent chemical potential under the electrode, and ෨ܴ௖ is the effective 

contact resistance defined previously. The spin absorption acts as an additional spin sink for the 

spin population in the channel, which is equivalent to adding another relaxation source. Since we 

assume isotropic spin absorption, the additional contact induced spin relaxation will tend to bring 

the measured anisotropy ratio back to unity. For a device with high contact resistance, the 

contact induced spin relaxation is weak and the oblique spin precession is measuring mainly the 

intrinsic anisotropy ratio of the channel. However, when the contact is more transparent-like, the 

isotropic contact induced spin relaxation will dominate the signal, and make the anisotropic spin 

precession feature less obvious. 

To illustrate how contact induced spin relaxation affects extracting the spin lifetime 

anisotropy ratio from the oblique spin precession measurement, we perform the following 

simulation. First, we generate a set of angular dependent ேܸ௅כ ሺܾ ՜ ∞ሻ curves of different channel 

anisotropy ratio ߦ௥௘௔௟  and finite contact resistance with Eq. (13), then use Eq. (14) to fit the 

simulated curves while ignoring spin absorption effects and extract ߦ௙௜௧ . The difference between ߦ௥௘௔௟ and ߦ௙௜௧ can be used to quantify the effect of contact induced spin relaxation on oblique 

spin precession measurement. Figure 4(a) shows one example of the fitting process, where the 

normalized contact resistance is chosen to be ݎ ൌ 1 for generating the simulated curves. Without 

considering the effect of contact resistance, Eq. (14) can still fit the line-shape of the generated 

angular dependent curves very well, but the fitted anisotropy ratio ߦ  is consistently 

underestimated. In the case that ߦ௥௘௔௟ ൌ 2.0, an underestimation of more than 15% is observed. 
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To further understand the effect of contact induced spin relaxation, we perform the same 

fitting procedures with a wide range of normalized resistance ݎ and channel length ݈. Figure 4(b) 

shows the result with ߦ ൌ 2. The difference of Δߦ ൌ หߦ௙௜௧ െ  ௥௘௔௟ is shown on the graph. As seen in the plot, the accuracy of the extracted anisotropic spinߦ ௥௘௔௟ห normalized with the simulatedߦ

precession measurement is mostly dominated by the normalized contact resistance. In the 

transparent regime, a discrepancy of more than 40% can be observed. The channel length has 

some influence in reducing Δξ, but the overall impact is limited. Our result shows that in order to 

accurately extract the spin lifetime anisotropy, the contact induced spin relaxation has to be 

minimized, and a model which considers finite contact resistance is preferred for analyzing the 

data. 

Finally, our result is based on the assumption that the spin absorption into the ferromagnetic 

electrode is isotropic. However, anisotropic spin absorption has been reported in metallic spin 

valves [87]. Such effect is attributed to different spin diffusion length ߣி in the ferromagnetic 

electrode for spin parallel and perpendicular to the magnetization. We justify here that the 

assumption of isotropic spin absorption is valid in graphene lateral spin valves. The strength of 

spin absorption in lateral spin valves is determined by the relative value between the spin 

resistance of the channel ( ܴ௦ ), and the effective contact resistance ( ෨ܴ௖ ൌ ܴ௖/ሺ1 െ ܲଶሻ ൅ܴி/ሺ1 െ ܲଶሻ).  For a metallic spin valve, the direct metallic contact between the ferromagnetic 

electrode and the channel material enable the ferromagnet’s spin resistance, ܴி , to make a 

substantial contribution. As a result, the magnitude of ෨ܴ௖  is determined by ܴி ൌ ிܣ/ிߩிߣ , 

where the anisotropy in ߣி  can lead to anisotropic spin absorption. In the case for graphene 

lateral spin valves, the spin resistance of ferromagnetic electrode (ܴி ؆ 10ିଷ [88] ߗ) is much 

smaller than the contact resistance. The condition ܴ஼ ب ܴி is satisfied even when the metallic 
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electrodes are in direct contact with graphene [89,90]. As a result, the effect of anisotropic 

behavior of ܴி  on ෨ܴ௖  is minimized. Furthermore, there is no experimental report yet about 

anisotropic spin absorption in graphene lateral spin valves. Based on the above consideration, we 

believe that isotropic spin absorption is a valid assumption in our derivation. 

 

B. Determining the minimum channel length required for a sufficiently low saturation 

magnetic field ࢚ࢇࡿ࡮ 
In order to saturate the oblique spin precession signal at a sufficiently low external magnetic 

field ܤ௦௔௧, the spin diffusion channel must be longer than a minimum channel length. This sets a 

special requirement in lateral spin valve fabrication for performing such a measurement. 

However, to date, there is no clear analytical study for the relationship between the minimum 

required channel length and the corresponding saturation magnetic field. In the following section, 

we show our approach in understanding this problem. 

We first discuss the case that ݎ ب 1, so the contact induced spin relaxation is minimized. 

This is the ideal case for oblique spin precession measurement, as discussed previously. In order 

to determine the relationship between ܤ௦௔௧  and the minimum channel length, we derive the 

expression of ேܸ௅ୄ, the non-local signal contribution from spin perpendicular to the magnetic field. 

Combining Eqs. (7), (9) and (10), and assuming that the magnetic field is large enough (ܾ ب 1), 

ேܸ௅ୄ can be written as 

 ேܸ௅ୄ/ܫ ൌ ௜ܲ௡௝ ௗܲ௘௧ܴ௦ sinଶሺߚሻ · ൫√2ܾ൯ିଵ · cos൫െ݈ · ඥܾ/2 െ 4൯/ߨ  · ݁ି௟ඥ௕/ଶ (16) 

Figure 5(a) plots the ேܸ௅ vs. b curve from Eq. (16) (dashed line) and compares it with the ேܸ௅ vs. 

b curve from the general result (i.e. Eq. (11) with ߠ ൌ  90°) (solid line). The agreement between 

the two curves for high fields (e.g. b > 5) indicates that Eq. (16) describes the high field behavior 
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of the spin precession curve very well. In the saturated limit, the perpendicular component of 

spin should be fully dephased and the magnitude of ேܸ௅ୄ should be negligible. We notice that the 

last exponential term ݁ି௟ඥ௕/ଶ  in Eq. (16) determines the overall magnitude of ேܸ௅ୄ. Similar as Eq. 

(12), the relative magnitude of ேܸ௅ୄ compared to the total non-local voltage at zero magnetic field 

can be written as 

 ேܸ௅ୄכ ן ݁ି௟൫ඥ௕/ଶିଵ൯ (17) 

Defining a threshold value for saturation as ௦ܸ௔௧כ ൌ ேܸ௅כ ሺܾ ൌ 0ሻ · 10ିఎ , the condition for 

saturation (i.e.  ேܸ௅ୄכ ൑ ௦ܸ௔௧כ ) generates a requirement for the channel length to be  

 ݈൫ඥܾ/2 െ 1൯ ൒ ߟ ݈݊ 10 (18) 

Considering that ܾ ൌ ௖ሻିଵߛצሺ߬/ܤ ب 1 and ݈ ൌ צߣ/ܮ ൌ  one can derive that ,צ߬ܦඥ/ܮ

ܮ  ൒ √ଶ஽ඥ஻ೞೌ೟ఊ೎ · ߟ ݈݊ 10 ൌ ඥ2ܦሺܤ௦௔௧ߛ௖ሻିଵ · ߟ ݈݊ 10 (19) 

We notice that from Eq. (19), the minimum channel length is only determined by the 

diffusion coefficient and ܤ௦௔௧. This result can be understood as following: in the oblique spin 

precession measurement, the spin relaxation rate is determined by both the intrinsic mechanism 

and the spin dephasing due to the external magnetic field. In the limit ߬צ ب ሺܤ௦௔௧ߛ௖ሻିଵ, spin 

relaxation due to dephasing dominates, resulting in an effective spin diffusion length ߣ௘௙௙ ൌඥ߬ܦ஻ ן ඥܦሺߛ௖ܤ௦௔௧ሻିଵ . To fully minimize the signal from the perpendicular spin population, ߣ/ܮ௘௙௙ ן  ඥߛ௖ܮଶܤ௦௔௧/ܦ ب  1. This leads to ܮ ب ඥܦሺߛ௖ܤ௦௔௧ሻିଵ, which is the same as the result 

in Eq. (19). 

The derivation of Eq. (19) requires the assumption that ܾ ൌ ௖ሻିଵߛ௦௔௧ܤሺ/צ߬ ب  1. We justify 

that such an assumption is almost always valid in graphene lateral spin valves. Choosing ܤ௦௔௧ ൌ 150 ݉ܶ as a typical low value to be used in oblique spin precession measurement, we 
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can calculate ሺܤ௦௔௧ߛ௖ሻିଵ ൌ 38 ps , which is indeed much smaller than the spin lifetime of 

graphene that are currently observed in experiments. In the case for other materials, such as 

graphene/TMDC heterostructures, the spin lifetime ( ߬௦ ؆ ݏ݌ 5  [35]) is much smaller than ሺܤ௦௔௧ߛ௖ሻିଵ ൌ 38 ps, and the assumption that ܾ ب 1 does not hold. To measure spin lifetime 

anisotropy, it requires a new device geometry different from that in figure 1(a), as demonstrated 

in recent experimental studies [49,50].  

Eq. (19) shows that the oblique spin precession is still a good method to determine spin 

lifetime anisotropy for graphene with long spin lifetime and spin diffusion length. For example, 

in a device with currently the highest reported spin lifetime and spin diffusion length (12 ݊݉ߤ 30 ,ݏ as shown in [7]), the diffusion coefficient can be calculated as ܦ ൌ ߬/ଶߣ ൌ 0.075 ݉ଶିݏଵ. 

Assuming that the threshold 10ିఎ ൌ 10ିଷ and ܤ௦௔௧ ൌ 150 ݉ܶ, a minimum channel length of 16.5 ݉ߤ  is needed. This channel length is much more feasible for device fabrication and 

characterization compared to previously estimated √2ߣ ൌ  [7,79] .݉ߤ 42.4

Finally, we discuss the minimum channel length for a lateral spin valve over a range of 

contact resistances. We discuss the effect through plotting the spin precession curves ேܸ௅ୄכሺܤሻ 

with different normalized contact resistances. Figure 5(b) shows a set of such plots, assuming ߬צ ൌ ܦ ,ݏ݊ 12 ൌ 0.075 ݉ଶିݏଵ , and ܮ ൌ ௦௔௧ܤ ,As shown in the figure .݉ߤ 16.5 ൌ 150 ݉ܶ is 

enough to saturate the spin signal even with ݎ ൌ 1 (green curve), thus the criterion we developed 

in Eq. (19) is still valid for devices with moderate contact resistance. However, the same ܤ௦௔௧ is 

clearly not enough to fully dephase the spin signal when ݎ is even smaller (red and blue curve). 

This can be understood as following: As the contact resistance decreases, the contact induced 

spin relaxation starts dominating the spin transport, making the observed spin lifetime ߬௢௕ 

shorter than ߬צ. When the contact induced spin relaxation is strong enough, ߬௢௕ will be greatly 
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suppressed and the assumption ܾ ൌ ߬௢௕/ሺܤ௦௔௧ߛ௖ሻିଵ ب 1 becomes not valid anymore. As a result, 

a longer channel length is required for lateral spin valves with strong contact induced spin 

relaxation. The result is the same for devices with different parameters according to our 

simulation. This further shows that a non-local spin valve with tunnel barrier is preferred for 

oblique spin precession measurement. 

 

IV. CONCLUSIONS 

We have proposed a model based on steady-state Bloch equation to describe oblique spin 

precession in lateral spin valve. Our model considers the effect of finite contact resistance on 

spin lifetime anisotropy measurement. We demonstrate that the contact induced spin relaxation 

can strongly suppress the anisotropic spin precession signature in the measurement, which can 

lead to underestimation of the spin lifetime anisotropy. To solve this issue, we develop a closed 

form equation for extracting the spin lifetime anisotropy ratio, which accounts for the effect of 

finite contact resistance. Furthermore, we also derived the relationship between saturation 

magnetic field ܤௌ௔௧ and the minimum required channel length. We show that for graphene lateral 

spin valves, the minimum required channel length is mostly determined by both ܤ௦௔௧ and the 

diffusion coefficient of the channel. As a result, the oblique spin precession measurement is 

suitable for studying graphene lateral spin valves with long spin lifetimes.  
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Fig. 1. (a) Schematic drawing of non-local spin valve geometry under magnetic
field. For conventional Hanle measurement, the magnetic field is perpendicular
to the channel material ( ! = 90∘ ). In the oblique spin precession
measurement, ! is varied between 0∘~90∘, and a magnetic field dependent
non-local voltage is measured. (b) The Cartesian frame used in the modeling.
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Fig. 2. (a, b) Non-local spin precession curves with high contact
resistance ( +	 = 	100 ) and transparent contacts ( + = 0.01 ),
respectively. Curves in each figures from top to bottom correspond to
/ = 2.0, 1.5, 1.0, 0.7, 0.5. All the curves are generated with parameters
4 = 2 and ! = 45∘.



Fig. 3. Angle dependence of 678∗ : → ∞ calculated with Eq. (13),
with tunneling contact (a, c) and transparent contact (b, d) resistance
and different channel length. The feature of spin lifetime anisotropy
is much obvious with high contact resistance and longer channel
length.



Fig. 4. (a) Fitting of the simulated oblique spin precession curves.
The open circles are data from simulation, with l = 2 and r = 1. The
solid lines are fittings of the simulated curve with Eq. (14),
considering no contact induced spin relaxation. (b) Simulation of the
fitting error Δ/// with different contact resistance + and channel
length 4. The dashed lines marked the condition when the error is
10%, 5% and 1%.



Fig. 5. (a) Simulated Hanle spin precession curve from Eq. (11) (solid)
and 678? from Eq. (16) (dashed), assuming 4 = 2. Both curves are
normalized with the value at : = 0. Because Eq. (16) is for : ≫ 1,
only the values for : > 5 of the dash curve is plotted. The inset
shows the same curve in the semi-log scale. (b) A set of 678∗ curves
simulated with different normalized contact resistance. Inset shows
the same data plotted in the semi-log scale. The dashed line shows
678∗ = 10BC, (D = 3).


