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A general procedure is developed to investigate the elastic response and calculate the elastic
constants of stressed and unstressed materials through continuum field modeling, particularly the
phase field crystal (PFC) models. It is found that for a complete description of system response
to elastic deformation, the variations of all the quantities of lattice wave vectors, their density
amplitudes (including the corresponding anisotropic variation and degeneracy breaking), the average
atomic density, and system volume should be incorporated. The quantitative and qualitative results
of elastic constant calculations highly depend on the physical interpretation of the density field used
in the model, and also importantly, on the intrinsic pressure that usually pre-exists in the model
system. A formulation based on thermodynamics is constructed to account for the effects caused by
constant pre-existing stress during the homogeneous elastic deformation, through the introducing of
a generalized Gibbs free energy and an effective finite strain tensor used for determining the elastic
constants. The elastic properties of both solid and liquid states can be well produced by this unified
approach, as demonstrated by an analysis for the liquid state and numerical evaluations for the bcc
solid phase. The numerical calculations of bcc elastic constants and Poisson’s ratio through this
method generate results that are consistent with experimental conditions, and better match the
data of bcc Fe given by molecular dynamics simulations as compared to previous work. The general
theory developed here is applicable to the study of different types of stressed or unstressed material
systems under elastic deformation.

I. INTRODUCTION

The phase field crystal (PFC) approach is an effec-
tive methodology emerging in recent years which de-
scribes the formation and dynamics of complex spatial
structures and patterns with atomic resolution.1–5 Com-
pared to conventional phase field models for microstruc-
ture evolution,6,7 the PFC method provides an explicit
description of the atomic density distribution, with which
the coupling between microscopic and mesoscopic scales
is more straightforwardly incorporated. It also naturally
incorporates system elastic energy and effects of topologi-
cal defects (a feature that is otherwise much more difficult
to implement in conventional phase field models8), and
has been widely used to study a variety of phenomena in
condensed matter physics and materials science, such as
grain boundary energies, structures, and dynamics,1,9–11

crystal-liquid interfaces,12,13 crystal growth,14,15 plas-
ticity and dislocation dynamics,9,16 ferromagnetics and
ferroelectrics,17 order-disorder transition,18 among many
others. Several PFC-type models have been developed
to successfully model a number of crystal structures and
ordered patterns.19–26 For example, in two-dimensional
systems a PFC model featuring three competing length
scales has been constructed to produce all five Bravais
lattices and some complex structures such as honeycomb,
kagome, dimer, and some hybrid ordered phases.25

Although elasticity is one of the focus points of the
PFC modeling from the very beginning,1,9 the issue of
how to accurately calculate elastic constants in the PFC
models is still not well resolved. In most studies, elas-

tic constants were calculated from the variations of free
energy density caused by various types of strains at a
constant average atomic density (ρ̄).1,9,25–30 However,
as pointed out by Pisutha-Arnond et al.,31 this proce-
dure is inconsistent with the fact that ρ̄ is actually af-
fected by the strain imposed; e.g., ρ̄ gets smaller un-
der a tensile strain while it gets larger under a compres-
sive strain. Secondly, the amplitudes of atom density
distribution were usually assumed to be unvaried under
strain, which greatly facilitates the analyses. But this is
not necessarily valid either, since an anisotropic defor-
mation not only causes the variation of amplitudes, but
also breaks the degeneracy of amplitudes in the one-mode
approximation.30 Lastly, the equilibrium phases in the
PFC models are usually optimized under a constant ρ̄,
which may be highly stressed (i.e., under high pressure).
For example, for PFC model the estimated pressure at
the liquid-solid coexistence is as high as 1.8 × 106 atm
under a set of parameters for iron (Fe).31 For stressed
materials, there are various sets of elastic coefficients or
constants that differ from each other in the thermoelas-
ticity theory.32–34 The applicability of these different co-
efficients in the PFC models is confusing and needs fur-
ther clarification.
In this paper, we focus on how elastic constants should

be calculated accurately within the PFC framework, and
the formulation developed is applicable to other types of
coarse-graining continuum field models. Our study shows
that to produce reasonable results consistent with condi-
tions of real materials, the deformation-induced changes
of average atomic density, volume, and amplitudes of
density waves, in addition to the density wave vectors
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themselves, should be all considered. A particular at-
tention needs to be paid to the representation of order-
parameter density field in the model. Although various
forms of atomic density field are equally valid in the PFC
modeling, different schemes should be used to describe
their variations under strain, which would affect the out-
comes of elastic constant calculations including both the
quantitative values and their change with varying aver-
age density. Another important factor is the pre-existing
nonzero pressure in the undeformed state of PFC (partic-
ularly with the absence of the linear term in the PFC free
energy functional). This requires the constructing of a
new thermodynamic formulation to incorporate the pre-
stressed state in both solid and liquid phases, so that a
proper thermodynamic definition or calculation of elastic
constants can be obtained, through either a generalized
Gibbs free energy (as in NPT ensemble) or a new finite
strain tensor if using the Helmholtz free energy. The va-
lidity of our approach is demonstrated in both analytic
and numerical examples, including a liquid-phase elastic
analysis and numerical calculations of elastic constants
of bcc Fe that are compared to results of molecular dy-
namics (MD) simulations and previous PFC studies.
The rest of this paper is organized as follows. In Sec. II,

a general theoretical framework is developed to describe
the elastic response of any specific phase and to calculate
elastic constants under stressed condition. In Sec. III, liq-
uid is adopted as a simple analytic example to test the
validity of various definitions of elastic constants. It is
shown that some previous definitions would be improper,
and only the result generated from this approach is con-
sistent with the property of liquid. In Sec. IV, the theory
developed is applied to numerically analyze the elastic
properties of bcc Fe, showing different consequences of
various algorithms and options and the effectiveness of
our method. Finally, we discuss and summarize our re-
sults in Sec. V and Sec. VI.

II. THEORY AND MODEL

A. PFC model

We consider the simplest one-mode PFC model1,3,9

with the free energy functional given by

F [φ(r)] =

ˆ

V

dr

{

aφ+
φ

2

[

b+ λ
(

∇2 + q20
)2
]

φ+
g

4
φ4

}

,

(1)
where φ(r) is the atom number density difference with
respect to a uniform reference-state density ρ0, i.e.,

φ(r) = ∆ρ(r) = ρ(r)− ρ0, (2)

and a, b, λ, q0 and g are phenomenological parameters.
In principle, the cubic term φ3 should be included in the
free energy expansion,3 but it can always be removed
by properly choosing the reference-state ρ0.

13 The lin-
ear term aφ was usually ignored in previous modeling

since the corresponding integration in F gives a trivial
term of aV φ̄ that has no influence on the phase stability
given constant volume V and average density difference
φ̄. However, it plays an essential role on determining the
pressure of the system and the calculation of elastic con-
stants, as will be shown below; thus we explicitly include
it in the above free energy functional.
It is convenient to rescale the free energy functional to

a dimensionless form by setting9 q0r → r,
√

g/λq40φ→ ψ,
and (g/λ2q50)F → F in three-dimensional (3D) systems,
leading to

F [ψ(r)] =

ˆ

V

dr

{

αψ +
ψ

2

[

−ǫ+
(

∇2 + 1
)2
]

ψ +
1

4
ψ4

}

,

(3)

with the dimensionless parameters α = (a/q60)
√

g/λ3 and
ǫ = −b/λq40 . Here parameter ǫ is generally considered to
change with temperature T and measure the distance
from liquid-solid transition.3,9

In some PFC studies,3,4,13 the dimensionless density
variation field n, defined as

n(r) =
∆ρ(r)

ρ0
=
ρ(r)− ρ0

ρ0
, (4)

is used instead of ψ or φ in the free energy functional.
These density fields ρ, φ, ψ and n are equally valid in
describing the atomic density distribution in the PFC
model, but their variations caused by strain are different.
When a strain is applied to the system, the total number
of particles,

N =

ˆ

V

ρ(r)dr = ρ̄V, (5)

remains constant during the elastic deformation. Thus
the relation between the average density of the strained
system and that of the unstrained one is given by

ρ̄strained =
Vunstrained
Vstrained

ρ̄unstrained, (6)

where Vunstrained and Vstrained are the undeformed and
deformed volumes, respectively. From Eq. (6) and the
definitions of n, φ, and ψ, we have

n̄strained =
Vunstrained
Vstrained

(n̄unstrained + 1)− 1, (7)

φ̄strained =
Vunstrained
Vstrained

(

φ̄unstrained + ρ0
)

− ρ0, (8)

ψ̄strained =
Vunstrained
Vstrained

(

ψ̄unstrained + ρ̃0
)

− ρ̃0, (9)

where

ρ̃0 =

√

g

λq40
ρ0. (10)

It is worth pointing out that ρ0 (or ρ̃0) is not needed in
examining the stability and dynamics of various phases,
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but it plays a non-negligible role on the elastic constant
calculations as will be demonstrated in Sec. IV.
In a crystalline state, ψ can be expressed in terms of

Fourier components, i.e.,

ψ(r) = ψ̄ +
∑

K

AKe
iK·r (11)

where K is the nonzero reciprocal lattice vector and
AK is the corresponding Fourier-component amplitude
with A−K = A∗

K
. Substituting Eq. (11) into Eq. (3),

the free energy functional can be written as the form
F({AK}, {K}, ψ̄, V ). The equilibrium undeformed state
is determined by minimizing the free energy:

Funstrained = min
{AK},{K}

F
(

{AK} , {K} , ψ̄, V
)

, (12)

under the condition of fixed ψ̄ and V (and the result-
ing total particle number N). Note that a state with
any value of ψ̄ can be chosen as the initial undeformed
state which, however, is not necessarily unstressed due to
e.g., a pre-existing pressure P0 in the system (see below).
When a specific lattice symmetry, e.g., the body-centered
cubic (bcc) phase, is considered, there is only one free pa-
rameter in specifying {K}, usually chosen as the smallest
length of K, i.e., |K110| = |K11̄0| = |K101| = |K101̄| =
|K011| = |K011̄| ≡ q0 for the first mode of bcc. In addi-
tion, usually AK with low-index K has much larger mag-
nitude; hence a few-mode approximation can be adopted
to simplify analysis. For example, in a one-mode ap-
proximation of bcc phase, only the first group of K are
considered in the analysis, and their amplitudes AK are
identical due to lattice symmetry:

A110 = A11̄0 = A101 = A101̄ = A011 = A011̄ ≡ A. (13)

The corresponding free energy functional then becomes
F(A, q0, ψ̄, V ). However, when a uniaxial or shear strain
is applied, the lattice would be distorted anisotropically.
Thus Eq. (13) is no longer satisfied and a single amplitude
A is not sufficient in the description.

B. Strain tensors and elastic response

A homogeneous elastic strain upon a crystalline state
can be measured by a tensor of displacement gradients,
∇u = {uij}, which transforms any lattice vector in an
initial undeformed state (R) to that in a deformed state
(R′):

dR′ = (I+∇u) · dR, (14)

where I is the unit vector. The displacement gradient
tensor ∇u can be separated into two parts, i.e., uij =
εij +ωij. The infinitesimal strain tensor ε (i.e., Cauchy’s
strain tensor or linear strain tensor) is defined as the
symmetric components of ∇u:

εij =
1

2
(uij + uji) , (15)

while the antisymmetric part (i.e., the rotational tensor),

ωij =
1

2
(uij − uji) , (16)

measures pure rotation and does not affect the system
energy due to rotational invariance of the system. Thus
in this study we neglect ωij to facilitate the analysis. For
finite strain, the definition of finite strain tensors is essen-
tial to the nonlinear elasticity theory.30 A widely adopted
finite strain tensor is the Lagrangian strain tensor E (i.e.,
the Green-Lagrangian strain tensor), defined as

Eij =
1

2
(uij + uji + ukiukj) , (17)

where the Einstein summation convention for repeated
indices is used. Note that all the strain tensors defined
in this work are measured with respect to the initial state
(R) which could be either unstressed or stressed. For un-
stressed systems, the difference between infinitesimal and
finite strain tensors is unimportant in the linear elasticity
theory. For stressed systems, however, the difference is
significant even for linear elasticity,31,32 which should be
treated cautiously as will be demonstrated below.
A strain changes the lattice vectors {R} and distorts

the unit cell of a crystalline phase. The reciprocal lat-
tice vectors {K} are also changed accordingly. From
K

(strained) · R(strained) = K
(unstrained) · R(unstrained), the

strained reciprocal lattice vectors are given by

K
(strained) = (I+ ε)

−1
·K(unstrained) (18)

under elastic deformation, where K
(unstrained) are the

equilibrium K obtained from the free energy minimiza-
tion [see Eq. (12)]. Here we have replaced ∇u by ε in
lattice transformation, given the lack of energy contribu-
tion from ωij in rotationally invariant systems. Under a
strain ε, the volume of the system changes as

Vstrained = det [I+ ε]Vunstrained. (19)

The change of volume leads to the variation of the aver-
age particle density as shown in Eqs. (6)–(9) due to the
conservation of particle number. With the constraint of
{K}, V , and ψ̄, the only left variables for the free energy
functional determining the system relaxation in elastic
response are {AK}. It is important to note that atomic
relaxation within a unit cell after the deformation is ac-
companied by the variation of {AK}. Therefore, the free
energy of the strained (deformed) state is written as

Fstrained =

min
{AK}

F
(

{AK} ,
{

K
(strained)

}

, ψ̄strained, Vstrained

)

,(20)

where K
(strained), ψ̄strained, and Vstrained are determined

by Eqs. (18), (9), and (19) respectively. In previous stud-
ies, various incomplete schemes were used in describing
the free energy response under strain. The overwhelm-
ing majority of studies considered only the variation of
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K while ignoring the change of average density ψ̄.1,9,25–30

Among them the anisotropic variation of AK under strain
was addressed only in Ref. 30. Pisutha-Arnond et al.

have considered the variations of K, ψ̄, and V ,31 but
neglected the varying of AK. In this study, we suggest
that the variations of K, AK, ψ̄, and V are all needed to
properly describe the strain response in PFC models.
For liquids, the variations of ψ̄ and V are sufficient in

describing the elastic response since AK = 0 for nonzero
K. Thus the elastic properties of liquids can also be de-
termined by the above procedure as a special case, which
will be further analyzed in Sec. III.

C. Elastic constants under pre-existing stress

In the following we discuss how to calculate elastic con-
stants from the free energy of strained system. For solid
and liquid states described above, the free energy of both
unstrained and strained systems can be written as a func-
tion of free variables in the form F (ε, ψ̄, V0), where ψ̄ and
V0 are the average density and volume of the initial un-
deformed state, respectively, and ε is the linear strain
tensor characterizing the applied strain with respect to
the initial state. Alternately, the Lagrangian finite strain
tensor E can be used to characterize the strain, and the
free energy can be written similarly as F (E, ψ̄, V0).
Contrary to popular belief, we will show below that

the isothermal elastic constants Cijkl are not necessarily
equal to the second-order derivatives of F with respect
to ε, i.e.,

Cijkl 6=
1

V0

∂2F

∂εij∂εkl

∣

∣

∣

∣

ε=0

, (21)

and neither are they necessarily equal to those with re-
spect to E:

Cijkl 6=
1

V0

∂2F

∂Eij∂Ekl

∣

∣

∣

∣

E=0

. (22)

The reason lies in the fact that the initial undeformed
state could be pre-stressed (for which the strain, either
εij or Eij , is measured from the initial stressed state).
In the usual procedure of PFC study, the free energy
of an equilibrium undeformed state is minimized under
fixed ψ̄ and V0 and the resulting fixed N [see Eq. (12)],
i.e., within the NV T ensemble [where T is related to the
parameter ǫ in Eq. (3)]. Therefore, the free energy F , or
F in the PFC models, is the Helmholtz free energy but
not the Gibbs free energy. The equilibrium pressure of
the initial undeformed state can be determined from

P0

(

ψ̄
)

= −
1

V0

∂F
(

ε, ψ̄, V0
)

∂εii

∣

∣

∣

∣

∣

ε=0

= −
1

V0

∂F
(

E, ψ̄, V0
)

∂Eii

∣

∣

∣

∣

∣

E=0

. (23)

This pre-existing pressure P0 is independent of V0 given
that F is proportional to V0. When discussing within
the NPT ensemble, an external pressure equal to P0

is required to stabilize the whole system. Thus elas-
tic constants Cijkl are equal to (1/V0)∂

2F/∂εij∂εkl or
(1/V0)∂

2F/∂Eij∂Ekl only when P0 = 0. When P0 6= 0
(which is usually the case in the PFC models especially
when the linear term in the free energy functional is ig-
nored in previous studies), a modified formula should be
used as explained in the following.
The elastic coefficients characterize how easy or dif-

ficult the system can be deformed, and are determined
from the work required to strain the system. It is noted
that the “work” here refers to the actual work that is
performed in addition to the pre-existing expansion or
compression work done by the constant pressure P0 (or
by any pre-existing constant external stress); i.e., it is
the actual work under constant temperature and pres-
sure (NPT ensemble). Therefore, to calculate elastic
constants we should consider the Gibbs free energy G
instead of F (see also Appendix A), with

G
(

ε, ψ̄, V0
)

= F
(

ε, ψ̄, V0
)

+ P0

(

ψ̄
)

V (ε, V0) , (24)

where P0

(

ψ̄
)

is given in Eq. (23) (so that we have
∂G/∂εii|ε=0 = 0 as required by system stability), and
V is the deformed (strained) volume given in Eq. (19)
which can be expanded to second order of ε as

V (ε, V0) = V0

∣

∣

∣

∣

∣

∣

1 + ε11 ε12 ε13
ε21 1 + ε22 ε23
ε31 ε32 1 + ε33

∣

∣

∣

∣

∣

∣

= V0 (1 + ε11 + ε22 + ε33 + ε11ε22 + ε11ε33 + ε22ε33

−ε12ε21 − ε13ε31 − ε23ε32) +O(ε3)

= V0

[

1 + εii +
1

2
(εiiεjj − εijεji)

]

+O(ε3). (25)

Elastic constants are determined by [see Eq. (A18)]

Cijkl =
1

V0

∂2G
(

ε, ψ̄, V0
)

∂εij∂εkl

∣

∣

∣

∣

∣

ε=0

. (26)

Equation (26) also applies to more general case of
stressed materials under any pre-existing constant stress
σ(0) (either isotropic or anisotropic), for which G is
then a generalized Gibbs free energy [see Eqs. (A16) and
(A20)]

G = F +

[

P0 −

(

εij −
1

2
εikεkj +

1

2
εijεkk

)

σ
(0)
ij

]

V0

= F +
(

P0 − ξijσ
(0)
ij

)

V0. (27)

The detailed derivation for systems under homogeneous
elastic deformation is presented in Appendix A. Here
an effective finite strain tensor ξ = {ξij} has been intro-
duced, with

ξij = εij −
1

2
εikεkj +

1

2
εijεkk, (28)
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and σ(0) = {σ
(0)
ij } is the external stress tensor required

to equilibrate and stabilize the initial undeformed state,
i.e.,

σ
(0)
ij =

1

V0

∂F
(

ε, ψ̄, V0
)

∂εij

∣

∣

∣

∣

∣

ε=0

. (29)

Note that when this stress tensor is isotropic, i.e.,

σ
(0)
ij = −P0δij , the standard formula of Gibbs free energy

Eq. (24) can be recovered from the generalized formula-
tion of Eq. (27).
Given the definition of ξij , it can be proved that (see

Appendix A) Eq. (26) for determining isothermal elastic
constants is equivalent to

Cijkl =
1

V0

∂2F

∂ξij∂ξkl

∣

∣

∣

∣

ξ=0

, (30)

which is more convenient for both analytic and numerical

calculations since the evaluation of ∂F/∂εij and σ
(0)
ij in

Eq. (29) is not needed here.

III. ANALYSIS OF LIQUID STATE

In previous work,31,32 both infinitesimal and finite
strain tensors (ε and E) were used in defining elastic con-
stants Cijkl. In this section, we use liquid as a simple an-
alytic example to demonstrate that for a stressed system
Cijkl cannot be defined as the second-order derivatives
of free energy F with respective to ε or E, but should
be defined as that to the new strain tensor ξ as given in
Eq. (30). This study of liquid state is motivated by a
feature of the PFC model that it incorporates the prop-
erties of both liquid and solid phases, given that the PFC
free energy terms are connected to the direct correlation
functions of the liquid phase.3,4 Although for liquids the
PFC amplitude AK = 0, indicating the limited capacity
in describing the elastic behavior, the elastic response of
a liquid system can be deducted from the variation of
average density ψ̄ (i.e., zeroth mode) or system volume
V . In addition, the liquid-state analysis is adopted here
to provide an insufficient but necessary test. We will test
whether the proposed formulation could reproduce some
well recognized properties of liquids or isotropic fluids
(particularly zero shear modulus and a Poisson’s ratio
of 1/2). Although passing the test does not guarantee
the validity of the formulation (which needs a combina-
tion with the study of crystalline state described in the
next section), failing the test definitely indicates that the
formulation is improper. For this purpose the procedure
given below is general and not limited to the PFC model.
For liquids, the strain influences F via the deformation

of volume V . Up to second order we have

F = F0 +
dF

dV

∣

∣

∣

∣

V0

dV +
1

2

d2F

dV 2

∣

∣

∣

∣

V0

(dV )2, (31)

where dV = V − V0. Here the free energy is expanded
with respect to the undeformed (unstrained) state with
V = V0. This expansion form is used for the calculation
of elastic constants which requires the evaluation at the
limit of zero strains. Under any strain imposed on the
system, no shear stress will be generated in liquids, i.e.,

Cijkl = 0, for i 6= j or k 6= l. (32)

Liquids are isotropic, and hence it is required that

C1111 = C2222 = C3333 ≡ C̄1111,

C1122 = C1133 = C2233 ≡ C̄1122. (33)

In addition, Poisson’s ratio of liquid is equal to 1/2, i.e.,

ν =
C̄1122

C̄1111 + C̄1122
=

1

2
. (34)

In the following Eqs. (32)–(34) are used as criteria to jus-
tify the validity of various definitions of elastic constants.
For an infinitesimal strain ε, V can be expanded ac-

cording to Eq. (25). Here we treat εij as six independent
variables in calculations, given the symmetry of εij = εji.
Substituting Eq. (25) into Eq. (31) yields

F (ε) = F0 +
dF

dV

∣

∣

∣

∣

V0

V0 (ε11 + ε22 + ε33 + ε11ε22

+ε11ε33 + ε22ε33 − ε12ε21 − ε13ε31 − ε23ε32)

+
1

2

d2F

dV 2

∣

∣

∣

∣

V0

V 2
0

(

ε211 + ε222 + ε233

+2ε11ε22 + 2ε11ε33 + 2ε22ε33) +O(ε3)

= F0 +
dF

dV

∣

∣

∣

∣

V0

V0

[

εii +
1

2
(εiiεjj − εijεji)

]

+
1

2

d2F

dV 2

∣

∣

∣

∣

V0

V 2
0 εiiεjj +O(ε3), (35)

which satisfies the condition of strain invariance under
any orthogonal transformation. Such an invariant condi-
tion is obeyed at any orders of F expansion, given that F
is expanded as a power series of dV = V −V0 and volume
V is invariant [see Eq. (25)].
If defining the elastic constants as

C
(ε)
ijkl =

1

V0

∂2F

∂εij∂εkl

∣

∣

∣

∣

ε=0

, (36)

where the superscript “(ε)” is used to distinguish from
the definition in Eq. (30), we have

C
(ε)
1111 = C

(ε)
2222 = C

(ε)
3333 ≡ C̄

(ε)
1111 = V0

d2F

dV 2

∣

∣

∣

∣

V0

,

C
(ε)
1122 = C

(ε)
1133 = C

(ε)
2233 ≡ C̄

(ε)
1122 =

dF

dV

∣

∣

∣

∣

V0

+ V0
d2F

dV 2

∣

∣

∣

∣

V0

,

C
(ε)
1221 = C

(ε)
1331 = C

(ε)
2332 ≡ C̄

(ε)
1221 = −

dF

dV

∣

∣

∣

∣

V0

,

C
(ε)
others = 0. (37)
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Therefore, the Poisson’s ratio is given by

ν(ε) =
1

2

(

1 +
dF/dV

dF/dV + 2V0d2F/dV 2

)

V=V0

, (38)

which generally is not equal to 1/2 when dF/dV |V0
6= 0

(e.g., in PFC models giving nonzero system pressure).

C̄
(ε)
1221 obtained from Eq. (37) is not zero either. All these

indicate that the definition of Eq. (36) for elastic con-
stants is improper.
For the finite strain E given in Eq. (17), or equivalently

Eij = εij +
1

2
(εki + ωki) (εkj + ωkj)

= εij +
1

2
εkiεkj +O(ω), (39)

given the absence of pure rotation effect in the system
energy, the volume is expanded as

V = V0 [1 + E11 + E22 + E33 + E11E22 + E11E33

+E22E33 − E12E21 − E13E31 − E23E32

−
1

2

(

E2
11 + E2

22 + E2
33 + E2

12 + E2
21

+E2
13 + E2

31 + E2
23 + E2

32

)]

+O(E3)

= V0

(

1 + Eii +
1

2
EiiEjj − EijEji

)

+O(E3). (40)

The free energy becomes

F (E) = F0 +
dF

dV

∣

∣

∣

∣

V0

V0 [E11 + E22 + E33 + E11E22

+ E11E33 + E22E33 − E12E21 − E13E31 − E23E32

−
1

2

(

E2
11 + E2

22 + E2
33 + E2

12 + E2
21 + E2

13 + E2
31

+ E2
23 + E2

32

)]

+
1

2

d2F

dV 2

∣

∣

∣

∣

V0

V 2
0

(

E2
11 + E2

22 + E2
33

+ 2E11E22 + 2E11E33 + 2E22E33) +O(E3)

= F0 +
dF

dV

∣

∣

∣

∣

V0

V0

(

Eii +
1

2
EiiEjj − EijEji

)

+
1

2

d2F

dV 2

∣

∣

∣

∣

V0

V 2
0 EiiEjj +O(E3), (41)

satisfying the strain invariant condition. If we define the
elastic constants as

C
(E)
ijkl =

1

V0

∂2F

∂Eij∂Ekl

∣

∣

∣

∣

E=0

, (42)

where the superscript “(E)” is used to distinguish from
the definitions in Eqs. (30) and (36), the results are

C
(E)
1111 = C

(E)
2222 = C

(E)
3333 ≡ C̄

(E)
1111 = V0

d2F

dV 2

∣

∣

∣

∣

V0

−
dF

dV

∣

∣

∣

∣

V0

,

C
(E)
1122 = C

(E)
1133 = C

(E)
2233 ≡ C̄

(E)
1122 = V0

d2F

dV 2

∣

∣

∣

∣

V0

+
dF

dV

∣

∣

∣

∣

V0

,

C
(E)
1221 = C

(E)
1331 = C

(E)
2332 ≡ C̄

(E)
1221 = −

dF

dV

∣

∣

∣

∣

V0

,

C
(E)
others = 0. (43)

The corresponding Poisson’s ratio is

ν(E) =
1

2

(

1 +
dF/dV

V0d2F/dV 2

)

V =V0

, (44)

which generally would not give the value of 1/2 at

nonzero dF/dV |V0
, and C̄

(E)
1221 6= 0. Thus the definition

of Eq. (42) is also improper. It is noted that these finite
strain results of free energy and elastic constants [i.e.,
Eqs. (41)–(44)] can be reduced to those of Eqs. (35)–(38)
at the limit of infinitesimal strain, by simply substitut-
ing Eq. (39) for the expression of Eij into Eq. (41) and
keeping up to second order of ε at small strains.
For the finite strain tensor ξ defined in Eq. (28), the

volume is expanded to be

V = V0 (1 + ξ11 + ξ22 + ξ33) +O(ξ3), (45)

without the second-order terms of ξ. The free energy
expansion is written as

F (ξ) = F0 +
dF

dV

∣

∣

∣

∣

V0

V0 (ξ11 + ξ22 + ξ33)

+
1

2

d2F

dV 2

∣

∣

∣

∣

V0

V 2
0

(

ξ211 + ξ222 + ξ233

+2ξ11ξ22 + 2ξ11ξ33 + 2ξ22ξ33) +O(ξ3) (46)

= F0 +
dF

dV

∣

∣

∣

∣

V0

V0ξii +
1

2

d2F

dV 2

∣

∣

∣

∣

V0

V 2
0 ξiiξjj +O(ξ3).

If defining the elastic constants as the second-order
derivatives of F with respective to ξ as in Eq. (30), we
obtain

C1111 = C2222 = C3333 ≡ C̄1111 = V0
d2F

dV 2

∣

∣

∣

∣

V0

,

C1122 = C1133 = C2233 ≡ C̄1122 = V0
d2F

dV 2

∣

∣

∣

∣

V0

,

Cothers = 0, (47)

which gives a Poisson’s ratio of ν = 1/2, satisfying the re-
quirement of Eq. (34). In addition, Cijkl = 0 when i 6= j
or k 6= l, consistent with Eq. (32). The same results
can be obtained from Eq. (26) with G = G(V (ε)) for
liquids. Thus, only the definition of Eq. (30) [or equiva-
lently Eq. (26)] passes the test of Eqs. (32)–(34) for liq-
uids when dF/dV |V0

6= 0 as in PFC models with nonzero
intrinsic pressure.

IV. NUMERICAL RESULTS FOR CRYSTAL

A. Anisotropic amplitude variations under strain

Here we consider the PFC model parameterized for bcc
Fe which has been extensively studied. The parameters
are adopted from the work of Wu et al.

12 for solid-liquid
coexistence of Fe: b = −2.136 eV Å3, λ = 0.291 eV Å7,
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q0 = 2.985 Å−1, and g = 9.705 eV Å9 in the PFC free
energy functional Eq. (1); also the average atomic den-
sity is ρ̄ = 0.0765 Å−3. In the dimensionless form, we
have ǫ = 0.0923, and the corresponding average rescaled
density at solid-liquid coexistence is ψ̄ = −0.201.31 Com-
bining Eqs. (2) and (10) and the rescaling of ψ yields

ψ̄ =

√

g

λq40
(ρ̄− ρ0) =

√

g

λq40
ρ̄− ρ̃0, (48)

based on which we have ρ̃0 = 0.251. Elastic properties of
this PFC system have been evaluated numerically, with
the calculation procedure described in Appendix C.
For an unstrained bcc structure, due to the crystal

symmetry the values of the first-mode amplitudes AK

are equal to each other as given in Eq. (13). However,
when a strain is applied, leading to anisotropic deforma-
tion of the lattice, the degeneracy of AK is broken and
the six first-mode amplitudes should be evaluated inde-
pendently. The numerical variations of AK for a bcc Fe
under a uniaxial and a shear strain are shown in Fig. 1.
Two amplitudes A011 and A011̄, for which the wave vec-
tors K are perpendicular to the applied direction of the
uniaxial strain, become larger than the other four ampli-
tudes [see Fig. 1(a)]. This is consistent with the obser-
vation of Hüter et al..30 In addition, the slope of the AK

vs ε11 curves is nonzero at ε11 = 0, indicating that the
variations of AK subjected to infinitesimal uniaxial elas-
tic deformation is not negligible. Under a shear strain,
values of AK are split into three groups: A110, A11̄0, and
the other four, as shown in Fig. 1(b).

B. Influence of various variation schemes of
average atomic density under deformation

In PFC models, various definitions of atomic density
field (ρ, φ, n, or ψ as described above) can be used with
very similar form of free energy functional. However,
their variations in response to strain or external deforma-
tion are different as shown in Eqs. (6)–(9). This causes
some confusion or discrepancies in previous studies. For
example, Pisutha-Arnond et al.

31 have pointed out the
importance of volume and density variations in elastic
response, but applied the variation scheme of

ψ̄strained =
Vunstrained
Vstrained

ψ̄unstrained, (49)

instead of Eq. (9) for ψ̄, which implies that in Ref. 31
the variation of ψ̄ under deformation was interpreted as
that of ρ̄. (Note that ρ is atomic density and is always
positive, while φ, n and ψ are density differences, not
necessarily of positive values.) The variation scheme of
ψ̄ has important influence on the resulting elastic con-
stants. Some results of our numerical calculations based
on the elastic constant definition of Eq. (30) are pre-
sented in Fig. 2, where Voigt notation has been used, i.e.,
C11 = C1111, C22 = C2222, C33 = C3333, C12 = C1122,

and C44 = C2323. If using the scheme of Eq. (49), the
calculated value of C11 first increases and then decreases
with increasing ψ̄ (red line in Fig. 2). A similar trend has
been observed in the work of Pisutha-Arnond et al.,31 al-
though Eq. (42) was used there in calculating elastic con-
stants. When the proper scheme in Eq. (9) is adopted,
C11 monotonously increases with ψ̄ (blue line in Fig. 2),
as usually expected. The obtained C11 value for bcc Fe
at ψ̄ = −0.201 is 109 GPa, close to the MD result of
128 GPa.28 This value is much smaller than that ob-
tained with Eq. (49) (and that in Ref. 31), suggesting
that the overestimation of C11 in the previous study is
caused more by the used algorithm for elastic response,
than the inaccuracy in PFC fitting parameters.

C. Role of the linear term in free energy functional

In previous studies, the linear term in the PFC free
energy functional [aφ in Eq. (1) and αψ in Eq. (3)] usu-
ally was not included since it gives a constant (aV φ̄ or
αV ψ̄) after integration. However, when we consider the
pressure P0 and the elastic constant Cij , both V and ψ̄
(or φ̄) change with elastic deformation (strain). Thus the
linear term is important for P0 and Cij calculations and
cannot be neglected. We have conducted numerical cal-
culations for a bcc phase (using PFC parameters for Fe
as described above), based on Eq. (9) for the variation
of ψ̄ with volume V , Eq. (23) for P0, and three differ-
ent elastic constant formulae of Eq. (26) or (30) for Cij ,

Eq. (36) for C
(ǫ)
ij , and Eq. (42) for C

(E)
ij . Detailed results

are given in Fig. 3 for different values of α.
When α = 0, P0 of bcc Fe calculated from the PFC

model with ψ̄ = −0.201 can be as high as −2.5 × 106

atm [Fig. 3(a)]. This indicates that neglecting the linear
term in the PFC free energy functional would lead to an
unrealistic value of pressure. The zero point of P0 locates
very close to ψ̄ = 0 at α = 0, and it moves to smaller
value of ψ̄ with decreasing α, as shown in Fig. 3(a)–(c).
When α = −0.114, at ψ̄ = −0.201 which is the parameter
fitted for bcc Fe, we get P0 = 0, a thermodynamic state
used in MD simulations.35 In addition, P0 increases with
increasing ψ̄, consistent with the expectation of larger
pressure at higher atomic density. On the other hand, if
the improper Eq. (49) is used instead of Eq. (9) for the ψ̄
varying scheme, P0 abnormally decreases with increasing
ψ̄ (data not shown here), which was also found in Ref. 31.
Fig. 3(d)–(l) gives results of different sets of elastic

constants that are formulated via Eq. (26), (36), or (42).
Only Cij defined in Eq. (26), or equivalently in Eq. (30),
are independent of the choice of α [i.e., of the value of
pre-existing pressure P0 in the model; see red lines in

Fig. 3(d)–(l)]. The other two sets of elastic constants C
(ǫ)
ij

and C
(E)
ij defined in Eqs. (36) and (42) both change with

the α value used [green and blue lines in Fig. 3(d)–(l)],
and more seriously, they may even become negative [see
Fig. 3(d), (e), (j), and (k)] although the corresponding
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FIG. 1. Amplitudes AK as a function of (a) uniaxial strain ε11 and (b) shear strain ε12, for bcc Fe with ǫ = 0.0923, ψ̄ = −0.201,
and ρ̃0 = 0.251.
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FIG. 2. Elastic constant C11 as a function of ψ̄, for a bcc
phase with ǫ = 0.0923 and ρ̃0 = 0.251. The variation of
ψ̄ under strain follows Eq. (9) or improper Eq. (49), giving
results as blue or red curves, respectively. Cij is calculated
via Eq. (30), and is measured both in a dimensionless unit
(left axis) and a physical unit (right axis).

undeformed states are stable. The difference among these
different sets of elastic constants arises from nonzero P0,
which could be of huge value as shown in Fig. 3(a)–(c).
From Eqs. (26), (36), and (42), for a stable state under

pressure P0, i.e., σ
(0)
ij = −P0δij , we have

C
(ε)
ijkl = Cijkl − P0 (δijδkl − δilδjk) , (50)

C
(E)
ijkl = Cijkl − P0 (δijδkl − δikδjl − δilδjk) . (51)

Note that Eq. (51) is the same as Eq. (2.56) in Ref. 32, in-
dicating that in the special case of pre-existing isotropic
stress or pressure P0, Cijkl introduced here is equivalent

to the stress-strain elastic coefficient Bijkl (the general-
ized Birch’s coefficient32,36).

When P0 = 0, Cijkl , C
(ε)
ijkl, and C

(E)
ijkl are identical, as

can be seen in Fig. 3(d)–(l) where different curves of Cij

overlap at a ψ̄ value corresponding to P0 = 0 (indicated
by vertical dashed line). Therefore, when the linear term
of PFC free energy functional is introduced to account
for P0 = 0 or P0 ≈ 0 emulating normal experimental
conditions, different formulations of elastic constants are
consistent with each other and all can be adopted. In
other cases with nonzero pre-existing system pressure P0

(particularly when the linear term is neglected in the
model), only the formulation of elastic constants given in
Eqs. (26) and (30), in terms of Gibbs free energy or the
finite strain tensor ξ, gives proper results comparable to
those of real systems and should be used.

D. Poisson’s ratio is not 1/3

Different from Eq. (20) whereK, AK, ψ̄, and V all vary
with the applied strain, the previous studies incorporated
only part of the variations. As described in Sec. II B,
most studies considered only the variation of K,1,9,25–29

for which the strained-state free energy is of the form

Fstrained =

F
({

A
(0)
K

}

,
{

K
(strained)

}

, ψ̄unstrained, Vunstrained

)

,(52)

where A
(0)
K

represents the equilibrium amplitude of the
unstrained state. Only two recent work examined the
additional factor of anisotropic variation of AK (with ψ̄
and V unchanged),30 with

Fstrained =

min
{AK}

F
(

{AK} ,
{

K
(strained)

}

, ψ̄unstrained, Vunstrained

)

,(53)
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FIG. 3. The pressure and elastic constants as functions of ψ̄, for a bcc phase with ǫ = 0.0923 and ρ̃0 = 0.251. Eq. (9) is
used for the variation of ψ̄ under elastic deformations. Results of three different α values for the linear term in the free energy
functional Eq. (3) are shown, with α = 0 (left panels), α = −0.055 (middle panels), and α = −0.114 (right panels). Elastic

constants are calculated via Eq. (26) or (30) for Cij (red lines), Eq. (36) for C
(ε)
ij (green lines), or Eq. (42) for C

(E)
ij (blue lines).

The ψ̄ value at which P0 = 0 is indicated by vertical dashed line.

or the deformation dependence of ψ̄ and V (with AK

unchanged),31 with

Fstrained =

F
({

A
(0)
K

}

,
{

K
(strained)

}

, ψ̄strained, Vstrained

)

. (54)

Actually Eq. (52) and Eq. (53) are equivalent in deter-
mining elastic constants for the PFC free energy func-
tional Eq. (3), since the resulting first-order variation of
AK is equal to zero (see Appendix B for a general proof)
and the contribution of AK variation in the change of
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FIG. 4. Poisson’s ratio ν as a function of ψ̄ for a bcc phase
with ρ̃0 = 0.251 and ǫ = 0.1, 0.2, 0.3, 0.4, and 0.5 (from top
to bottom). The dashed lines correspond to ν = 1/3 and
ν = 1/2.

free energy is beyond the second order of strain.28 From
this approach the Poisson’s ratio ν calculated in the one-
mode approximation is always equal to 1/3, for different
PFC model parameters and average atomic density.9,28,29

However, when the full variation of Eq. (20) is adopted, ν
is no longer restricted to 1/3. Instead, as show in Fig. 4,
ν varies within the range between 1/3 and 1/2, and in-
creases with greater ψ̄ and decreases with larger ǫ value
(lower temperature).
The values of Cij and ν for bcc Fe determined by var-

ious algorithms are listed in Table I. Among them, the
method developed in this study produces overall more
reasonable results of elastic constants that are closest
to the quantities obtained by the MD simulation. It is
noted that the gradient terms of the PFC model used
here are based only on the two-point direct correlation
and isotropic pair interaction of the system,3,4,29 which
may cause the underestimation of elastic constants. It is
expected that with the incorporation of three- and four-
point correlations,37 the results of Cij and ν in the PFC
model would be improved to better match the real ma-
terials.

V. REMARKS AND DISCUSSION

Calculation of elastic constants is important for the
study of material properties via the PFC modeling and
also for the parameterization of the model. However,
there are some subtleties and inconsistencies on the de-
termination of elastic constants in the existing PFC ef-
forts. In response to an imposed strain and deforma-

TABLE I. Elastic constants Cij and Poisson’s ratio ν of bcc
Fe evaluated from various algorithms. Parameters ǫ = 0.0923
and ρ̃0 = 0.251 are used in the PFC model. PFC-WAK28

only considered the change of K [i.e., Eq. (52) for free energy
in the strained state], while PFC-PCET31 incorporated the
variations of K, ψ̄, and V but neglected that of AK [i.e.,
Eq. (54)] and used Eqs. (42) and (49). In this work, the
calculations are based on Eqs. (9), (20), and (30).

C11 C12 C44 ν

MD28 128.0 103.4 63.9 0.446

PFC-WAK28 90.0 45.0 45.0 0.333

PFC-PCET31 542.0 128.1 229.4 0.191

This work 109.3 62.7 46.0 0.365

tion, all of K, AK, ψ̄ and V change accordingly. In pre-
vious studies,1,9,25–31 incomplete schemes were adopted
and different algorithms were used for solids and liquids.
For solids, the variation of K in elastic response has been
well recognized while the variation of ψ̄ and V was often
neglected. For liquids, on the other hand, the variation of
ψ̄ and V was always considered since there is no nonzero
K for liquids. With the scheme proposed in this study
and the incorporation of K, AK, ψ̄ and V variations,
both solids and liquids can be described within a unified
approach.
The treatment here for the variations of AK and K

under strain is consistent with that of the amplitude
expansion formulation studied before for PFC models.
Equation (11) is also used in the amplitude expansion,
but with basic wave vectors K kept constant and the
zeroth-mode average density ψ̄ = ψ0(r, t) and amplitudes
AK = AK(r, t) varying with space and time, in contrast
to the strain-induced change of K and spatial and tem-
poral independence of AK (assumed to be real in the
calculations here) and ψ̄ considered in this work. How-
ever, in the amplitude formulation AK are complex vari-
ables, i.e., AK = |AK| exp(iθK), and their phases vary
spatially as θK = δK ·r in the equilibrium or steady state
of strained solids.4,29,38 This leads to a strain-dependent
change of K → K+δK (with δK proportional to strain),
consistent with the variation determined here. Similar
findings of degeneracy breaking and anisotropy of |AK|
have also been obtained in numerical calculations of am-
plitude equations.4,38 Since here Eq. (18) is used to de-
termine the instantaneous variation ofK (or equivalently
θK) under strain and |AK| is calculated from the subse-
quent free energy minimization, our procedure is anal-
ogous to that in Ref. 39 where the elastic equilibration
through θK is treated separately in the amplitude for-
mulation. For the average density ψ̄ (or ψ0), it is noted
that previous studies of amplitude expansion were con-
ducted under the assumption of constant system volume,
leading to the conserved dynamics of ψ0, while the above
analysis indicates that it would be interesting to extend
the amplitude formulation to incorporate the change of
ψ̄ with deformed volume under strain.
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How to calculate elastic constants from the variation
of free energy under strains is also essential. Because the
linear term in the free energy functional of PFC models
was usually ignored, the systems described are actually
stressed intrinsically. For example, the predicted pres-
sure of bcc Fe is more than a million atms in the PFC
model.31. For stressed materials, there are different types
of elastic constants defined from thermodynamics,32–34

including those given in Eqs. (36) and (42) and also
Eq. (30) derived here. To model normal experimental
conditions with pressure close to zero, the linear term
should be included in the PFC free energy functional with
the corresponding coefficient determined by the condi-
tion of zero pressure, so that different definitions of elas-
tic constants would converge to yield equivalent results.
Otherwise, there is significant difference among various
formulations of elastic constants, and only that defined in
Eq. (30) or (26) (i.e., Cijkl) is independent of the linear
term and pressure and gives consistent results.
It is also important to note that this isothermal elas-

tic constant Cijkl is the same as the stress-strain B
coefficient32 Bijkl (a generalization of Birch’s coefficients
for cubic symmetry36) in the case of isotropic hydrostatic
pressure, although for more general cases of anisotropic
stress they are different. In previous studies of hydro-
statically pressured materials,32,33 the Bijkl coefficients
are used for identifying elastic constants of the system.
These elastic coefficients are determined by the stress-
strain relation32,36 but generally do not possess complete
Voigt symmetry for the cases of anisotropic stress. In
comparison, the Cijkl elastic constants introduced in this
work are determined through thermodynamic potential
(G or F ) and always have complete Voigt symmetry.
Although the formulation constructed here that is

based on Gibbs free energy is mainly for the elastic con-
stant calculation (which also plays an important role on
the PFC model parameterization), it can be applied to
the study of system dynamics and evolution for material
simulations. In most of the existing PFC work, the dy-
namics of atomic density field ψ is assumed to be driven
by the minimization of Helmholtz free energy F , under
the condition of constant temperature and constant vol-
ume. To simulate material systems with constant pres-
sure as in real experiments and also set in many atomistic
simulations like MD, the PFC dynamics should be driven
to minimize the Gibbs free energy G, which would lead to
more realistic outcomes in PFC simulations of e.g., mate-
rials growth and structural evolution. The corresponding
detailed formulating and analysis are beyond the scope
of this work and will be a subject of our future research.

VI. SUMMARY

In summary, we have clarified the method for calcu-
lating isothermal elastic constants of solids and liquids
under pre-existing stress or pressure. When subjected to
an applied strain, the average density of the system is

changed by the deformation, and the variation formulae
for various definitions of density fields (ρ, n, φ and ψ) are
different [Eqs. (6)–(9)]. This leads to different results of
elastic constant calculations, indicating the importance
of physical interpretation of the PFC density field. The
density amplitudes of the deformed solid also differ from
the undeformed ones, and their degeneracy is broken as
a result of anisotropic lattice distortion.

Our results also show that due to the existence of high
pressure in the model system (e.g., when neglecting the
linear term in the free energy functional), it is not suit-
able to calculate elastic constants Cijkl as the second-
order derivatives of the Helmholtz free energy F with re-
spective to infinitesimal or finite strain tensor. Instead,
either a new strain tensor ξij [Eq. (28)] needs to be intro-
duced to calculate Cijkl from F [Eq. (30)], or a Gibbs-
type free energy G [Eq. (27)] should be used [Eq. (26)].
The validity of our formulation has been tested through
an analytic calculation of elastic constants for the liquid
phase, as well as numerical calculations conducted on the
PFC model parameterized for bcc Fe. Compared to pre-
vious PFC work, the results obtained from our method
are more consistent with the data of MD simulations. Al-
though the system studied in this work is based on the
PFC model, the approach and the elastic constant formu-
lation developed here from thermodynamics are generic
and can be applied to the study of general stressed ma-
terial systems.
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Appendix A: Derivation of elastic constants in
system under constant pre-existing stress

Elastic constants Cijkl can be determined by examin-
ing the work to be paid when the system is deformed
from the initial state to the final strained state with the
strain tensor ε. Based on the first law of thermodynam-
ics, in an isothermal system with constant temperature,
the total work done on the system is equal to the change
of its free energy, i.e.,

W (total) = ∆F. (A1)

However, when there exists a pre-applied pressure or
stress, the work done by it, W (ext), should be subtracted
from W (total) to give the actual work needed:

∆W =W (total) −W (ext) = ∆F −W (ext). (A2)
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Therefore, ∆F −W (ext), instead of ∆F , should be used
in calculating elastic constants Cijkl in the presence of a
pre-existing external stress.

Here we derive a formula of W (ext) under a general,

constant pre-applied stress tensor σ(ext) = {σ
(ext)
ij } when

the system is deformed homogeneously from an initial
unstrained but pre-stressed state to a final state with any
specified strain ε (where the strain is measured from the
initial pre-stressed state). The pre-applied force acting
on a surface element is given by

df (ext) = σ(ext) · n̂d2s = σ(ext) · d2s, (A3)

where n̂ represents the normal direction of the surface el-
ement d2s. The position vector of this element (and the
related volume element) is denoted as r, while the corre-
sponding position vector in the initial undeformed state
is denoted as R. For each surface element d2s or volume
element d3V (corresponding to each R), the quasistatic
variation of its elastic deformation can be described by
the varying of an effective strain order parameter ε̃, given
that the stress σ(ext) remains constant during the defor-
mation process. Thus

r = (1 + ε̃ε) ·R, (A4)

where ε̃ represents the completion degree or state of the
quasistatic homogeneous deformation process. ε̃ = 0 cor-
responds to the initial unstrained state, while ε̃ = 1 cor-
responds to the final deformed state with strain ε. The
position displacement of each volume element (of a given
R) during the infinitesimal process of ε̃→ ε̃+ dε̃ is then

d′r = ε ·Rdε̃, (A5)

and the work done by the pre-applied external stress on
each element is df (ext) · d′r. In this specific case of con-
stant stress, the corresponding work done should depend
only on the initial and final strain states characterized
by the state order parameter ε̃, leading to the following
result for the external work done on the whole system:

W (ext) =

ˆ

df (ext) · d′r

=

ˆ 1

0

dε̃

‹

∂V

[

(ε ·R) · σ(ext)
]

· d2s. (A6)

Using the divergence theorem, Eq. (A6) becomes

W (ext) =

ˆ 1

0

dε̃

˚

V

∇ ·
[

(ε ·R) · σ(ext)
]

d3V. (A7)

Noting that ∇ acts on r and σ(ext) and ε remains
constant during the homogeneous deformation, from

Eqs. (A4) and (A7) we have

W (ext) =

ˆ 1

0

dε̃

˚

V

∇ ·
1

ε̃

[

(r−R) · σ(ext)
]

d3V

=

ˆ 1

0

dε̃

˚

V

∇ ·
1

ε̃

[

(

r− (1 + ε̃ε)−1 · r
)

· σ(ext)
]

d3V

=

ˆ 1

0

dε̃

˚

V

1

ε̃

[

(

δij − (1 + ε̃ε)−1
ij

)

σ
(ext)
ij

]

d3V

=

ˆ 1

0

1

ε̃

[

(

δij − (1 + ε̃ε)−1
ij

)

σ
(ext)
ij

]

V dε̃

=

ˆ 1

0

[

(εij − εikεkj ε̃)σ
(ext)
ij

]

V dε̃+O(ε3), (A8)

where (1 + ε̃ε)−1 has been expanded to second-order
terms. V is the volume during the deformation process,
i.e.,

V (ε̃ε) = V0 det [ε̃ε]

= V0

[

1 + εiiε̃+
1

2
(εiiεjj − εijεji) ε̃

2

]

+O(ε3),

(A9)

where V0 is the unstrained volume. Eq. (A8) then be-
comes

W (ext)

=

ˆ 1

0

[

(εij − εikεkj ε̃)σ
(ext)
ij

]

V0 (1 + εllε̃) dε̃+O(ε3)

= V0

(

εij −
1

2
εikεkj +

1

2
εijεkk

)

σ
(ext)
ij +O(ε3). (A10)

Eq. (A10) is applicable for any pre-applied constant
stress. For the special case of hydrostatic pressure P0,

σ
(ext)
ij = −P0δij and W (ext) reduces to the conventional

form of volume work (with ∆V = V − V0):

W (ext) = −V0

(

εii −
1

2
εikεki +

1

2
εiiεkk

)

P0

= −P0∆V. (A11)

Substituting Eq. (A10) into Eq. (A2), we obtain the
actual work needed to strain the system, i.e.,

∆W = ∆F −W (ext)

= ∆F − V0

(

εij −
1

2
εikεkj +

1

2
εijεkk

)

σ
(ext)
ij

(A12)

up to second order of ε, which determines the stability
and elastic coefficients of the system. When the initial
state is equilibrated by σ(ext) = σ(0) (here a different
symbol σ(0) is used to emphasize that σ(0) stabilizes the
initial state, while σ(ext) could be any external stress
under which the initial state is not necessarily stable),

∂∆W

∂εij
=

∂F

∂εij

∣

∣

∣

∣

ε=0

− V0σ
(0)
ij = 0, (A13)



13

which gives

σ
(0)
ij =

1

V0

∂F

∂εij

∣

∣

∣

∣

ε=0

. (A14)

Under this external stress σ(0), a Gibbs-type free energy
G can be defined by requiring

∆G = ∆W (σ(0)). (A15)

A solution to Eq. (A15) is

G = F + P0V0 −

(

εij −
1

2
εikεkj +

1

2
εijεkk

)

σ
(0)
ij V0,

(A16)
where a constant P0V0 is added to make it consistent
with the standard definition of Gibbs free energy when

σ(0) is isotropic [i.e., when σ
(0)
ij = −P0δij ; see Eq. (24)].

G can be expanded as

G = F0 + P0V0 +
1

2

∂2F

∂εij∂εkl

∣

∣

∣

∣

ε=0

εijεkl

+
1

2

∂F

∂εij

∣

∣

∣

∣

ε=0

(εikεkj − εijεkk) +O(ε3) (A17)

up to the second order of ε, where there are no first-order
terms as in the conventional case of elastic response for a
stable undeformed state. The elastic coefficients are thus
defined as the second-order derivatives of G (i.e., of the
actual work done to deform the system) with respect to
the strain tensor components:

Cijkl =
1

V0

∂2∆W

∂εij∂εkl

∣

∣

∣

∣

ε=0

=
1

V0

∂2G

∂εij∂εkl

∣

∣

∣

∣

ε=0

. (A18)

To facilitate the calculation, we introduce an effective
strain tensor [i.e., Eq. (28)]

ξij = εij −
1

2
εikεkj +

1

2
εijεkk, (A19)

such that

G = F +
(

P0 − ξijσ
(0)
ij

)

V0. (A20)

F can be expanded to the second order of strain tensor
as

F = F0 +
∂F

∂ξij

∣

∣

∣

∣

ξ=0

ξij +
1

2

∂2F

∂ξij∂ξkl

∣

∣

∣

∣

ξ=0

ξijξkl +O(ξ3)

= F0 +
∂F

∂ξij

∣

∣

∣

∣

ξ=0

(

εij −
1

2
εikεkj +

1

2
εijεkk

)

+
1

2

∂2F

∂ξij∂ξkl

∣

∣

∣

∣

ξ=0

εijεkl +O(ε3). (A21)

Comparing it with

F = F0 +
∂F

∂εij

∣

∣

∣

∣

ε=0

εij +
1

2

∂2F

∂εij∂εkl

∣

∣

∣

∣

ε=0

εijεkl +O(ε3),

(A22)

we have

∂F

∂ξij

∣

∣

∣

∣

ξ=0

=
∂F

∂εij

∣

∣

∣

∣

ε=0

, (A23)

and

∂2F

∂εij∂εkl

∣

∣

∣

∣

ε=0

εijεkl (A24)

=
∂F

∂εij

∣

∣

∣

∣

ε=0

(−εikεkj + εijεkk) +
∂2F

∂ξij∂ξkl

∣

∣

∣

∣

ξ=0

εijεkl.

Inserting Eq. (A24) into Eq. (A17) yields

G = F0 + P0V0 +
1

2

∂2F

∂ξij∂ξkl

∣

∣

∣

∣

ξ=0

εijεkl. (A25)

From Eq. (A18) we then obtain an alternative formula-
tion to determine the elastic constants:

Cijkl =
1

V0

∂2F

∂ξij∂ξkl

∣

∣

∣

∣

ξ=0

. (A26)

It is noted that Cijkl defined here corresponds to the
stress-strain elastic coefficient Bijkl defined by Birch36

and Wallace32 when σ(0) is isotropic (i.e., for the case of
initial isotropic pressure P0), but in general cases they
are not equivalent given that Bijkl is lack of complete

Voigt symmetry (generally Bijkl 6= Bklij , unless σ
(0)
ij =

−P0δij).
32 Eqs. (A18) and (A26) are two equivalent for-

mulae to calculate the elastic constants of stressed and
unstressed systems. They are renumbered to Eqs. (26)
and (30) above.

Appendix B: First-order variation of AK when ψ̄ is
unchanged under deformation

For the PFC free energy functional given in Eq. (3),
after substituting Eq. (11) for the expansion of ψ and
integrating over the system volume V , the resulting free
energy can be written in a general form as

1

V
F (AK,K; ψ̄, V ) = f(K)A2

K
+ g(AK, ψ̄), (B1)

for any crystalline phase. Here f is a function of K and
g a function of AK and ψ̄, with the detailed form of
functions depending on the specific phase. From Eq. (12),
the equilibrium K is determined by

df(K)

dK

∣

∣

∣

∣

eq

= 0, (B2)

which is independent of ψ̄; i.e., K and the equilibrium
lattice constant are independent of the average atomic
density (which is a drawback of this PFC model that
could be improved by e.g., incorporating nonlinear gra-
dient terms originated from high-order direct correlations
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in the free energy functional37). On the other hand, AK

is determined from

∂F (AK,K; ψ̄, V )/V

∂AK

= 0, (B3)

and is thus generally a function of ψ̄:

AK = h
(

f(K), ψ̄
)

. (B4)

Note that K affects AK via f(K).

Now we consider the first-order variation in elastic
response, i.e., dAK, dK, and dψ̄. For the scheme of
Eq. (53), ψ̄ remains invariant under a strain, i.e., dψ̄ = 0.
K is changed according to Eq. (18) as usual. Thus from
Eq. (B4), the first-order variation of AK is given by

dAK =
∂h

(

f(K), ψ̄
)

∂f(K)

df(K)

dK

∣

∣

∣

∣

eq

dK = 0, (B5)

due to Eq. (B2). Similar result was also noticed by Wu et

al. in examining some specific deformations in PFC.28 As
a result, AK is invariant at the first order when Eq. (53)
is assumed.

Appendix C: Procedure of numerical calculations

For a specific crystalline phase such as bcc, there is
only one free parameter for determining {K}, i.e., the
first-mode wave vector magnitude denoted as q0. Substi-
tuting the ψ expansion Eq. (11) into the PFC free energy
functional Eq. (3), F/V becomes a polynomial function

of q0, {AK}, and ψ̄ (see Eq. (3) in Ref. 25); so are its
first- and second-order derivatives. Their analytic forms
can be obtained straightforwardly, and utilized in the nu-
merical minimization process described below.
First, to determine the equilibrium undeformed state,

F is minimized numerically with respect to variables q0
and {AK} (which are degenerate) under the condition of
fixed ψ̄ = ψ̄unstrained and V = Vunstrained = V0, yielding

the equilibrium values of K(unstrained) and {A
(0)
K

}. Af-
ter then various strains are applied as follows: Each one
of and each pair of independent strain elements among
{ε11, ε22, ε33, ε12, ε13, ε23} are chosen separately and as-
signed a nonzero value that varies in a range from −3%
to 3%, with the rest being kept zero. Given each of
the resulting strain tensor ε, the corresponding strained
values of K

(strained), Vstrained, and ψ̄strained are calcu-
lated by Eqs. (18), (19), and (9) respectively. Next, ac-
cording to the scheme of Eq. (20), given the values of
K

(strained) and ψ̄strained determined above, F is numeri-
cally minimized with respect to amplitudes {AK} (which
are now assumed to be non-degenerate) through e.g., the
Newton-Raphson method, to give the value of strained-
state free energy F under each assigned strain tensor ε.
The obtained data points of F vs εij are then fitted into
Eq. (A22) to give the first- and second-order derivatives
of F (ε) with respect to εij , which are used to convert to
the pressure P0 [via Eq. (23)] and elastic constants C

(ε)
ijkl

[via Eq. (36)]. Similarly, C
(E)
ijkl and Cijkl are calculated

from the fitting of those strained-state F data points to
the second-order expansions of F vs E and F vs ξ and
then the use of the corresponding elastic constant defini-
tions Eq. (42) and Eq. (30), respectively. Here the values
of finite strain tensors E and ξ are calculated from ε

according to Eqs. (17) and (28).
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