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To enhance the optical response of graphene is a topic of interest with applications to optoelec-
tronics. Subject to light irradiation, graphene can exhibit non-trivial topologically insulating states,
effectively turning itself into a Floquet topological insulator due to the time periodicity of the ex-
ternal driving. We find that, when random disorder is present, its interplay with the topologically
insulating states can have a dramatic effect on electronic transport through graphene. In partic-
ular, we consider the prototypical setting where a graphene nanoribbon is irradiated by circularly
polarized light, where the length of the nanoribbon is sufficiently long so that evanescent states
have little effect on transport. We uncover a resonance phenomenon, in which the conductance is
enhanced as the disorder strength is increased from zero, reaches a maximum value for an optimal
level of disorder, and decreases as the disorder is strengthened further. With respect to its value at
the zero disorder strength, the maximum conductance value can be as much as 50% higher. Quali-
tatively, this can be understood as a result of the dynamical interplay between disorder and Floquet
states (channels) generated by light irradiation. Quantitatively, the resonance phenomenon can be
explained in the framework of Born theory, where the disorder reorganizes the Floquet Hamiltonian
and enhances the effective coupling between the adjacent Floquet conducting channels. That is,
disorder is capable of promoting both photon absorption and emission, leading to significant en-
hancement of nonequilibrium electronic transport. We demonstrate the robustness of the resonance
phenomenon by investigating the effects of spatial symmetry breaking on transport and provide an
understanding based on analyzing the behavior of the density of states of the Floquet channels.

I. INTRODUCTION

The optical absorption of monolayer graphene is deter-
mined exclusively by the fine structure constant α and
has little dependence on the frequency in a wide spec-
tral range, as a consequence of the low-energy electronic
structure in which the electron and hole conical bands
meet each other at the Dirac point in a linear fashion.
The value of the absorption is thus low: about πα ≈ 2.3%
for a wide frequency range containing the visible spec-
trum1–4, making graphene effectively “transparent” to
light. With conventional methods such as electrostatic
gating and doping, light absorption in graphene can be
improved but not dramatically. For applications in op-
toelectronics, it is of interest to enhance the response of
graphene to light even without significant enhancement
in absorption. In this paper, we report a stochastic res-
onance phenomenon5–12 by which the interplay between
light irradiation and random disorder can maximize the
conductance through a graphene nanoribbon.

When an external light beam irradiates on a graphene-
like or a spin-orbit coupled system, dynamical and
topologically insulating states can arise13. Such non-
trivial states with time-periodic variations can be de-
scribed by the Floquet theory - henceforth the term Flo-
quet topological insulators (FTIs). Subsequently, vari-
ous properties of FTIs and the associated phenomena
have been studied theoretically and computationally,

such as transport14–17, edge states18–21, topological tran-
sitions22,23, dynamical polarizability24, modulated and
disorder-induced topological states25–27, valleytronics28,
and local pseudospin textures29. Experimental observa-
tion of Floquet-Bloch states on the surface of a topolog-
ical insulator30 has also been reported.

Transport dynamics in Floquet systems are of the
nonequilibrium nature14,31 due to the time-dependent
external light field, leading to behaviors that are dis-
tinct from those in equilibrium transport systems. For
example, a short, light-irradiated graphene ribbon can
exhibit a superdiffusive behavior caused by the evanes-
cent modes32. In a light-irradiated bulk graphene sys-
tem, the phenomenon of disorder-enhanced transport
can arise22 through breaking of the spatiotemporal sym-
metry. This should be compared with non-irradiated
systems, where disorder-enhanced transport assisted by
evanescent states can be observed in short structures33–35

or in systems with pointer states induced by specific
mechanisms such as scattering sources36,37 or an exter-
nal magnetic field38. Earlier, a stochastic resonance phe-
nomenon was uncovered39,40 whereby the transmission
through a disordered graphene nanojunction can be max-
imized for an optimal level of random disorder. This can
be understood as the breaking of the localized edge states
by weak impurities, resulting in enhanced transmission,
but strong disorder can lead to Anderson localization, re-
ducing the conductance. From the standpoint of scatter-
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ing, the effects of random impurities are similar to those
of classical chaos41, indicating that chaos can play a role
in modulating quantum transmission42–51. In previous
works on the effects of random impurities on transport
in graphene nanoribbons, the disorder enhanced conduc-
tance is typically small: ∆G � G0 = 2e2/h. We also
note that bulk transport is not completely representative
of transport dynamics in the ribbon structure.

In this paper, we study transport through a light-
irradiated graphene ribbon structure with on-site disor-
ders, which is connected with two doped leads. We focus
on the weak-disorder regime for consideration that FTIs
are typically weak topological insulators52,53. We study
the setting where a circularly polarized light beam irra-
diates a sufficiently long graphene ribbon so that evanes-
cent states have no contribution to the transport. We
find that on-site disorder can enhance the transport. As
the disorder strength is increased, the conductance can
increase and reach a maximum at some optimal value of
the disorder strength, mimicking a stochastic resonance.
This resonance phenomenon is robust with respect to
variations in other parameters of the system. We de-
velop a theory based on the Born approximation to un-
derstand the mechanism for resonance. Our analysis in-
dicates that disorder can effectively enhance the coupling
between light and graphene with respect to photon ab-
sorption or emission. We also consider symmetry break-
ing by assuming that there is only partial disorder in the
system, find persistence of the resonance phenomenon,
and offer an explanation based on analyzing density of
states in different Floquet channels. While disorder has
been known to be capable of enhancing electronic trans-
port in graphene ribbon in the absence of external light,
our work reveals, quite surprisingly, that the interaction
between electromagnetic radiation and graphene can be
significantly enhanced when certain amount of disorder
is present.

II. NONEQUILIBRIUM TRANSPORT AND
FLOQUET THEORY

For a graphene ribbon subject to uniform, circularly
polarized light irradiation, the time-dependent Hamilto-
nian under the unit convention ~ = vF = 1 is given
by H(t) = H0 + H1[A(t)], where H0 is the unper-
turbed Hamiltonian in the absence of light, H1[A(t)]
is the perturbation term due to the vector potential
A(t) = (eA0/~)[cos (Ωt), sin (Ωt)] that characterizes the
effect of the rotating electric field in the (x, y) plane:
E(t) = −∂A(t)/∂t with Ω being the frequency of light
and A0 being a quantity related to the light intensity.
The time-dependent Schrödinger equation is

HF (t)|Ψ(r, t)〉 = [H(t)− i∂t]|Ψ(r, t)〉 = 0, (1)

FIG. 1. Schematic illustration of system configura-
tion. A two-terminal graphene nanoribbon of length L and
width W is irradiated by a circularly polarized light beam of
strength A0 and frequency Ω. The random black dots denote
the on-site potential disorder. The left and right leads are
shielded from light irradiation by the electrodes. The quan-
tities VL,R represent the potential at the left and right lead,
respectively.

where HF (t) is the Floquet Hamiltonian15. Since H(t) is
periodic, the wavefunction can be expressed as the Flo-
quet states |Ψα(r, t)〉 = eiεαt|Φα(r, t)〉, where εα is the
quasienergy and |Φα(r, t + T )〉 = |Φα(r, t)〉 with T =
2π/Ω being the driving period. The Schrödinger equation
can then be reduced to HF (t)|Φα(r, t)〉 = εα|Φα(r, t)〉.
The wavefunction can be expressed in the discrete Fourier
form as

|Φα(r, t)〉 =
∑
m

eimΩt|ϕmα (r)〉, (2)

where |ϕmα (r)〉 is static. Since HF is Hermitian, the Flo-
quet states |Φα(r, t)〉 are orthonormal to each other26:∑

m

〈ϕmα |ϕmβ 〉 = δαβ .

In the tight-binding framework, the time-dependent
Hamiltonian is given by

H(t) = −
∑
〈ij〉,s

γij(t)c
†
i,scj,s +

∑
i,s

uic
†
i,sci,s, (3)

where c†i,s(ci,s) is the creation(annihilation) operator,
s =↑, ↓ denotes spin, and ui is the on-site disorder po-
tential at site i. The manifestation of the light field is
the following dependence of the hopping energy on the
vector potential:

γij = γ0 exp [iAij(t)],

where

Aij(t) = (e/~)(rj − ri) ·A.
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FIG. 2. Main result: enhancement of conductance by light-disorder interplay. Under relatively weak light irradiation,
(a) average conductance 〈G〉 versus the disorder strength U0. Blue rightward and red leftward triangles denote the conductance
associated with transport in the L → R and R → L direction, respectively. The black curve corresponds to the mean
conductance G. The quantity Gdefect, represented by the blue curve, is the conductance for the case where impurities are
distributed uniformly in a semicircular region of radius r = W/2, as indicated in Fig. 1. The green dashed curve is the
theoretical prediction based on the Born approximation. The arrows at ε = 0 and Ω/2 in the inserted quasienergy band structure
correspond to the FTI states. The parameters are L = 70a0, W = 50a, A0 = 0.15 and Ω = 0.8γ0, with a0 =

√
3a = 2.46Å

being the lattice constant of graphene. The convention that ~ = 1 has been used. (b) Average conductance versus A0 and U0.
The red curve is a fit with the conductance peaks.

The value of the random potential ui is taken from a
uniform distribution in the interval [−U0/2, U0/2] with
〈ui〉 = 0 and 〈uiuj〉 = (U2

0 /12)δij .

We study a two-terminal transport system, as shown
in Fig. 1, where the “scattering” region is irradiated by a
circularly polarized light beam. In experiments, the left
and right leads are typically covered by electrodes and are
thus not irradiated. This is a non-equilibrium transport
system due to photon absorption and emission, where
electrons are injected from the left lead with Fermi en-
ergy E, interact with light in the scattering region, and
exit from either the left or the right lead with energy
E + k~Ω, where k is the number of photons absorbed or
emitted. The zero-temperature conductance can be ob-
tained from the non-equilibrium Green’s function method
as G = (GRL +GLR)/2, where

Gν←µ(E) ≡ Gνµ(E) = G0

∑
k

T (k)
νµ (E) and

T (k)
νµ (E) = Tr[Γ(k)

ν G
(k)
1N (E)Γ(0)

µ G
(k)
1N

†
(E)].

See Appendix A for a detailed description of the compu-
tational method.

III. RESULTS

A. Light mediated, disorder enhanced transport

To calculate the conductance of the irradiated region,
we assume that the leads are doped to increase the num-
ber of transverse modes injected from the leads into the
scattering region. Computationally, this can be imple-
mented by setting the potentials at the left and right
leads as VL = VR = γ0. To eliminate the effect of evanes-
cent states, we set the length-to-width ratio of the scat-
tering region to be L/W & 2.5. We use the notation G
to represent the time averaged conductance, whereas the
notation 〈· · · 〉 is reserved for ensemble average over the
disorder configurations.

Figure 2(a) shows the average conductance versus
the disorder strength, which exhibits a resonance phe-
nomenon: there exists an optimal value of the disorder
strength U0 which maximizes the conductance. In par-
ticular, as U0 is increased from zero, the average conduc-
tance increases, reaches maximum for U0/Ω ≈ 0.7, and
decreases monotonically from the maximum value as U0

is increased further. Note that, when the disorder is uni-
formly distributed, there is a right-left symmetry in the
system, leading to 〈GRL〉 = 〈GLR〉. However, the reso-
nance phenomenon persists when such a symmetry is not
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FIG. 3. Enhancement of conductance by random dis-
order in the regime of strong light intensity. (a)
Average conductance 〈G〉 versus the disorder strength U0.
Blue rightward and red leftward triangles denote GRL and
GLR, respectively. The black curve corresponds to the aver-
age conductance G = (GRL +GLR) /2. The parameters are
L = 122a, W = 50a, A0 = 1, and Ω = 1.533γ0. (b) The cor-
responding Floquet spectrum, where the red and blue curves
correspond to the FTI states. (c,d) Floquet conductances

G
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RL and G
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LR versus U0/Ω, respectively.

present. For example, we have also studied a nanoribbon
with impurities uniformly distributed in a semicircular
region indicated by the black dashed curve in Fig. 1, and
found a similar behavior in the conductance.

To better understand the effects of the interplay be-
tween irradiated light and random disorder on electronic
transport, we generate a diagram of conductance versus
both A0 and U0, as shown in Fig. 2(b). In the absence of
light (A0 = 0), the conductance remains at near zero val-
ues as the disorder strength is varied. When irradiated
light even of low intensity is present, a nontrivial FTI
state is induced and the conductance rapidly rises to a
value about the order of magnitude of G0 as the disorder
strength is increased from zero. The reason that the con-
ductance enhancement is insignificant in the regime of
low light intensity is that the FTI state is not robust and
the impurities induce a localization effect, resulting in a
decrease in the conductance as U0 is increased further.
For relatively strong light intensity, e.g., A0 > 0.04, im-
purities can lead to considerable conductance enhance-
ment. We find that the maximum conductance Gmax

obeys the following scaling relation with the light inten-

sity: Gmax ∼ A1/3
0 . In the (A0, U0) parameter plane, the

locations at which Gmax is achieved constitute approxi-
mately a straight line given by U0/Ω− 5A0 = 0.

Previously it was found that, associated with bulk
transport through a graphene nanoribbon, disorder-
enhanced conductance is due to the breaking of the en-
twined spatiotemporal symmetry at the Γ point22. In
our system, the substantial disorder-enhanced conduc-
tance in a zigzag ribbon occurs not only at the Γ point
but for a range of the intensity of light irradiation (e.g.,
A0 < 0.5). Even for strong light intensity (e.g., A0 & 1),
the phenomenon of disorder-enhanced conductance per-
sists, as exemplified in Fig. 3.

For a graphene ribbon with zigzag boundaries, the phe-
nomenon of light mediated, disorder-enhanced transport
typically occurs near the quasienergy level ε/Ω = N/2,
where N is an integer. If the quasienergy of the irra-
diated region is close to the levels of the bulk states,
random impurities will weaken or even block the trans-
port, due to the sensitivity of the bulk states to weak
disorder. Thus, the phenomenon can arise only when the
quasienergy level is distinct from the bulk levels. An-
other constraint is that the light frequency Ω should be
less than the tight-binding bandwidth, for otherwise the
conductance will remain at a value in the weak disorder
regime. Numerically, we find that the boundary type of
the graphene nanoribbon does not affect the emergence of
the phenomenon of light-disorder interplay induced con-
ductance enhancement. For example, for the armchair
boundaries, we observe similar behaviors.

B. Theoretical understanding based on the Born
approximation

To understand the phenomenon of enhanced transport
caused by the interplay between disorder and light irra-
diation, we exploit the first-order Born approximation by
starting from the standard single-resonance Hamiltonian
in the low energy regime and incorporating random dis-
order to obtain an effective Hamiltonian. The average
self-energy associated with the disorder can be written
as27

Σdis(z,k) =

∫
FBZ

dk′〈Udis(k,k′)GF0 (z,k′)Udis(k
′,k)〉,

(4)
where “FBZ” stands for the first Brillouin zone and the
off-diagonal elements represent the coupling between dif-
ferent Floquet channels. For weak light irradiation, i.e.,
A0 � 1, the effective coupling strength is

Ã± = A0(1 + α±U
2
0 ), (5)

where α±(Ω, A0) is an integral over the FBZ with the re-

lation α+ = α†−. The disorder self-energy indicates that
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FIG. 4. A schematic diagram illustrating the process by which transport is enhanced by disorder in the presence
of light irradiation. (a) Nonequilibrium transport through a two-terminal, light irradiated system with disorder. Electrons
are injected from the left lead into the Floquet channel m = 0, pass the light irradiated scattering region, and exit the right
lead through the Floquet channels m = 0,±1,±2, · · · . The orange wave trains signify photon absorption and emission between
adjacent Floquet channels and the gray arrows represent transport within the Floquet channels. (b) Surface Green’s function
gk1N describing the contact between slice 1 and N when k photons are absorbed in a closed nanoflake (inset).

impurities can contribute positively to the coupling and,
consequently, enhance the transitions among the differ-
ent Floquet states. In general, the increase in the con-
ductance due to enhanced coupling is approximately pro-
portional to U2

0 : 〈G〉 ≈
(
1 + |α±|U2

0

)
GU0=0. A simple

fitting of this formula with the numerical results is shown
as the green curve in Fig. 2(a).

The Born theory provides a mechanism by which the
phenomenon of disorder enhanced transport under light
irradiation can be understood. Specifically, Fig. 4(a)
shows a schematic diagram of the transport process,
where the levels m at different coordinate locations rep-
resent the Floquet channels and the short wave trains
denote the photon absorption/emission process. For in-
stance, for electrons injected into the Floquet channel
m = 0 from the left lead, the probability of photon
absorption/emission is enhanced by the disorder in the
light-irradiated region. As a result, the transmission from
channel m = 0 to channel k is enhanced, for |k| > 1, lead-
ing to an enhancement in the total conductance which is
proportional to the sum of the transmission T (k).

Another speculative mechanism for transport enhance-
ment is disorder induced breaking of the match between
wavefunctions at the boundaries of the light-free and
light-irradiated regions which, if true, would represent a
correction to the Born theory. To test whether such a cor-
rection is necessary, we calculate, for a closed nanoflake,
the surface Green’s function Gk1N for the transition from

Floquet state m = 0 to state k, which is the block matrix

GF (z) = [z + iη −HF ]−1

with its normalized form given by

gk1N = Gk1N/
∑
m

Gm1N .

We use 103 sets of disorder realizations for each U0 and
calculate the average normalized surface Green’s func-
tion. The results are shown in Fig. 4(b). We see that,

as the disorder strength is increased, the function g
(k)
1N (E)

with |k| > 1 becomes more and more elevated. This rules
out the boundary wavefunction matching as a possible
contributing factor to disorder enhanced transport.

It should be noted that, although we have exploited the
Born approximation to obtain the theoretical results, the
finite-size Kubo formula54 can also be used to obtain the
same results. In particular, in the Kubo formula of linear
response theory, the effective Hamiltonian of a finite Flo-
quet system (e.g., a finite irradiated graphene nanorib-
bon) is the same as that used in the Green’s function
method. The Kubo formula can thus be used to predict
the phenomenon of disorder-enhanced conductance.
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FIG. 5. Asymmetric transport in a partially disordered system. (a) A diagram schematically illustrating nonequilibrium
transport in a two-terminal irradiated system in which disorder exists in part of the system only. The upper and lower diagrams
are for L→ R and R→ L transport, respectively, Ldis is the length of the region containing disorder, and ddis is the distance
between the disordered region and the left lead. The LDS patterns in various Floquet channels are averaged by 100 disorder
realizations for U0/Ω = 1.6, L = 80a0, Ldis = 30a0, and ddis = 2a0. (b) Average conductance versus the disorder strength for
Ω = 0.8γ0, A0 = 0.15, and Ldis = 20a0 for a zigzag graphene ribbon of length L = 70a0 and width W = 50a. (c) Average
conductance versus the location of the disorder region for Ldis = 30a0. The average conductance is calculated using 200 disorder
realizations.

C. Asymmetrical transport in a partially
disordered system

To test the generality of light mediated, disorder en-
hanced transport, we study the case in which random im-
purities exist only in part of the light irradiated scattering
region. Concretely, we assume that impurities exist only
in a subregion of length Ldis, which is at distance ddis
from the left lead, as shown in Fig. 5(a), where the upper
and the lower panels represent the transport processes in
the two opposite directions: L ← R and R → L, re-
spectively. We examine the distribution of local density
of states (LDS) in different Floquet channels. For the
m = 0 channel, due to the wavefunction mismatching
at the boundaries of the region with impurities, the LDS
concentrates near the boundaries and assumes low values
elsewhere. For this channel, the disorder has little effect
on the transport. However, for channels m = ±1, LDS

in the disordered region is greatly enhanced. Marked en-
hancement in the LDS distribution also occurs for higher
Floquet channels (|m| > 1). The enhancement in the
LDS for most Floquet channels is consistent with the
theoretical prediction based on the Born approximation.

Figures 5(b) and 5(c) show, for the partially disordered
system, the conductances associated with transport in
the two opposite directions (i.e., L → R and R → L)
versus the disorder strength and the location of the im-
purity region, respectively. The striking phenomenon is a
high degree of asymmetry in the conductances GLR and
GRL: their values and trends of variation are drastically
different. In particular, as shown in Fig. 5(b), the values
of GRL and GLR gradually drift away from each other
and their ratio can reach the value GRL/GLR ≈ 2 as
U0 is increased. However, the average conductance 〈G〉,
which takes into account transport in both directions, is
enhanced only slightly by disorder. As the distance ddis
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is varied, the difference between GRL and GLR is mod-
ulated, as shown in Fig. 5(c), where the GRL and GLR
versus ddis curves exhibit a monotonously decreasing and
increasing behavior, respectively and cross each other at
the left-right symmetrical point ddis = 20a0.

While it is generally true that, for a driven system, the
transport processes in the two opposite directions are not
on equal footing31, the highly asymmetric behavior in
Figs. 5(b) and 5(c) involves an additional mechanism. In
particular, we note that, for the Floquet channel m = 0,

the conductance G
(0)
βα has small values due to its low LDS

in most of the scattering region. As a result, for L→ R
transport, electrons injected into the left lead tend to ac-
cumulate there. Due to a larger overlapping area at the
left side between the LDS patterns of the Floquet chan-
nels m = 0 and m = ±1, there is a high probability that
the electrons transfer from the m = 0 to the m = ±1
channels. Similarly, the probabilities for electrons to
transmit from the m = ±1 to higher Floquet channels are

also appreciable. As a result, the conductances G
(|k|>0)
LR

are enhanced by impurities distributed near the left lead,
as shown by the curved lines in Fig. 5(a). On the con-
trary, for the R → L transport, the overlap in the LDS
between channels m = 0 and m = ±1 is insignificant,
so fewer electrons can be transfered to higher channels,
leading to a small conductance. We thus see that, an
asymmetric distribution of the disorder in the light irra-
diated region can lead to a dramatic difference between
the values of the conductances GRL and GLR. Our LDS
based argument suggests that increasing the distance ddis
can reduce the conductance GRL associated with R← L
transport.

IV. DISCUSSION

A monolayer graphene subject to light irradiation can
exhibit a class of quantum states that are not possi-
ble in the absence of light: topologically insulating Flo-
quet states13. For a graphene nanoribbon of sufficient
length such that the effects of evanescent states can be
neglected, the Floquet states correspond to the distinct
conducting channels. A proper level of random disorder
promotes the transitions between the adjacent Floquet
channels and, consequently, facilitates transport through
the ribbon, leading to significant conductance enhance-
ment. Qualitatively, the conductance as a function of
the disorder strength can exhibit a resonance-like behav-
ior: the conductance increases as the disorder strength
is increased from zero, reaches maximum for an optimal
value of the disorder strength, and decreases as disorder
is further strengthened. The improvement in the conduc-
tance is quite remarkable: the ratio between the maxi-
mum value and its value for zero disorder can reach the
value of about 1.5. The resonance phenomenon is quite

robust: it persists even when only part of the ribbon
region is doped with impurities (although the extent of
conductance enhancement is not as large as that for the
case where the whole ribbon region is doped). Quanti-
tatively, the resonance phenomenon can be explained by
resorting to the Born approximation.

The resonance phenomenon uncovered in this paper
has an origin that is distinct from that reported in pre-
vious works without any external time periodic driv-
ing39,40, which is generated by the breaking of the edge
states in a graphene nanoribbon through random scat-
tering. Here, the physical mechanism for the resonance
is disorder enhanced coupling between the adjacent Flo-
quet channels that are created by light irradiation. The
conductance enhancement associated with the resonance
is thus a result of the interplay between light and dis-
order, implying, counterintuitively, that the response of
graphene to light can be enhanced through random dis-
order. This may find applications in graphene based op-
toelectronics.

We remark that the physical mechanism for the res-
onance phenomenon is quite distinct from the tradi-
tional photon absorption process associated with inter-
band transitions. In a system free of disorders, the Flo-
quet state is in fact a light-dressed state and the irradi-
ated light serves to change the trivial transmission mode
to a non-trivial one. In particular, say we compare the
irradiation-free system to that with irradiation at the
Fermi energy ε = Ω/2. Without irradiation, there is one
trivial mode in the graphene nanoribbon with transmis-
sion one. However, the mode is not robust against impu-
rities. In the presence of light radiation, a gap is opened
at ε = Ω/2, making the mode disappear, but a non-trivial
edge state can arise, the Floquet topological edge state,
which is topologically protected and is robust against dis-
order. The decay length of the evanescent states from the
leads is determined by the gap size in the band structure.
The Born theory stipulates that disorder can effectively
reduce or even eliminate the light-induced gap, stretch
the “tails” of the evanescent states and, consequently, en-
hance the transport. In the light-irradiated Floquet sys-
tem, there are then two main contributing factors to the
conductance: topologically protected edge and evanes-
cent states. Disorder can enhance transport associated
with the latter and but will not affect the transport due
to the former. The physics of the Floquet states is thus
distinct from that of the photon absorption process asso-
ciated with interband transitions. These considerations
suggest that direct absorption of electromagnetic radia-
tion contributes little to the observed conductance en-
hancement.

We discuss the feasibility of experimental observation
of the resonance phenomenon uncovered in our paper in
terms of the two key requirements: laser irradiation and
disorder tuning. For the irradiated laser in Fig. 2, the
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value of frequency Ω corresponds to the wavelength of
3.6µm, and the value of A0 requires a laser with power
0.2mW/µm2. Such lasers are readily available (e.g., in-
frared lasers), insofar as the frequency satisfies the in-
equality ~Ω < γ0 or the wavelength is larger than 2.88µm.
As for disorders, there are experimental methods to tune
their strength. For example, the strength can be con-
trolled through modifying the density of electric charge
doping in an insulated substrate or through ion irradia-
tion on graphene surface. Irradiation of gallium ions can
change the disorder strength up to 1.5 eV with little ef-
fect on the graphene electric structure55. If the graphene
ribbon is prepared by chemical vapor deposition56, impu-
rities can be doped during the preparation process and
the disorder strength can be tuned through controlling
the doping elements and their densities. We thus expect
that the resonance phenomenon to be experimentally ob-
servable.
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Appendix A: Floquet Green’s function

The time-dependent Schrödinger equations for an irra-
diated system connected with leads are[
H(t)− i ∂

∂t
− iΓ/2

]
|Φα(t)〉 = (εα − iηα) |Φα(t)〉[

H(t)− i ∂
∂t

+ iΓ/2

]
|Φ̃α(t)〉 = (εα + iηα) |Φ̃α(t)〉

(A1)

where the self-energy Γ describes the effects of leads57.
The imaginary part of the eigenenergy, ηα, represents the
decay rate of the quantum states into the semi-infinite
leads. Due to the time periodicity, the wavefunction can
be written as

|Φα(t)〉 =

+∞∑
m=−∞

eimΩt|ϕmα 〉, (A2)

where |φmα 〉 is time independent. The time dependent
terms in Eq. (A1) can be eliminated by utilizing Eq. (A2)
through an integral over a period of external driving. The
original time dependent system can then be transformed
into the following time independent system:

[εα − iηα + nΩ− iΓ/2] |ϕnα〉 =
∑
m

(Hn−m) |ϕmα 〉

[εα + iηα + nΩ + iΓ/2] |ϕ̃nα〉 =
∑
m

(Hn−m) |ϕ̃mα 〉,
(A3)

where

Hn = (1/T )

∫ T

0

H(t)exp[inΩt]dt.

The Floquet Green’s function is given by

Gn =
∑
α

∑
m

|ϕn−mα 〉〈ϕ̃mα |
E − εα + iηα −mΩ

. (A4)

In numerical calculations, a matrix framework is desired.
The retarded Green’s function of the whole system can
be written as

Gr =
I

E + iη + Ω−H − iΓ/2
, (A5)

where

H =



. . .
...

...
...

· · · H0 H1

· · · H−1 H0 H1 · · ·
H−1 H0 · · ·

...
...

...
. . .

 , Γ =



. . .

Γ(E + Ω)
Γ(E)

Γ(E − Ω)
. . .

 ,

Ω =



. . .

+1Ω
0
−1Ω

. . .

 , G =



. . .
...

...
...

· · · G11 G01 G−11 · · ·
· · · G10 G00 G−10 · · ·
· · · G1−1 G0−1 G−1−1 · · ·

...
...

...
. . .

 ,

(A6)
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and G0k ≡ G(k). We use the recursive Green’s func-
tion scheme in numerical computations58,59. Finally, the
quantum transmission is given by

T kνµ(E) = Tr[Γ(k)
ν G

(k)
1N (E)Γ(0)

µ G
(k)
1N

†
(E)], (A7)

where µ(ν) = L,R.

Appendix B: Born approximation

We provide a theoretical understanding of the phe-
nomenon of disorder-enhanced coupling by resorting to
the first-order Born approximation which is valid in the
low energy regime. In our simulations within the tight-
binding framework [Eqs. (1) and (3)], the frequency Ω
of the irradiated field is smaller than the bandwidth of
the system. As a result, a resonance (topological gap)
can emerge at both integer and half-integer times of the
frequency. To gain insights into the essential physics, we
focus on the case of a single resonance. The effective
Hamiltonian containing two diagonal Floquet blocks can
be written as

HF =

(
Heff + Ω V+

V− Heff

)
, (B1)

with

Heff =

(
∆0 k−
k+ −∆0

)
. (B2)

The two Floquet blocks are coupled with each other by
V+ and V−, where k± = kx ± iky and ∆0 = v2

FA
2
0/Ω

is the topological mass. In the absence of disorder, the

Floquet Green’s function is

GF0 (z,k) = [z −HF (k)]−1. (B3)

The disorder potential in the real space can then be writ-
ten as

Udis(r) =
∑
i

(
uAi δ(r− rAi ) 0

0 uBi δ(r− rBi )

)
, (B4)

where uA,Bi are uniformly distributed in the range
[−U0/2, U0/2] and satisfy the relations

〈uA,Bi 〉 = 0, (B5)

〈usius
′

j 〉 =
U2

0

12 δijδss′ , (B6)

with s, s′ = A,B. Using the Floquet Green’s function
and the disorder potential expressions, we obtain

Σdis(z,k) =

∫
FBZ

dk′〈Udis(k,k′)GF0 (z,k′)Udis(k
′,k)〉,

(B7)
where the approximations A0 � 1 are used. The off
diagonal block of the effective Hamiltonian H̃F = HF +
Σdis can be written as

Ṽ+ =

(
0 0

A0 + Ã+ 0

)
, Ṽ− =

(
0 A0 + Ã−
0 0

)
,(B8)

where

Ã± = A0

(
1 + α±U

2
0

)
, (B9)

and

α± = − Ω

12

∫
FBZ

k±dk

(k+k− + ∆2
0)(k+k− + ∆2

0 − Ω2)
.

(B10)
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