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Out-of-time-ordered correlators (OTOC) have been proposed to characterize quantum chaos in
generic systems. However, they can also show interesting behavior in integrable models, resembling
the OTOC in chaotic systems in some aspects. Here we study the OTOC for different operators in
the exactly-solvable one-dimensional quantum Ising spin chain. The OTOC for spin operators that
are local in terms of the Jordan-Wigner fermions has a “shell-like” structure: after the wavefront
passes, the OTOC approaches its original value in the long-time limit, showing no signature of
scrambling; the approach is described by a t−1 power law at long time t. On the other hand,
the OTOC for spin operators that are nonlocal in the Jordan-Wigner fermions has a “ball-like”
structure, with its value reaching zero in the long-time limit, looking like a signature of scrambling;
the approach to zero, however, is described by a slow power law t−1/4 for the Ising model at the
critical coupling. These long-time power-law behaviors in the lattice model are not captured by
conformal field theory calculations. The mixed OTOC with both local and nonlocal operators in
the Jordan-Wigner fermions also has a “ball-like” structure, but the limiting values and the decay
behavior appear to be nonuniversal. In all cases, we are not able to define a parametrically large
window around the wavefront to extract the Lyapunov exponent.

I. INTRODUCTION

First discussed by Larkin and Ovchinnikov1 and re-
cently revived by Kitaev,2,3 out-of-time-ordered corre-
lator (OTOC) has attracted a lot of attentions in the
physics community across many different fields, includ-
ing quantum information, high-energy physics, and con-
densed matter physics. Consider

CWV (t) ≡ 1

2
〈[W (t), V ]†[W (t), V ]〉

=
1

2

[
〈V †W (t)†W (t)V 〉+ 〈W (t)†V †VW (t)〉

−〈W (t)†V †W (t)V 〉 − 〈V †W (t)†VW (t)〉
]
,

where 〈O〉 ≡ Tr[e−βHO]/Tr[e−βH ] denotes the thermal
average and W (t) ≡ eiHtWe−iHt is the Heisenberg evo-
lution of the operator W . We see that the last line in-
volves operators with unusual time ordering, hence the
name “OTOC.” In particular, if W and V are Hermi-
tian and unitary (e.g., Pauli matrices), then CWV (t) =
1− ReFWV (t), where FWV (t) ≡ 〈W (t)VW (t)V 〉.

There are several aspects about this object which
make it interesting to study. First of all, such C(t) is
a possible diagnostic for quantum chaos. In classical
physics, one hallmark of chaos is that a small difference
in the initial condition results in an exponential devi-
ation of the trajectory—the famous “butterfly effect.”
Denoting q as the generalized coordinate of the clas-
sical system in the language of Hamiltonian dynamics,
the butterfly effect can be diagnosed from the behavior

| ∂q(t)∂q(0) | ∼ eλLt, where λL is the Lyapunov exponent. The

object ∂q(t)
∂q(0) can be calculated from the Poisson bracket

{q(t), p}P.B..
4,5 A natural generalization of this diagnostic

to quantum systems is by promoting the Poisson bracket
to a commutator. Therefore, the behavior of the object
C(t) = 〈|[x(t), p]|2〉 ∼ e2λLt is an immediate generaliza-

tion of the classical chaos to quantum systems, where
using |A|2 ≡ A†A removes effect of phase cancellations
when averaging. Unlike classical systems where λL can
be arbitrarily large, in quantum systems it was argued4,6

that under some natural assumptions λL is bounded by
2π/β (assuming the unit ~ = 1), where β is the inverse
temperature of the system.

Several works have used this diagnostic to argue for the
existence of quantum butterfly effect7–10 and extract the
Lyapunov exponent, with examples including the O(N)
model,11 fermionic models with critical Fermi surface,12

and weakly diffusive metals.13 On the other hand, some
systems, for example Luttinger liquids14 and many-body
localized systems,15–19 do not show the Lyapunov behav-
ior and are hence characterized as less chaotic or as slow
scramblers. Also, some works have shown that in cer-
tain Hamiltonians, the exponent extracted from OTOC
does not match the classical counterpart of the semiclas-
sical limit.20,21 For systems with bounded local Hilbert
space and Hamiltonians with local interactions, a work22

proposed that the density-OTOC is a more suitable di-
agnostic.

Another perspective on the OTOC is that it demon-
strates the instability of the “thermal field double state”
and the scrambling of information.4,23,24 It is expected
that if F (t) is small [or C(t) is large] in the long-time
limit, the system is scrambled; while large F (t) [small
C(t)] signals absence of scrambling. This also leads
to a more sophisticated quantum information-theoretical
definition of scrambling.25 There are also some con-
siderations regarding the quasiprobability behind the
OTOC.26,27 Several works used holographic description
to show the nontriviality of the OTOC.23,28 A confor-
mal field theory calculation showed agreement with the
holographic calculations.24

From the operator point of view, C(t) is a measure
of operator spreading. Let us consider a 1d quantum
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spin-1/2 chain for concreteness, and assume W operates
on site i (denoted as Wi) while V operates on site j
(denoted as Vj) which we will treat as a “probe” and
will vary its position. The Heisenberg-evolved operator
Wi(t) can be written in the basis of Pauli-string opera-
tors, Wi(t) =

∑
S aS(t)S, where S runs over all Pauli-

strings (e.g., . . . σx0σ
z
1σ

z
2 . . . ) and aS(t) denotes the cor-

responding amplitudes. Then, at infinite temperature,
C(t) = 2

∑′
S |aS(t)|2, where the primed summation is

over the Pauli-strings with nontrivial commutation with
Vj , or [S, Vj ] 6= 0, and for concreteness we assumed that
such [S, Vj ] is a Pauli string itself (times 2), as is the
case where the “probing” Vj is a single-site Pauli oper-
ator. Therefore, by examining Vj at different positions,
one can quantify to some degree how Wi(t) is spread over
the space. Recent calculations in the case of the time evo-
lution given by local random quantum gates show non-
trivial operator spreading and OTOC growth.29–34

While most of the works focus on the OTOC diag-
nosing scrambling in chaotic systems, it is also interest-
ing to consider its behavior in non-chaotic or integrable
systems. From the operator spreading and information
scrambling point of view, the OTOC in integrable sys-
tems could still be interesting and reveal some non-trivial
aspects. We therefore study in detail the OTOC in the
quantum Ising chain

H = −J
2

L−1∑
j=0

σzjσ
z
j+1 + g

L−1∑
j=0

σxj

 , (1)

with periodic boundary condition. The specific choice
of couplings is such that at the T = 0 quantum criti-
cal point, g = 1, the maximal quasiparticle velocity is
c = J , and we will also set J = 1. We will focus on
the case where W and V are single-site Pauli matrices
whose positions we can vary. We will be interested in the
quantities

Cµν(`, t) ≡ 1

2
〈|[σµ` (t), σν0 ]|2〉 = 1− ReFµν(`, t) , (2)

where µ, ν = x, y, z, and Fµν(`, t) = 〈σµ` (t)σν0σ
µ
` (t)σν0 〉.

Using lattice translation and mirror (i.e., j → −j)
symmetries, one can easily show that Cµν(`, t) =
1
2 〈|[σ

µ
0 (t), σν` ]|2〉. In some occasions, it is more natural

to consider the latter expression.
In particular, we will focus on Fxx(`, t), Fzz(`, t), and

Fzx(`, t), as they represent three different types of behav-
ior of the OTOC in the quantum Ising chain. The model
is solved using Jordan-Wigner (JW) fermions. In terms
of these, some spin operators are local and some become
nonlocal (i.e., contain string operator), and the three
OTOCs correspond to different combinations of local and
nonlocal operators. Previous studies35 have shown that
there is a qualitative distinction between the dynami-
cal correlation functions in the two cases. For operators
that are local in terms of the JW fermions, the correla-
tions show power-law decay in time at any temperature.

On the other hand, correlations of nonlocal operators de-
cay exponentially in time. Thus, the nonlocal operators
exhibit behavior that is closer to generic (i.e., noninte-
grable) “thermal” behavior, in contrast to the local op-
erators. Similar distinction has also been observed in
quench settings,36–38 where operators that are local in the
JW fermions approach their limiting values in a power-
law fashion (“slow thermalization”), while for the nonlo-
cal operators the approach is exponential in time (“fast
thermalization”); in both cases, the limiting values are
described by a generalized Gibbs ensemble appropriate
for this integrable model. It is therefore interesting to see
if such qualitatively different behavior has any nontrivial
correspondence in the OTOC calculations. Indeed, we
observe that the OTOC composed with local operators
shows no sign of scrambling, namely limt→∞ Fxx(`, t) = 1
(which is the same as the value at t = 0) and the ap-
proach is t−1 power law. On the other hand, the OTOC
composed with nonlocal operators shows the signature
of scrambling, limt→∞ Fzz(`, t) → 0. However, we find
that the long-time behavior of Fzz(`, t) is a very slow
t−1/4 power law; this is a departure from the exponential
decays found in the dynamical correlation and quench
settings described above and shows that the OTOC en-
codes some different aspects; the very slow decay is also
highly unusual and not fully understood.

The paper is organized as follows. In Sec. II, we briefly
state the procedure of diagonalizing the Hamiltonian and
establish some basic notations. In Secs. III, IV, and V, we
present the results for Cxx(`, t), Czz(`, t), and Czx(`, t)
respectively (details of the calculations are in Appen-
dices B, C, and D respectively). In each case, we dis-
cuss the behavior at short time (spacelike region), be-
havior around the wavefront, and behavior at long time
(timelike region). In Appendix E, we provide additional
intuition about the Cxx(`, t) and Czx(`, t) directly from
the operator spreading picture by extracting these from
the σx(t) operator. Finally, in Sec. VI, we summarize and
discuss some outstanding questions and future directions.

II. DIAGONALIZING THE HAMILTONIAN
AND SETTING UP OTOC CALCULATIONS

We consider the quantum Ising model, Eq. (1), on a
finite chain with periodic boundary conditions used to
minimize boundary effects. We diagonalize the model
via Jordan-Wigner transformation and subsequent Bo-
goliubov transformation.35 In the fermionic representa-

tion, the spin operators are written as σxj = 1 − 2c†jcj

and σzj = −∏j′<j(1 − 2c†j′cj′)(cj + c†j). We therefore
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obtain

H = HNSP+ +HRP− , (3)

HNS/R = −J
2

L−1∑
j=0

(
c†jcj+1 + c†j+1cj + c†jc

†
j+1 + cj+1cj

−2gc†jcj + g
)
, (4)

where P± = [1 ± (−1)Ntot ]/2 are the projectors to
even/odd fermion number parity sectors, with Ntot =∑L−1
j=0 c

†
jcj the total fermion number; HNS is under-

stood with cj+L = −cj boundary conditions (Neveu-
Schwarz boundary conditions), while in HR we have
cj+L = cj (Ramond boundary conditions). We then
use appropriate Fourier transform ck = 1√

L

∑
j cje

−ikj

for each Hamiltonian HNS/R and Bogoliubov transfor-

mation γk = ukck − iwkc
†
−k, diagonalizing HNS/R =∑

k∈KNS/R
εk(γ†kγk − 1

2 ), where KNS = { (2n+1)π
L |n =

0, . . . , (L−1)} and KR = { 2nπ
L |n = 0, . . . , (L−1)}; the

quasiparticle dispersion is εk = J(1 + g2 − 2g cos k)1/2.
This diagonalization is achieved by choosing the coher-
ence factors as uk = cos(θk/2) and wk = sin(θk/2), where
tan(θk) = sin(k)/[g − cos(k)].

When making connections with the spin model, partic-
ularly when dealing with the string operators, it will be
convenient to use Majorana representation. We will fol-

low Ref. 35 and introduce Majorana fermions Aj ≡ c†j+cj
and Bj = c†j − cj .

The OTOCs can thus be expressed as fermionic corre-
lation functions. The thermal ensemble grants the Wick’s
theorem, which allows us to express all the correlation
functions using two-point correlation functions. How-
ever, the different fermion boundary conditions in the
different fermion-number-parity sectors results in some
complications in the calculation of dynamical correlation
functions, and a more sophisticated treatment is needed.
We will carefully state the procedure below and in the
subsequent sections for the specific OTOCs. To prepare
for such discussion, we here introduce some notations
which will be useful later.

To enable free-fermion calculations, we introduce ther-
mal ensembles corresponding to the two types of bound-
ary conditions, ZNS/R ≡ Tr(e−βHNS/R) and 〈O〉NS/R ≡
Tr(e−βHNS/RO)/ZNS/R. Note that the trace in each case
is defined over the full Fock space, i.e., including both
parity sectors, even though HNS/R originally arose in the
even/odd parity sectors. These ensembles are introduced
because the Wick’s theorem only holds for an ensemble
defined with respect to a quadratic Hamiltonian that is
fixed over the full Fock space. To evaluate the thermal
average with respect to the spin Hamiltonian H, we recall
Eq. (3) and use

〈O〉 =
ZNS

Z
〈OP+〉NS +

ZR

Z
〈OP−〉R . (5)

Since P± = [1 ± (−1)Ntot ]/2, we will have to calculate
〈O〉NS/R and 〈O(−1)Ntot〉NS/R.

We are interested in situations where O in Eq. (5)
is composed of several time evolved operators,
O = Q1(t1)Q2(t2) . . . , where Q(t) = eiHtQe−iHt.
To be able to use free-fermion calculations and Wick’s
theorem, it is crucial to require that each Q1, Q2, . . . ,
does not change the fermion parity. In this case,
considering, e.g., the operator in the first term in
Eq. (5), we have: OP+ = Q1(t1)Q2(t2) . . . P+ =
QNS

1 (t1)QNS
2 (t2) . . . P+, where QNS(t) ≡ eiHNStQe−iHNSt.

At this point, we can evaluate 〈OP+〉NS =
〈QNS

1 (t1)QNS
2 (t2) . . . P+〉NS = [〈QNS

1 (t1)QNS
2 (t2) . . . 〉NS +

〈QNS
1 (t1)QNS

2 (t2) . . . (−1)Ntot〉NS]/2. For each term in
the last expression, both the the density matrix and
the time evolution are determined by HNS viewed
over the full Fock space (i.e., including both parity
sectors), thus enabling free-fermion calculations. Similar
considerations apply to the calculation of 〈OP−〉R,
which can be expressed entirely in terms of free fermions
with Hamiltonian HR over the full Fock space. We will
often abuse the notation by dropping the labels “NS”
or “R” in QNS(t) or QR(t) for brevity where the precise
meaning can be recovered from the context.

In the thermodynamic limit, one in fact expects
〈O(−1)Ntot〉NS/R → 0 and 〈O〉NS = 〈O〉R = 〈O〉. While
for all the calculations one can in principle just evalu-
ate 〈O〉NS or 〈O〉R and take the thermodynamical limit,
in this paper we calculate exact finite-size Fµν(`, t) [and
hence Cµν(`, t)] using Eq. (5) so that we can compare the
results against exact diagonalization of the spin system
at small system sizes to ensure the correctness.

To study the behavior of Cµν(`, t) around the wave-
front in more detail, or more specifically, to examine
if the wavefront has the functional form Cµν(`, t) ∼
e−λ(`−ct), we will also study the function Gµν(`, t) =
∂ lnCµν(`, t)/∂t, which characterizes the onset of the
scrambling4 if there is one and the spreading of the op-
erator wavefront29,31,32. When discussing the analytical
results and the calculation of Gµν(`, t), we consider only
the part 〈O〉NS.

The crucial ingredients to obtain all the correlation
functions are the two-point Majorana correlation func-
tions, which we list in Appendix A. In all the calculations
of the OTOC, we will need to use the numerical values of
Z, ZNS, and ZR. The partition sums ZNS and ZR can be
calculated easily by ZNS/R =

∑
ENS/R

e−βENS/R , where

ENS/R denotes the eigenenergies of HNS/R. Note again
that here we consider HNS acting on the full fermion
Fock space including both even and odd parity sectors
and performs free-fermion calculation of ZNS, and simi-
larly treats HR to calculate ZR. On the other hand, the
calculation of Z is nontrivial as it involves the projectors
to the different sectors, and its details are presented in
Appendix A.
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FIG. 1. (color online) The function Cxx(`, t) for the quantum
Ising chain at the critical point, g = 1, at infinite temperature
(inverse temperature β = 0); the system size is L = 512.
We show data as a function of ` at fixed time t, for t in
steps of ∆t = 2 marked along the right border; here and
in all figures, the energy unit J in Eq. (1) is set to 1. The
traces at fixed t are shifted in the y direction by 0.025t thus
offering three-dimensional-like visualization. For every t that
is multiple of 10, we mark the trace with red color for easier
reading of the data. The light cone can be readily identified
and corresponds to the maximal quasiparticle group velocity
c = maxk

dεk
dk

= J = 1. In the timelike region, Cxx(`, t)
approaches zero in the long-time limit, indicating absence of
“scrambling.”

III. XX OTOC

First, we discuss the commutator function Cxx(`, t) =
1 − ReFxx(`, t). In the fermionic representation, σx` =
A`B`. Therefore we have

Fxx(`, t) = 〈A`(t)B`(t)A0B0A`(t)B`(t)A0B0〉 . (6)

Note that we need to use Eq. (5) and evaluate both
〈OP+〉NS and 〈OP−〉R. While these expectation values
can be evaluated using Wick’s theorem, the calculation
is simplified when cast in the form of Pfaffians of anit-
symmetric matrices. We present details in Appendix B.

Figure 1 shows the numerical results for Cxx(`, t) at
various time slices. We can immediately identify the
velocity of the wavefront as c = 1, which is the maxi-
mum of the quasiparticle group velocity vk = ∂εk/∂k.
In the present case, the OTOC function is “shell-like.”
That is, inside the timelike region, in the long-time limit,
Cxx(`, t) → 0, indicating no scrambling. More precisely,
as far as characterizing the operator spreading of σx(t),
the vanishing of the Cxx OTOC in the long-time limit
suggests that expansion of σx(t) in terms of Pauli strings
does not contain many σy or σz operators “in the mid-
dle” of the strings. This can be indeed seen from the
explicit expressions for σx(t) in App. E.

A. “Universal” early-time growth with
separation-dependent power law

Before the light cone reaches, we can argue that there
is a “universal” power-law growth of Cxx(`, t) ∼ t2(2`−1).
Indeed, consider W = σx0 and V = σx` . The Heisen-
berg evolution W (t) at short time can be expanded via
Hausdorff-Baker-Campbell (HBC) formula

W (t) =

∞∑
n=0

tn

n!
Ln(W ) , (7)

where L(W ) ≡ i[H,W ]. It is easy to check that for these
W and V , the smallest n such that [Ln(W ), V ] 6= 0 is
n = 2`−1, and the nonzero contribution to the commu-
tator comes from the piece in Ln(W ) that reaches site `,
namely J2`−1g`−1σy0σ

x
1 . . . σ

x
`−1σ

z
` . Therefore, the lead-

ing order behavior is

Cxx(`, t) ≈ 2(Jt)4`−2g2`−2

[(2`− 1)!]2
, (8)

which is also shown in Fig. 2 and captures well the exact
calculation in this regime. We expect that such an argu-
ment based on the HBC formula is in fact very general
and not related to any integrability of the model.14,39,40

We thus expect such power-law growth with position-
dependent power to be “universal,” present also in non-
integrable systems, as long as one is considering systems
with bounded on-site Hilbert spaces and Hamiltonians
with local interactions. Such a power-law growth is in-
deed also observed in the XXZ model.14 However, we
emphasize that this is just a quantum mechanical effect
before the light cone reaches and should not be identified
as a signature of scrambling or lack of it.

Lastly, we note that if we fix time t and take the
separation ` to large values, the commutator function
Cxx(`, t) decays faster than exponential function in `,
namely Cxx(`, t) ∼ exp[a(t)`−4` ln `], where a(t) is some
number that depends on t.

B. Behavior around the wavefront

To examine the behavior of Cxx(`, t) around the wave-
front more closely, we study the function

Gxx(`, t) ≡ ∂ lnCxx(`, t)

∂t
. (9)

We can calculate this in a way that avoids numerical
differentiation (see Appendix B for details) and present
the results in Fig. 3. We see that before the oscillation
sets in, Gxx(`, t) shows very strong ` dependence. On
the other hand, the inset in Fig. 3 demonstrates that
Gxx(`, t) shows essentially no temperature dependence.
We conclude that the behavior near this wavefront does
not show the “exponential divergence” that could be as-
sociated with the “butterfly effect,” and we can exclude
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FIG. 2. (color online) The function Cxx(`, t) for several fixed
separations ` at short time before the light cone reaches (i.e.,
spacelike separation between the operators). The growth of
the commutator is compared to the “universal” power-law
behavior given by ≈ 2t2(2`−1)/[(2`−1)!]2; note that there is
essentially no temperature dependence in this regime.

the possibility of any temperature-dependent description
of the wavefront. Thinking about possible other descrip-
tions of the wavefront, we do not clearly see a paramet-
rically large time window where we could sharply distin-
guish this transition region behavior from the short-time
and long-time behaviors. While we see that the onset of
oscillations (more precisely, onset of non-monotonic be-
havior) happens at larger t − `/c when ` is increased,
at present we do not know if there is any asymptotic
functional form in a well-defined window to describe the
wavefront. Thus we also note that the frequency of oscil-
lations vanishes as one approaches the `/t = c ray, so the
later “onset” of oscillations for larger ` could be related
to this. In any case, we can definitely tell that any “uni-
versal” description needs to be essentially temperature-
independent.

C. Universal long-time decay with t−1 power law

The limiting value of Fxx(`, t) for fixed ` but t → ∞
can be easily shown to be one. Indeed, considering all
the Wick contractions in Eq. (6), we see that if the con-
traction has any nonequal time correlation function, this
term will be zero since all the fermionic correlation func-
tions go to zero in the t→∞ limit. We therefore have

Fxx(`,∞) = 〈A`(∞)B`(∞)A`(∞)B`(∞)〉〈A0B0A0B0〉
=
(
〈A0B0〉2 + 1 + 〈A0B0〉〈B0A0〉

)2
= 1 .

We conclude that Cxx(`,∞) = 0, which is a signature of
no scrambling.

The long time behavior of Cxx(`, t) is shown in Fig. 4
for different separations ` and different inverse tempera-

−5 0 5 10
−5

0

5

10

15

20

25  
 
 
 
 
 
 
 
 

FIG. 3. The derivative function Gxx(`, t) ≡ ∂ lnCxx(`, t)/∂t
around the wavefront. Before the oscillation sets in, Gxx(`, t)
has very strong ` dependence, for which we do not know any
universal description. Inset: Gxx(`, t) for fixed ` = 40 and sev-
eral different inverse temperatures β, illustrating that there is
basically no temperature dependence around the wavefront.

tures β. The data suggests universal t−1 behavior inde-
pendent of ` and β. We can indeed understand this from
the stationary phase approximation for the fermionic cor-
relation functions. The standard stationary phase ap-
proximation applied to the fermionic correlation func-
tions gives t−1/2 decay at long times. The full Wick
contraction for Eq. (6) is complicated but can be ob-
tained by simplifying the calculation of the Pfaffian, see
Appendix. B for details. From this, we can identify the
dominant behavior at fixed ` and long time:

Czz(`, t) ∼
(
1− 〈A0B0〉2

) 2

π|ε′′π|t
, (10)

where ε′′k is the second derivative of εk respect to k (for
g = 1 considered here, |ε′′π| = J/2 = 1/2). Note that in
this expression the temperature dependence enters only
in the expectation value 〈A0B0〉 = 〈σx0 〉, which is zero
at infinite temperature and approaches value 0.7698 at
zero temperature (so that the coefficient of the t−1 de-
cay is always nonzero). We can recognize that the t−1

decay comes from two pairs of unequal-time contractions
and two pairs of equal-time contractions. Appendix E
provides qualitative understanding of this long-time be-
havior directly from the operator spreading picture. We
also note that the above calculations and qualitative re-
sults hold for all g and nonzero temperatures.

It is interesting to compare the OTOC behavior with
results for dynamical correlation functions as well as for
thermalization of such spin observable in quench set-
tings. The dynamical correlation function 〈σx` (t)σx0 〉 =
〈A`(t)B`(t)A0B0〉 approaches 〈σx0 〉2 in the long-time with
t−1 power-law. Indeed, this power law comes from simple
calculation, 〈σx` (t)σx0 〉 − 〈σx0 〉2 = 〈A`(t)B0〉〈B`(t)A0〉 −
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〈A`(t)A0〉〈B`(t)B0〉, and is ultimately related to the long-
time behavior of the fermion dynamical correlation func-
tion. However, we note that details of the contraction
pieces (i.e., how “fractions” of the spin operator get con-
tracted) is different here compared to the OTOC calcu-
lation, even though the long-time t−1 power law is simi-
lar. Let us now consider quench setting where one starts
with some initial state |ψini〉 (e.g., a product state or a
ground state at some other parameter g′ 6= g) and then
evolves under the present Hamiltonian. Here one finds
that 〈ψini|σx0 (t)|ψini〉 decays as t−3/2 to its equilibrium
value in the long-time limit.38 Generally, it is clear that
the OTOC, dynamical correlation function, and behavior
under quench, probe different aspects of the Heisenberg-
evolved operator σx0 (t) (see also Appendix E).

IV. ZZ OTOC

In this section, we discuss the commutator function
Czz(`, t) = 1− ReFzz(`, t). The new feature here is that
σz` is nonlocal in terms of the JW fermions and further-
more changes the fermion parity. While one can write
σz` = −(

∏
j<`AjBj)A`, its Heisenberg evolution σz` (t)

cannot be obtained from the simple free-fermion Heisen-
berg evolution of the fermions Aj(t) and Bj(t). The rea-
son is that the original spin Hamiltonian in the fermionic
language is in fact composed of projections into two dif-
ferent fermion-parity sectors, with different free-fermion
Hamiltonian used in each sector. The operator σz` , how-
ever, changes the fermion-parity, while the Heisenberg
evolution of the fermion operators are simple only when
working with a fixed free-fermion Hamiltonian over the
full Fock space. Therefore, we need a more sophisticated
treatment when calculating the dynamical quantities.

Following McCoy and Abraham,41 we “double” the
OTOC and consider the following quantity

Γzz(`, t;L) ≡ 〈σzL
2

(t)σzL−̀ (t)σz0σ
z
L
2−̀
σzL

2
(t)σzL−̀ (t)σz0σ

z
L
2−̀
〉 ,

(11)
where by periodic boundary conditions site L − ` ≡ −`
will be “close” to site 0 (and site L/2− ` will be “close”
to site L/2). Consider large enough L such that L/2� `
and L/2 � vt for some characteristic velocity v (here
v ≤ c = 1). Invoking the Lieb-Robinson bound and the
cluster property,41 we have

Γzz(`, t;L) ≈ 〈σzL
2

(t)σzL
2−̀
σzL

2
(t)σzL

2−̀
〉〈σzL−̀ (t)σz0σ

z
L−̀ (t)σz0〉

= Fzz(`, t)Fzz(−`, t) = F 2
zz(`, t) , (12)

where we have used the mirror symmetry Fzz(−`, t) =
Fzz(`, t). The advantage of introducing the function
Γzz(`, t;L) is that σz(t) operators come in pairs that do
not change the fermion parity, which allows expressing
the evolution using fixed free-fermion Hamiltonians, so
the full function can be calculated via Wick’s theorem in
terms of the JW fermions. Again, the evaluations of the
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FIG. 4. Long-time behavior of Cxx(`, t) in the timelike
region; note the log-log scale. The data is shown as a function
of t at fixed `, where on the horizontal axis we show the time
elapsed after the wavefront passes. Panel (a) shows several
different separations ` and is at infinite temperature; the inset
shows the same data on the linear-linear scale. Panel (b)
shows several different temperatures at fixed separation ` =
20. In all cases, we observe power-law decay t−1, which can
be understood from the long-time behavior of the fermion
correlation functions.

Wick’s theorem can be conveniently formulated as Pfaffi-
ans of appropriate anti-symmetric matrices. We present
the details in Appendix C.

Figure 5 shows Czz(`, t) at g = 1.0, β = 0, calculated
using the above procedure on a system of size L = 512.
Note that since we can only calculate F 2

zz(`, t), we re-
cover the sign of ReFzz(`, t) by requiring “continuity” of
the “derivative” D`Fzz(`, t) ≡ Fzz(`+1, t)−Fzz(`, t) and
the known value of ReFzz(`, t) ≈ 1 in the spacelike re-
gion ` � ct. We have verified such recovery of the sign
also by examining continuity of ∂tFzz(`, t) as we vary
t. As in our study of Cxx(`, t) in Fig. 1, we can imme-
diately identify the light cone velocity as the maximal
group velocity of the quasiparticles. On the other hand,
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FIG. 5. (color online) The function Czz(`, t) = 1−ReFzz(`, t)
for the critical Ising chain (g = 1) at infinite temperature
(β = 0), evaluated using the “doubling trick,” Eq. (12), on a
periodic chain of length L = 512. Here we restore the sign of
ReFzz(`, t) from Re

√
Γzz(`, t;L) by requiring “continuity” of

the “derivative” D`ReFzz(`, t) = ReFzz(`+ 1, t)−ReFzz(`, t)
(see text for details). We show data as a function of ` at fixed
t, with time steps ∆t = 2. The traces at fixed t are shifted by
0.1t in the y-direction for 3d-like visualization; every t that
is multiple of 10 is marked with red color for easier tracing.
Similarly to Cxx(`, t) in Fig. 1, we can readily identify the
light cone and associate it with the maximal quasiparticle
velocity c = 1. Unlike Cxx(`, t), in the timelike region Czz(`, t)
approaches a nonzero value close to 1 at long times. In other
words, Fzz(`, t) approaches value close to zero, which suggests
scrambling of the information.

we also observe that Czz(`, t) approaches a nonzero value
inside the light cone at long times. In fact, in the inset
of Fig. 8(a), we can see that ReFzz(`, t) approaches zero
in the long-time limit, and hence Czz(`, t) approaches 1.
Thus Czz(`, t) has a “ball-like” structure, in contrast to
the “shell-like” Cxx(`, t). We interpret this property of
Czz(`, t) as a signature of some scrambling of the infor-
mation in the system. From the operator spreading point
of view, this behavior corresponds to σz0(t) having a lot of
weight on Pauli-strings with “random” σµ` in the middle
of the strings; more precisely, the infinite-temperature
Czz(`, t) approaching 1 corresponds to the weight of the
strings that have σµ` = σx or σy approaching 1/2 of the
total weight, a kind of “scrambling.”

A. Early-time behavior of Czz(`, t)

The early-time growth of Czz(`, t) can be also under-
stood by the argument employing the HBC expansion,
Eq. (7). In this case, for W = σz0 and V = σz` , the small-
est n such that [Ln(W ), V ] 6= 0 is n = 2`+ 1; the corre-
sponding piece in Ln[W ] is −J2`+1g`+1σx0σ

x
1 . . . σ

x
`−1σ

y
` .
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FIG. 6. (color online) The short-time behavior of Czz(`, t)
examined for several separations ` and different inverse tem-
peratures β; the system is the same as in Fig. 5. The early-
time growth of Czz(`, t) is well described by the “universal”
power-law given by ≈ 2t4`+2/[(2`+ 1)!]2.

This gives us

Czz(`, t) ≈ 2
(Jt)2(2`+1)g2(`+1)

[(2`+ 1)!]2
. (13)

In Fig. 6, we compare the above formula and the nu-
merical results for Czz(`, t). We see that the short-time
behavior is well captured by this argument.

B. Behavior of Czz(`, t) around the wavefront

Here we investigate the behavior of Czz(`, t) around
the wavefront. Again, we study the derivative function

Gzz(`, t) ≡
∂ lnCzz(`, t)

∂t
. (14)

Details of the calculation that avoids numerical differ-
entiation are presented in Appendix C. In principle, if
Czz(`, t) has the Lyapunov behavior, namely the expo-
nential growth around the wavefront, we should be able
to extract this from Gzz(`, t = t0), where t0 = `/c is the
characteristic wavefront passage time defined using ana-
lytically known maximal group velocity c = 1. In Fig. 7,
we see that Gzz(`, t) is well described by a linear function
λ0 +λ1(t− `/c) around the wave front. However, the pa-
rameters λ0(`) and λ1(`) have a strong dependence on `
but very weak dependence on β. It is therefore not clear
if we should view this functional form as a well-defined
asymptotic description and identify λ0 as the Lyapunov
exponent. One possibility is that when ` is large, λ0 ap-
proaches a finite value while λ1 approaches zero, there-
fore it is well-defined when ` → ∞ with `/t ∼ c fixed.
In this case, around the wavefront, we could say that
Czz(`, t) ∼ exp[λ0(t − `/c)]. However, we do not seem



8

to have a parametrically large window exhibiting such
behavior that could be clearly separated from the short-
time and long-time regimes. Furthermore, any such Lya-
punov exponent extracted from our data would be essen-
tially temperature-independent, which would not be con-
sistent with existing proposals. We do see that the onset
of oscillations (which in our mind cuts off any asymptotic
description of the wavefront behavior) is pushed to larger
t − `/c for larger `, but we do not know if there is any
asymptotic functional description to this. If there is, then
similarly to the Cxx wavefront in Fig. 3, the description
should be essentially temperature-independent.

C. Unusual slow t−1/4 power-law at long time

An analytical treatment of Czz(`, t) is very difficult
since it involves analyzing the Pfaffian of a large matrix
with essentially infinite dimension in the thermodynamic
limit L → ∞. Here, we analyze it by examining the
numerical results in Fig. 8. As before, the data is for
the critical Ising chain coupling, g = 1, and the calcu-
lations are done for system size L = 512. The horizon-
tal axis shows t− `/c. We focus on the long-time be-
havior of the OTOC Fzz(`, t) after the wavefront passes.
We discover that, while Fzz(`, t) approaches zero in the
long-time limit, the approach is described by an oscillat-
ing function with a slow power-law envelope t−1/4. This
long-time power-law behavior is independent of the sepa-
ration ` or the inverse temperature β. It is worth to men-
tion that the finite-temperature calculation for the Ising
conformal field theory24 gives the same limiting value as
our lattice calculation. However, our t−1/4 power-law ap-
proach behavior is not described by the conformal field
theory.

We can further examine the oscillations by following
a specific ray t = `/v for varying v. We show this in
Fig. 8(c), where we find a single oscillation frequency for
each such ray and show its dependence on v in the in-
set. We conjecture that the frequency is determined by
some “stationary phase” approximation on a propagation
factor exp(ik`− iεkt). This would give the oscillation fre-
quency as ω(v) = εk0 − k0v, where k0 is the momentum
such that the quasiparticle group velocity ∂εk/∂k|k=k0 =
v. For v = 0, this gives ω(v = 0) = εk=π = 2, which is
the frequency where the quasiparticle group velocity is
zero. The oscillations in panels Fig. 8(a) and (b), where
we analyze the limit t→∞ at fixed ` which corresponds
to v = 0, indeed appear to approach this frequency. How-
ever, at present we do not have an analytical understand-
ing of this “stationary phase” conjecture and of the ob-
served t−1/4 power law. We leave this most interesting
and mysterious observation as an open question.

In contrast, the dynamical correlation function
〈σz` (t)σz0〉 decays exponentially in t and ` as long as the
temperature is nonzero.35,42–46 The decay length and co-
herence time depend on the parameter regime (g and
β). At infinite temperature, the correlation function
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FIG. 7. The derivative function Gzz(`, t) ≡ ∂ lnCzz(`, t)/∂t
around the wavefront. (a) Gzz(`, t) as a function of time
for several different separations `, where the horizontal axis
shows time measured relative to the “exact” wavefront pas-
sage time defined from the known maximal group velocity
c = 1; this data shows shows strong ` dependence. Around
t − `/c = 0, the behavior of Gzz(`, t) is well approximated
by a linear function. We fit Gzz(`, t) to λ0 + λ1(t − `/c) in
the region t− `/c ∈ [−3, 3] and show the resulting parameters
g0 and g1 for different ` in the inset. (b) Gzz(`, t) for fixed
` = 40 at different inverse temperatures β; we see that such
wavefront characterization does not show strong temperature
dependence.

has a singular behavior 〈σz` (t)σz0〉 = δ`,0e
−t2 ,47 con-

sistent with vanishing correlation length and coherence
time. Similarly, calculations in quench settings found
that 〈ψini|σz0(t)|ψini〉 decays exponentially as well.37,38

We thus see that there is a qualitative difference between
the long-time behaviors of the OTOC and of the dynam-
ical correlations as well as thermalization of the σz op-
erator. This indicates that the OTOC captures some
different aspects of the physics, and this finding deserved
further understanding.
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FIG. 8. (color online) Long-time behavior of |ReFzz(`, t)|
in the timelike region (i.e., after the wavefront passes) at (a)
different separations and (b) different inverse temperatures.
(a) For different separations and β = 0, in the long-time

limit, |ReFzz(`, t)| shows t−
1
4 decay. Inset: Linear plot of

ReFzz(`, t), where we fixed the sign by requiring continuity of
the derivative DtFzz(`, t) ≡ Fzz(`, t+∆t)−Fzz(`, t), where ∆t
is the time step in the numerical calculation. (b) The temper-
ature only affects the coefficient of the power-law decay; in the
long-time limit, the decay is still t−1/4. (c) ReFzz(`, t) along
several different rays `/t = v = const inside the timelike re-
gion, where for each v we observe single oscillation frequency
that depends on v. Inset: Comparison of the frequency fitted
from from the numerical calculations (red dots) and from the
“stationary phase” conjecture (blue line) ω(v) = εk0 − k0v,
∂kε|k0 = v, described in the main text.

c = 1

10
20
30
40
50
60
70
80
t

Czx(`, t) = 1 � ReFzx(`, t)

FIG. 9. (color online) The function Czx(`, t) for the same
critical Ising chain as in Figs. 1 and 5. The traces at fixed t are
shifted by 0.025t in the y-direction for 3d-like visualization;
every t that is multiple of 10 is marked with red color for
easier tracing. We can readily indentify the light cone and the
corresponding velocity c = 1. In the timelike region, Czx(`, t)
approaches a nonzero value larger than 1 in the long-time
limit, i.e., Fzx(`, t) approaches a negative value.

V. ZX OTOC

Lastly, we discuss the function Czx(`, t). In the JW
fermion language, here we have both a nonlocal opera-
tor and a local operator. As in the case of Czz(`, t), σ

z

changes the fermion parity sector. Therefore, we need
to use the “doubling trick.” We consider the following
function

Γzx(`, t;L) ≡ 〈σzL
2

(t)σzL−̀ (t)σx0σ
x
L
2−̀
σzL

2
(t)σzL−̀ (t)σx0σ

x
L
2−̀
〉 .

For large enough system size such that L/2� `, L/2�
ct, and using the cluster property and invoking the Lieb-
Robinson bound, we have

Γzx(`, t;L) ≈ 〈σzL
2

(t)σxL
2−̀
σzL

2
(t)σxL

2−̀
〉〈σzL−̀ (t)σx0σ

z
L−̀ (t)σx0 〉

= Fzx(`, t)Fzx(−`, t) = F 2
zx(`, t) . (15)

In the last line, we have used translational invariance and
the mirror symmetry which gives Fzx(−`, t) = Fzx(`, t).
We can now express Γzx(`, t;L) in terms of the JW
fermions evolving under fixed free-fermion Hamiltonians
and reduce the calculations to Pfaffians as detailed in
App. D.

Figure 9 shows Czx(`, t) at g = 1.0, β = 0, calcu-
lated using system size L = 512. After the wavefront
passes, Czx(`, t) approaches a nonzero value in the long-
time limit. In fact, ReFzx(`, t) approaches a negative
value. We identify this behavior as some “partial scram-
bling,” since ReFzx does not approach 1 (“absence of
scrambling”) or 0 (“total scrambling”).
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FIG. 10. (color online) The short-time behavior of Czx(`, t)
for several separations ` and different inverse temperatures β;
the system is the same as in Fig. 9. The early-time growth
of Czx(`, t) is well described by the “universal” power-law
≈ 2t4`/[(2`)!]2.

A. Early-time behavior of Czx(`, t)

The short-time behavior of Czx(`, t) before the wave-
front reaches is again described by the “universal” power-
law with position-dependent exponent. In this case
with W = σx0 and V = σz` , the smallest n such that
[Ln(W ), V ] 6= 0 is n = 2`, and the corresponding term
in Ln[W ] is −J2`g`σy0σ

x
1 . . . σ

x
`−1σ

y
` . We thus have the

leading behavior

Czx(`, t) ≈ 2(Jt)4`g2`

[(2`)!]2
. (16)

In Fig. 10, we compare the exact numerical results with
this leading-order prediction at short time and find good
agreement.

B. Behavior of Czx(`, t) around the wavefront

Here we also investigate the behavior of Czx(`, t)
around the wavefront. We study the derivative function

Gzx(`, t) ≡ ∂ lnCzx(`, t)

∂t
; (17)

the details of the calculation are presented in App. D.
Figure 11 shows the results around the wavefront defined
by c = 1. Similarly to our earlier findings for Gxx(`, t)
and Gzz(`, t), we see that Gzx(`, t) has strong ` depen-
dence but essentially no β dependence. Again, we do not
seem to have a parametrically large window around the
wavefront that can be sharply separated from the short-
time and long-time behaviors; and we definitely do not
have any temperature-dependent asymptotic functional
description.
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FIG. 11. The derivative function Gzx(`, t) ≡ ∂ lnCzx(`, t)/∂t
around the wavefront. Gzx(`, t) has very strong ` dependence
and no apparent universal description. Inset: Gzx(`, t) for
fixed ` = 40 and several inverse temperatures β; there is es-
sentially no temperature dependence.

C. Long-time behavior of Czx(`, t)

Figure 12 shows the long-time behavior of the OTOC
Fzx(`, t). We can see that Fzx approaches some nonzero
value. Unlike our results for Fxx or Fzz, the approach of
the Fzx to the limiting value has a very strong ` depen-
dence, and we have not been able to identify a “univer-
sal” long-time description of this behavior. Furthermore,
the limiting value of Fzx(`, t) when t → ∞ appears to
have strong β dependence, contributing to our difficulty
of finding universal description.

VI. CONCLUSION

In this paper, we studied the behavior of the OTOC
in the integrable quantum Ising model. We focused on
three different OTOCs, which are representative of dif-
ferent combinations of two different types of operators
in terms of the JW fermions. In all cases, we can clearly
identify the light cone velocity, which is given by the max-
imum group velocity of the quasiparticles. We also ar-
gued that before the wavefront reaches, the OTOCs have
“universal” power-law growth with position-dependent
power. This can be understood from the Hausdorff-
Baker-Campbell expansion of the Heisenberg evolution
of the operators. We expect that such early-time power-
law growth should also hold in non-integrable models, as
long as one has bounded local Hilbert space and local
Hamiltonian.

On the other hand, the long-time behaviors are dif-
ferent for the different OTOC types. The first type is
represented by Cxx(`, t), which involves only operators
that are local in terms of the JW fermions. The OTOC
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FIG. 12. (color online) Long-time behavior of ReFzx(`, t)
after the wavefront passes. (a) For different separations `
at β = 0, the limiting value as t → ∞ appears to be the
same, but the approach behavior has a strong ` dependence
becoming more slow for larger `. (b) For different inverse
temperatures β at fixed ` = 20, we see that both the limiting
value and the approach behavior have significant temperature
dependence.

can be calculated using a finite number of Wick contrac-
tions in the fermionic language. The limiting value of
Cxx(`, t) is zero when t→∞, which is a hallmark of ab-
sence of information scrambling. The approach is given
by t−1 power-law at long time, which can be understood
from the stationary phase approximation for the fermion
correlation function. This power law persists at any tem-
perature and also at any parameter g of the Ising model.
We expect that OTOCs composed of operators that are
local in JW fermions will have similar behavior.

The second type is represented by Czz(`, t), which in-
volves only operators that are nonlocal in terms of the
JW fermions (these operators contain “string” operator
when fermionizing the spin model). Due to this nonlo-
cal character, the OTOC calculation involves O(L) Wick
contractions. In the long-time limit, Fzz(`, t) approaches

zero [Czz(`, t) approaches 1], which is a signature of
scrambling. Interestingly, the approach is a very slow
power-law t−1/4. While we can tentatively identify the
frequency of oscillations that are present in the long-time
behavior as coming from the stationary phase approxima-
tion, it is not clear how the t−1/4 arises.

The aforementioned t−1/4 behavior of Fzz(`, t) is found
at g = 1 and any β. One immediate question is whether
this behavior depends on g. We performed such stud-
ies, although the results are not easy to interpret with
available system sizes. For g > 1, Fzz(`, t) appears to
approach zero with a faster decay than t−1/4. We ob-
serve oscillations with multiple frequencies, which makes
it difficult to identify the precise power-law decay. On
the other hand, for g < 1, the decay has both oscillating
and non-oscillating components, which makes the identi-
fication of the long-time behavior even more difficult, but
the decay appears to be also faster than t−1/4. Thus, for
both g > 1 and g < 1 we seem to find power-law decay
faster than for the “critical” coupling g = 1. At present,
we do not understand the origin of this qualitative differ-
ence, which persists all the way to infinite temperature.
We can only speculate that the full many-body spectrum
of the g = 1 Ising chain has something special about
it compared to g 6= 1, even though the thermodynamic
phase transition occurs only at zero temperature.

The last type of the OTOC behavior is represented by
Czx(`, t) and involves both local and nonlocal operators
in terms of the JW fermions. However, the long-time
behavior of Czx(`, t) has a very strong ` dependence,
while the limiting value also has a β dependence. Be-
cause of this, we have not been able to find a “universal”
(`-independent) description for Czx(`, t) in the long-time
limit.

For each of the three types of OTOCs, we tried to
study the behavior around the wavefront by considering
the time derivative of the logarithm of the correspond-
ing Cµν(`, t) function. In all cases, we found a strong `
dependence and very weak β dependence. Incidentally,
such derivative Gzz(`, t) can be well described by a lin-
ear function around the wavefront, but we do not know
if there is some significance to this. However, we cannot
find any parametrically large time window that would
enable the exponential-growth description of the wave-
front, and we can confidently exclude possibility of any
temperature-dependent asymptotic description.

We conclude with some open questions and future di-
rections. The main unresolved issue in the present paper
is finding better physical understanding of the long-time
behavior of the Czz(`, t) commutator function. Recent
studies30,32 argued that OTOCs in random quantum cir-
cuit models with a conserved charge have a power-law
approach in the long-time limit due to a diffusive charge
spreading. Our quantum Ising chain, besides the global
Z2 symmetry, is also integrable and has many integrals of
motion, and it would be interesting to understand if there
is a more direct relation between the long-time OTOC
behaviors and the integrals of motion. We would also
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like to study OTOCs in other spin models that map to
free fermions, in particular, with U(1) global symmetry.48

More generally, we would like to understand OTOCs in
other integrable models that do not map to free fermions,
and also effects of weak integrability breaking. Another
interesting direction is to study integrable models with
long-range interactions. The model in this paper is short-
ranged and does not show any Lyapunov growth behav-
ior near the wavefront. There appears to be mounting
evidence that even non-integrable models but with local
interactions and bounded on-site Hilbert spaces do not
have a precisely-defined exponential Lyapunov growth
regime near the wavefront. A very recent study40 pro-
posed that such an exponential growth behavior can be
found in non-integrable models with long-range interac-
tions. It would be interesting to explore if integrable
models with long-range couplings may also exhibit the
exponential growth regime.

Note added: After the submission of this manuscript,
two papers49,50 appeared that proposed a universal func-
tional form for the OTOC around the wavefront in inte-
grable models, which was conjectured based on the free-
fermion calculation for observables that are local in terms
of fermions. This pertains to our discussion of Figs. 3
and 7, where we left the possibility of universal descrip-
tion of the wavefront as an open question. We have ac-
tually verified that the proposed wavefront description
indeed holds for both Fxx(`, t) and Fzz(`, t), which in-
cludes also non-local observables that contain the string
operator in terms of fermions. Specifically, on rays with
fixed velocity outside the light cone, (x = vt, t) with
v > c, we have verified that the OTOC has exponential
decay ∼ exp[−λ(v)t] at long times, with λ(v) vanishing
as (v − c)3/2 as v → c. Furthermore, the broadening we
observed near the wavefront (seen, e.g., in the movement
of the first oscillation feature inside the light cone for in-
creasing ` in Figs. 3 and 7) is also consistent with the
proposed broadening ∼ t1/3 ∼ `1/3. We thank the au-
thors of Ref.[50] for communications about these points.
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Appendix A: Majorana two-point functions and
partition sum of the spin model

Before we proceed, we remind the reader that in this
appendix and in Appendices B, C, and D, the time-
dependent operators are understood as evolved under
the corresponding free-fermion Hamiltonians HNS/R as

explained in the main text after Eq. (5) and determined
by the label of the ensemble used, 〈. . . 〉NS/R.

We now list the Majorana two-point correlation func-
tions, which are ingredients in the applications of the
Wick’s theorem:

〈Am(t)An〉NS/R =
1

L

∑
k∈KNS/R

e−ik(m−n)

[
cos(εkt)− i sin(εkt) tanh

(
βεk
2

)]
,

〈Am(t)Bn〉NS/R =
1

L

∑
k∈KNS/R

e−ik(m−n)e−iθk

[
cos(εkt) tanh

(
βεk
2

)
− i sin(εkt)

]
,

〈Bm(t)An〉NS/R =
−1

L

∑
k∈KNS/R

e−ik(m−n)eiθk

[
cos(εkt) tanh

(
βεk
2

)
− i sin(εkt)

]
,

〈Bm(t)Bn〉NS/R =
−1

L

∑
k∈KNS/R

e−ik(m−n)

[
cos(εkt)− i sin(εkt) tanh

(
βεk
2

)]
.

The equal-time correlations are thus 〈AmAn〉NS/R =
−〈BmBn〉NS/R = δmn, 〈AmBn〉NS/R =
1
L

∑
k∈KNS/R

e−ik(m−n)e−iθk tanh(βεk/2), and

〈BmAn〉NS/R = −〈AnBm〉NS/R.
We define matrices [AANS/R](t) with matrix elements

[AANS/R]mn (t) ≡ 〈Am(t)An〉NS/R and analogously for
[ABNS/R]mn (t), [BANS/R]mn (t) and [BBNS/R]mn (t). We also
use [I] and [0] to denote identity and zero matri-
ces. For simplicity, the equal-time correlators are
denoted by omitting the time argument. We also
use [AANS/R]m=i:j

n=k:l (t) to represent the submatrix of
[AANS/R](t) with row index from i to j and column index
from k to l. We will frequently omit NS/R in [AANS/R](t)
and other matrices since it will be clear from the context
which matrix is used.

As we mentioned in the main text, the calculation of
the partition function Z of the spin model is less straight-
forward as it involves the projectors. Specifically, we have

Z = Tr(e−βHNSP+) + Tr(e−βHRP−) , (A1)

where P± = [1± (−1)Ntot ]/2. We therefore have

Z = ZNS
1 + 〈(−1)Ntot〉NS

2
+ ZR

1− 〈(−1)Ntot〉R
2

. (A2)

In the Majorana fermion language,

(−1)Ntot = (−1)L(L−1)/2
L−1∏
j=0

Aj

L−1∏
j=0

Bj . (A3)
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Defining DNS/R = [ABNS/R]m=0:L−1
n=0:L−1 and

FNS/R =

(
0 DNS/R

−DT
NS/R 0

)
, (A4)

we have by Wick’s theorem (recalling that equal-time
contractions 〈AmAn〉NS/R and 〈BmBn〉NS/R vanish for
m 6= n):

〈(−1)Ntot〉NS/R = (−1)L(L−1)/2Pf(FNS/R)

= det(DNS/R) . (A5)

Appendix B: Pfaffian calculation of Fxx(`, t)

In this appendix, we present details of the calculation
of Fxx(`, t) for the spin chain with periodic boundary con-
ditions using Pfaffian method. We define 2× 2 matrices

RxxNS/R =

(
0 [AB]00

−[AB]00 0

)
,

SxxNS/R =

(
[AA]`0(t) [AB]`0(t)
[BA]`0(t) [BB]`0(t)

)
,

UxxNS/R =

(
[AA]0`(−t) [BA]0`(−t)
[AB]0`(−t) [BB]0`(−t)

)
,

Jxx =

(
1 0
0 −1

)
;

4× 4 matrices

Mxx
NS/R =

(
RxxNS/R SxxNS/R

−(SxxNS/R)T RxxNS/R

)
,

Nxx
NS/R =

(
Jxx+RxxNS/R SxxNS/R

(UxxNS/R)T Jxx+RxxNS/R

)
;

8× 8 matrix

ΦxxNS/R =

(
Mxx

NS/R Nxx
NS/R

−(Nxx
NS/R)T Mxx

NS/R

)
;

and 4× 2L matrix

QxxNS/R =


[AA]`n=0:L−1(t) [AB]`n=0:L−1(t)
[BA]`n=0:L−1(t) [BB]`n=0:L−1(t)

[I]0n=0:L−1 [0]0n=0:L−1

[0]0n=0:L−1 −[I]0n=0:L−1

 .

Applying Wick’s theorem, we have

〈σx` (t)σx0σ
x
` (t)σx0 〉NS/R = Pf(ΦxxNS/R) ,

〈σx` (t)σx0σ
x
` (t)σx0 (−1)Ntot〉NS/R

= (−1)
L(L−1)

2 Pf

 Mxx
NS/R Nxx

NS/R QxxNS/R

−(Nxx
NS/R)T Mxx

NS/R QxxNS/R

−(QxxNS/R)T −(QxxNS/R)T FNS/R

 .

In the thermodynamic limit, we expect
〈σx` (t)σx0σ

x
` (t)σx0 〉 = 〈σx` (t)σx0σ

x
` (t)σx0 〉NS/R.

To obtain a compact analytical result, we focus on
〈σx` (t)σx0σ

x
` (t)σx0 〉NS. The Pfaffian can be simplified as

follows (we omit the labels “xx” and “NS” for brevity):

Pf


R S J+R S
−ST R UT J+R
−J+R −U R S
−ST −J+R −ST R



= Pf


R S J+R 0
−ST R UT J
−J+R −U R S+U

0 −J −(ST+UT) 0



= Pf


R S J 0
−ST R ST+UT J
−J −(S+U) 0 S+U
0 −J −(ST+UT) 0



= Pf


R S J 0
−ST R 0 J
−J 0 0 S+U
0 −J −(ST+UT) 0

 .

The matrix S + U is

S + U = 2

(
Re〈A`(t)A0〉 i Im〈A`(t)B0〉
i Im〈B`(t)A0〉 Re〈B`(t)B0〉

)
,

and we therefore obtain

Fxx(`, t) = 1 + 2i 〈B`(t)A0〉 Im〈B`(t)A0〉
+ 2i 〈A`(t)B0〉 Im〈A`(t)B0〉
− 2〈A`(t)A0〉Re〈A`(t)A0〉
− 2〈B`(t)B0〉Re〈B`(t)B0〉
− 4〈A0B0〉2 Re〈A`(t)A0〉Re〈B`(t)B0〉
+ 4〈A`(t)A0〉 〈B`(t)B0〉 Im〈A`(t)B0〉 Im〈B`(t)A0〉
+ 4〈A`(t)A0〉 〈B`(t)B0〉Re〈A`(t)A0〉Re〈B`(t)B0〉
− 4〈A`(t)B0〉 〈B`(t)A0〉 Im〈A`(t)B0〉 Im〈B`(t)A0〉
− 4〈A`(t)B0〉 〈B`(t)A0〉Re〈A`(t)A0〉Re〈B`(t)B0〉 .

We can identify the leading behavior as

ReFxx(`, t) ∼ 1− 2
[
(Im〈B`(t)A0〉)2 + (Im〈A`(t)B0〉)2

+(Re〈A`(t)A0〉)2 + (Re〈B`(t)B0〉)2
]

− 4〈A0B0〉2 [Im〈A`(t)B0〉 Im〈B`(t)A0〉
+Re〈A`(t)A0〉Re〈B`(t)B0〉] .

(B1)

If we follow the ray `/t = v, where |v| < c, in the
long-time limit, we can use the stationary phase approx-
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imation and obtain

Re〈A`(t)A0〉 ∼
√

1

2πε′′k0t
cos
(
ω0t−

π

4

)
,

Re〈B`(t)B0〉 ∼ −
√

1

2πε′′k0t
cos
(
ω0t−

π

4

)
,

Im〈A`(t)B0〉 ∼ −
√

1

2πε′′k0t
sin
(
ω0t− θk0 −

π

4

)
,

Im〈B`(t)A0〉 ∼
√

1

2πε′′k0t
sin
(
ω0t+ θk0 −

π

4

)
.

Here k0 is the wavevector satisfying dεk/dk|k0 = v, and
ω0 ≡ εk0 − k0v is the frequency. In particular, if we fix `
and consider long-time limit, this effectively corresponds
to v = 0 and gives k0 = π and θπ = 0. In this case we
find that the limiting behavior of ReFxx(`, t) is t−1 decay
without oscillation, and we obtain Eq. (10) quoted in the
main text.

To calculate Gxx(`, t) ≡ ∂ lnCxx(`,t)
∂t , we use

Gxx(`, t) =
−1

1− RePf[ΦxxNS]
Re

(
dPf[ΦxxNS]

dt

)
, (B2)

where the derivative of the Pfaffian can be calculated as

dPf[ΦxxNS]

dt
=

1

2
Pf[ΦxxNS] Tr

[
(ΦxxNS)−1 dΦxxNS

dt

]
. (B3)

The difference between results obtained using “NS” and
“R” boundary conditions is very small for large enough
systems.

Appendix C: Pfaffian calculation of Fzz(`, t)

Here we present details of the calculation of Fzz(`, t).
The “doubled” OTOC Γzz(`, t;L), Eq. (11), can be writ-
ten in terms of the JW fermions as

Γzz(`, t;L) =

〈L−̀−1∏
j= L

2

Bj(t)Aj+1(t)

L
2−̀−1∏
j=0

BjAj+1


L−̀−1∏
j= L

2

Bj(t)Aj+1(t)

L
2−̀−1∏
j=0

BjAj+1

〉 .

We again need to calculate both “RS” and “N” pieces.
We define (L− 2`)× (L− 2`) matrices

RzzNS/R =

 [0] [AB]
m=1: L2−̀
n=0: L2−̀−1

[BA]
m=0: L2−̀−1

n=1: L2−̀
[0]

 ,

SzzNS/R =

[AA]
m= L

2 :L−̀−1

n=0: L2−̀−1
(t) [AB]

m=1+ L
2 :L−̀

n=0: L2−̀−1
(t)

[BA]
m= L

2 :L−̀−1

n=1: L2−̀
(t) [BB]

m= L
2 :L−̀−1

n=0: L2−̀−1
(t)

 ,

UzzNS/R =

[AA]
m= L

2 :L−̀−1

n=0: L2−̀−1
(−t) [BA]

m=1+ L
2 :L−̀

n=0: L2−̀−1
(−t)

[AB]
m= L

2 :L−̀−1

n=1: L2−̀
(−t) [BB]

m= L
2 :L−̀−1

n=0: L2−̀−1
(−t)

 ,

Jzz =

(
[I] [0]
[0] −[I]

)
,

where [I] and [0] are (L2−̀ )×(L2−̀ ) unit and zero matrices
respectively. We then construct 2(L − 2`) × 2(L − 2`)
matrices

Mzz
NS/R =

(
RzzNS/R SzzNS/R

−(SzzNS/R)T RzzNS/R

)
,

Nzz
NS/R =

(
Jzz+RzzNS/R SzzNS/R

(UzzNS/R)T Jzz+RzzNS/R

)
,

and 4(L− 2`)× 4(L− 2`) matrix

ΦzzNS/R =

(
Mzz

NS/R Nzz
NS/R

−(Nzz
NS/R)T Mzz

NS/R

)
.

Finally, we also define 2(L− 2`)× 2L matrix

QzzNS/R =


[AA]

m=1+L
2 :L−̀

n=0:L−1 (t) [AB]
m=1+L

2 :L−̀
n=0:L−1 (t)

[BA]
m= L

2 :L−̀−1

n=0:L−1 (t) [BB]
m= L

2 :L−̀−1

n=0:L−1 (t)

[I]
m=0: L2−̀−1

n=0:L−1 [AB]
m=1: L2−̀
n=0:L−1

[BA]
m=0: L2−̀−1

n=0:L−1 −[I]
m=0: L2−̀−1

n=0:L−1

 .

We can now compactly write the results of applying the
Wick’s theorem:

〈σzL
2

(t)σzL−̀ (t)σz0σ
z
L
2−̀
σzL

2
(t)σzL−̀ (t)σz0σ

z
L
2−̀
〉NS/R

= Pf(ΦzzNS/R) ,

〈σzL
2

(t)σzL−̀ (t)σz0σ
z
L
2−̀
σzL

2
(t)σzL−̀ (t)σz0σ

z
L
2−̀

(−1)Ntot〉NS/R

= (−1)
L(L−1)

2 Pf

 Mzz
NS/R Nzz

NS/R QzzNS/R

−(Nzz
NS/R)T Mzz

NS/R QzzNS/R

−(QzzNS/R)T −(QzzNS/R)T FNS/R

 .

We evaluate these numerically and combine to obtain the
Czz results for the spin system with periodic boundary
conditions presented in the main text.

To calculate Gzz(`, t) ≡ ∂ lnCzz(`,t)
∂t , we use

Gzz(`, t) =
∓1

1∓ Re
√

Pf[ΦzzNS]
Re

(
d
√

Pf[ΦzzNS]

dt

)
,

where the upper/lower sign corresponds to the up-

per/lower sign in ReFzz = ±Re
√

Pf[ΦzzNS] respectively
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(recall from the main text that we are calculating
Pf[ΦzzNS] ≈ F 2

zz and recover the sign when taking the
square-root by continuity in parameters t and `). We
calculate the derivative of the Pfaffian in the standard
way,

dPf[ΦzzNS]

dt
=

1

2
Pf[ΦzzNS] Tr

[
(ΦzzNS)−1 dΦzzNS

dt

]
.

Again, there is essentially no difference between results
from NS sector and from both sectors in thermodynamic
limit.

Appendix D: Pfaffian calculation of Fzx(`, t)

Here we present details of the calculation of Fzx(`, t).
The “doubled” OTOC Γzx(`, t;L), Eq. (15), can be writ-

ten in terms of the JW fermions as

Γzx(`, t;L) =

〈 L−̀−1∏
j=L/2

Bj(t)Aj+1(t)

A0AL
2−̀
B0BL

2−̀ L−̀−1∏
j=L/2

Bj(t)Aj+1(t)

A0AL
2−̀
B0BL

2−̀

〉
.

We define (L− 2`+ 4)× (L− 2`+ 4) matrices

Mzx
NS/R =



[0] [AB]
m=1: L2−̀
n=0: L2−̀−1

[AA]
m=1+L

2 :L−̀
n=0 (t) [AA]

m=1+ L
2 :L−̀

n= L
2−̀

(t) [AB]
m=1+ L

2 :L−̀
n=0 (t) [AB]

m=1+ L
2 :L−̀

n= L
2−̀

(t)

[BA]
m=0: L2−̀−1

n=1: L2−̀
[0] [BA]

m= L
2 :L−̀−1

n=0 (t) [BA]
m= L

2 :L−̀−1

n= L
2−̀

(t) [BB]
m= L

2 :L−̀−1
n=0 (t) [BB]

m= L
2 :L−̀−1

n= L
2−̀

(t)

−[AA]m=0
n=1+ L

2 :L−̀ (t) −[BA]m=0
n= L

2 :L−̀−1
(t) 0 0 [AB]m=0

n=0 [AB]m=0
n= L

2−̀

−[AA]
m= L

2−̀
n=1+ L

2 :L−̀ (t) −[BA]
m= L

2−̀
n= L

2 :L−̀−1
(t) 0 0 [AB]

m= L
2−̀

n=0 [AB]m=0
n=0

−[AB]m=0
n=1+ L

2 :L−̀ (t) −[BB]m=0
n= L

2 :L−̀−1
(t) −[AB]m=0

n=0 −[AB]
m= L

2−̀
n=0 0 0

−[AB]
m= L

2−̀
n=1+ L

2 :L−̀ (t) −[BB]
m= L

2−̀
n= L

2 :L−̀−1
(t) −[AB]m=0

n= L
2−̀

−[AB]m=0
n=0 0 0


,

Nzx
NS/R =



[I] [AB]
m=1: L2−̀
n=0: L2−̀−1

[AA]
m=1+ L

2 :L−̀
n=0 (t) [AA]

m=1+ L
2 :L−̀

n= L
2−̀

(t) [AB]
m=1+ L

2 :L−̀
n=0 (t) [AB]

m=1+ L
2 :L−̀

n= L
2−̀

(t)

[BA]
m=0: L2−̀−1

n=1: L2−̀
−[I] [BA]

m= L
2 :L−̀−1

n=0 (t) [BA]
m= L

2 :L−̀−1

n= L
2−̀

(t) [BB]
m= L

2 :L−̀−1
n=0 (t) [BB]

m= L
2 :L−̀−1

n= L
2−̀

(t)

[AA]m=0
n=1+ L

2 :L−̀ (−t) [AB]m=0
n= L

2 :L−̀−1
(−t) 1 0 [AB]m=0

n=0 [AB]m=0
n= L

2−̀

[AA]
m= L

2−̀
n=1+ L

2 :L−̀ (−t) [AB]
m= L

2−̀
n= L

2 :L−̀−1
(−t) 0 1 [AB]

m= L
2−̀

n=0 [AB]m=0
n=0

[BA]m=0
n=1+ L

2 :L−̀ (−t) [BB]m=0
n= L

2 :L−̀−1
(−t) [BA]m=0

n=0 [BA]
m= L

2−̀
n=0 −1 0

[BA]
m= L

2−̀
n=1+ L

2 :L−̀ (−t) [BB]
m= L

2−̀
n= L

2 :L−̀−1
(−t) [BA]m=0

n= L
2−̀

[BA]m=0
n=0 0 −1


,

and combine these to form 2(L− 2`+ 4)× 2(L− 2`+ 4)
matrix

ΦzxNS/R =

(
Mzx

NS/R Nzx
NS/R

−(Nzx
NS/R)T Mzx

NS/R

)
;

finally, we also define (L− 2`+ 4)× 2L matrix

QzxNS/R =



[AA]
m=1+L

2 :L−̀
n=0:L−1 (t) [AB]

m=1+L
2 :L−̀

n=0:L−1 (t)

[BA]
m= L

2 :L−̀−1

n=0:L−1 (t) [BB]
m= L

2 :L−̀−1

n=0:L−1 (t)
[I]m=0

n=0:L−1 [AB]m=0
n=0:L−1

[I]
m= L

2−̀
n=0:L−1 [AB]

m= L
2−̀

n=0:L−1

[BA]m=0
n=0:L−1 −[I]m=0

n=0:L−1

[BA]
m= L

2−̀
n=0:L−1 −[I]

m= L
2−̀

n=0:L−1


.

We can now write the result of applying the Wick’s

theorem to the calculation of Γzx as

〈σzL
2

(t)σzL−̀ (t)σx0σ
x
L
2−̀
σzL

2
(t)σzL−̀ (t)σx0σ

x
L
2−̀
〉NS/R

= Pf[ΦzxNS/R] ,

〈σzL
2

(t)σzL−̀ (t)σx0σ
x
L
2−̀
σzL

2
(t)σzL−̀ (t)σx0σ

x
L
2−̀

(−1)Ntot〉NS/R

= (−1)
L(L−1)

2 Pf

 Mzx
NS/R Nzx

NS/R QzxNS/R

−(Nzx
NS/R)T Mzx

NS/R QzxNS/R

−(QzxNS/R)T −(QzxNS/R)T FNS/R

 .

To calculate Gzx(`, t) ≡ ∂ lnCzx(`,t)
∂t , we use

Gzx(`, t) =
∓1

1∓ Re
√

Pf[ΦzxNS]
Re

(
d
√

Pf[ΦzxNS]

dt

)
,



16

where the upper/lower signs correspond to the up-

per/lower sign in ReFzx = ±Re
√

Pf[ΦzxNS] respectively
(the correct sign is determined using continuity consider-
ations). The derivative of the Pfaffian can be calculated

as
dPf[Φzx

NS]
dt = 1

2Pf[ΦzxNS]Tr[(ΦzxNS)−1 dΦzx
NS

dt ].

Appendix E: Exact Heisenberg evolution of σx(t)

Following Ref. 47, we can obtain a compact expression
for the Heisenberg evolution of σxj (t) under the quantum
Ising Hamiltonian, Eq.(1), at the critical coupling g = 1.
With this in hand, we can in fact gain more intuition
about the commutator functions Cxx(`, t) and Czx(`, t)
at β = 0 from the operator spreading point of view.

We define Majorana fermions P2j = (
∏j−1
j′=−∞ σxj′)σ

z
j and

P2j+1 = −(
∏j−1
j′=−∞ σxj′)σ

y
j . (Note that these are simply

related to the Majoranas in the main text and the pre-
vious appendices by Aj = −P2j and Bj = iP2j+1; the
convenience of Pn’s is that the critical Ising model gives
a Majorana chain that is invariant under translation by
one Majorana, n→ n+1.) We have47

Pn(t) =
∑
k

Pn+kJ−k(2t) =
∑
m

PmJn−m(2t) , (E1)

σx0 (t) =
∑
m,m′

iPmPm′J−m+1(2t)J−m′(2t) , (E2)

where Jn is the n-th order Bessel function of the first
kind.

The summation is over all integers m and m′ and this
expression holds in an infinite system. We can reorganize
the summation over m and m′ into a summation over
ordered pairs,

σx0 (t) =
∑
m<m′

iPmPm′Fm,m′(2t) , (E3)

where

Fm,m′(2t) ≡ J−m+1(2t)J−m′(2t)− J−m′+1(2t)J−m(2t) .
(E4)

Note that Fm,m′(2t) = −Fm′,m(2t) is antisymmet-
ric. The summation terms in Eq. (E2) with m =
m′ give zero since

∑
m J−m+1J−m = −∑m Jm−1Jm =

−∑m̃ J−m̃J−m̃+1 = 0, where we first used the property
J−n = (−1)nJn and then changed the summation vari-
able.

Note that the operator iPmPm′ in terms of spin
operators is basically a Pauli string of the form
σy/zσxσx . . . σxσxσy/z, i.e., with σx in the middle and
σy or σz at the string ends depending on the parities
of m and m′; the only exception is iP2jP2j+1 = −σxj .
We can now easily see that the Heisenberg evolution of
σx0 (t) is composed of such Pauli-strings iPmPm′ with am-
plitudes Fm,m′(2t). This already provides a rough idea
of the “shape” of the commutator functions Cxx(`, t)
and Czx(`, t). Indeed, since σx` does not commute with

iPmPm′ only when ` coincides with one of the ends of the
string, we expect Cxx to have the “shell-like” structure39

described in the main text. On the other hand, σz` does
not commute with iPmPm′ when ` is anywhere inside
the string, and this explains the “dome-like” structure of
Czx.

We can supplement these qualitative observations with
precise calculations. The terms in the commutator
[σx0 (t), σx` ] are nonzero when the boundary of the string
iPmPm′ hits site `, which gives us m = 2` or m = 2`+1
or m′ = 2` or m′ = 2`+ 1, excluding the case (m =
2`,m′ = 2`+1). The commutator function Cxx(`, t) at
infinite temperature is easily obtained as the Frobenius
norm of [σx0 (t), σx` ] (divided by 2). We therefore have

Cxx(`, t) = 2

[ ∑
m′>2`+1

|F2`,m′(2t)|2 +
∑

m′>2`+1

|F2`+1,m′(2t)|2

+
∑
m<2`

|Fm,2`(2t)|2 +
∑
m<2`

|Fm,2`+1(2t)|2]

]
.

With such an expression in hand, we can reproduce the
qualitative behavior Cxx(`, t) ∼ 1/t at long times inside
the timelike region, t� `/c. Indeed, it is not difficult to
see that

Fm,m′(2t) ≈
1

πt
cos
[π

2
(m−m′ − 1)

]
, for |m|, |m′| � t ,

(E5)
while Fm,m′(2t) decays quickly once |m| or |m′| exceeds
number of order t. This means that the above expres-
sion for Cxx(`, t) contains of order t terms of magnitude
of order 1/t2, hence Cxx(`, t) ∼ 1/t. A more sophisti-
cated analysis is needed to obtain the amplitude as well
as subleading terms, and the treatment in App. B pro-
vides an alternative derivation giving this data more di-
rectly (with the additional benefit of being easily appli-
cable also at finite temperature). Nevertheless, we find
the operator spreading analysis in the present appendix
enlightening.

For the commutator function Czx(`, t), we can equiv-
alently consider [σx0 (t), σz` ]. The nonzero contributions
come from the iPmPm′ pieces of σx0 (t) with (m ≤ 2`,m′ ≥
2`+ 1). This gives us

Czx(`, t) = 2
∑

m≤2`,m′≥2`+1

|Fm,m′(2t)|2 . (E6)

Using this expression, we can readily understand the find-
ing in the main text that Czx(`, t) approaches a nonzero
value at long times inside the timelike region, t � `/c.
Indeed, from the behavior of Fm,m′(2t) noted earlier,
we can see that in the above sum there are of order t2

terms of magnitude of order 1/t2, hence nonzero value
of the sum in the long-time limit. Note that the “op-
erator spreading” derivation here is much simpler than
the formal Pfaffian derivation in Appendix D and gives
us almost a closed-form expression for this commutator
function at infinite temperature. On the other hand, the
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Pfaffian derivation has advantage of working readily also
at finite temperature.

Lastly, we can see different information “extracted”
from the σx(t) in other dynamical calculations discussed
at the end of Sec. III C. For example, the dynamical cor-
relation function at infinite temperature is simply47

〈σx0 (t)σx` 〉 = −F2`,2`+1(2t) ≈ 1

πt
. (E7)

We see that the origin of the specific long-time power law
behavior in the dynamical correlation function and the
OTOC is indeed very different from the operator spread-
ing point of view.
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