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Materials exhibiting controllable magnetic phase transitions are currently in demand for many
spintronics applications. Here we investigate from first principles the electronic structure and in-
trinsic anomalous Hall, spin Hall and anomalous Nernst response properties of the FeRh metallic
alloy which undergoes a thermally driven antiferromagnetic-to-ferromagnetic phase transition. We
show that the energy band structures and underlying Berry curvatures have important signatures
in the various Hall effects. Specifically, the suppression of the anomalous Hall and Nernst effects in
the AFM state and a sign change in the spin Hall conductivity across the transition are found. It is
suggested that the FeRh can be used a spin current detector capable of differentiating the spin Hall
effect from other anomalous transverse effects. The implications of this material and its thermally
driven phases as a spin current detection scheme are also discussed.

Hall effect phenomena are currently being studied in
the context of new materials, including 2D systems, topo-
logical insulators, and Weyl materials among others [1–
3]. Fundamental discoveries of novel properties and their
applications beyond the standard Hall effect are an im-
portant step toward new devices [2, 3]. However, even
in typical materials the current understanding of these
phenomena is not complete. The standard Hall effect
is present in all conductors under an external magnetic
field. Materials with broken time reversal symmetry,
such as ferromagnets (FMs), can exhibit the anomalous
Hall effect (AHE) and materials with strong spin or-
bit coupling (SOC), such as heavy metals, can exhibit
the spin Hall effect (SHE). Although the AHE and SHE
have intrinsic and extrinsic origins [4–6], the occurrence
of these effects has been mostly associated with extrinsic
contributions due to spin-dependent skew and side-jump
scattering mechanisms [7, 8]. Recent reports, however,
have shown that the intrinsic contribution, stemming
from the materials electronic structure and its Berry
phase features, is the primary source for the AHE and
SHE in many systems [9–11].

Further developments strongly support that Hall ef-
fects in metals with moderate conductivity are intrinsic
in nature [2, 3]. These results are important for spin-
tronics applications, which rely on the generation and
detection of spin currents based on the SHE and the in-
verse spin Hall effect (ISHE) [2]. Spin currents can de-
liver large amounts of angular momentum with minimum
power dissipation and Joule heating, which makes them
attractive for technology. Their detection and generation
are not trivial and require readily accessible electric com-
ponents, thus new interpretations of SHE and ISHE in
materials with strong SOC are highly desirable.

Typical materials in spintronics are FM and nonmag-

netic metals, although recently noncollinear antiferro-
magnets (AFMs) and Weyl semimetals have been shown
to exhibit large intrinsic AHE and SHE [12, 13]. Inves-
tigating intrinsic Hall effects in the context of particular
lattices [14] may hold promise for bringing fundamental
science forward and resolving technological challenges.
Other systems that can give a different perspective of var-
ious Hall effects are materials exhibiting AFM-FM tran-
sitions. The equiatomic ordered metallic alloy FeRh is
especially interesting in this regard. Its thermally driven
AFM-FM phase transition has important consequences
not only for spin phenomena, but it broadens our inter-
ests to other materials with controllable magnetic phases.

FeRh has a CsCl-like crystal structure [15–17] and it
undergoes an AFM to FM transition at ≈ 350 K, which
makes this material interesting for fundamental stud-
ies and devices, including for magnetic recording, me-
dia storage, and magnetocaloric cycles [18–20]. FeRh
is also attractive for spin transport applications due to
its large SOC from the Rh atom. Surprisingly, a lim-
ited number of studies have been reported on Hall mea-
surements mostly utilizing external magnetic fields and
doping [21, 22], which strongly suggests that this area is
largely unexplored.

In this work, we investigate the intrinsic Hall effect
phenomena in the AFM and FM phases of FeRh from
first principles. Several properties, including the spin
Hall, anomalous Hall, and anomalous Nernst conductiv-
ities, originating from the band structure and geometry
through their Berry curvatures, are calculated based on
the Kubo linear response formalism [23]. We demon-
strate that the thermally controlled AFM-FM transition
leads to important modifications in the FeRh transverse
Hall effect responses and can be used for reliable and con-
trollable spin current detection, which is one of the cur-
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FIG. 1. (Color online) (a) A spin current detection set-up: a spin current is thermally injected along the x-axis into a FeRh
detector, in which a transverse charge current in the y-direction, JC

y is generated. (b), (c) Energy band structures for the AFM
and FM magnetic phases, respectively. (d-g) Berry curvature and spin Berry curvature for both magnetic phases, summed over
all occupied bands, and calculated along the same k-space symmetry lines. The FeRh latticess and spin polarizations for both
phases are also shown.

rent challenges in spintronics. In current practice, where
a temperature gradient is applied to drive a spin cur-
rent from a ferromagnetic source [24–26], the AHE and
the anomalous Nernst effect (ANE) can result into ad-
ditional unwanted contributions to the transverse charge
current. These must be separated from the contribution
associated with the longitudinal spin current. Our results
show that the thermally driven changes in the FeRh Hall
response are useful for mitigating measurement artifacts
arising from AHE and ANE.

For the spin current measurement one can utilize an
experimental setup, shown in Fig. 1 (a), where an applied
temperature gradient ∇xT injects a spin current from
the source into a metallic detector made of FeRh, and
an electronically measurable charge current is generated
in the transverse y-direction. Since the magnetic phases
of FeRh are metallic, it is expected that ∇xT will also
induce a longitudinal electric field Ex via the Seebeck
effect, which may give rise to an additional contribution
to the transverse signal via the AHE. Here we consider
the general form of the transverse charge current, which

is given as JCy = σ
(SH)
yx ∇xµs+σ

(AH)
yx Ex+σ

(AN)
yx (−∇xT ),

where µs is the spin chemical potential and σyx are the
conductivities with superscripts for the SHE, AHE, and
ANE, respectively. Below we show how the FeRh phases
affect the various transverse Hall conductivities and how
these changes can be used to discern if the measured
signal originates from the injected spin current.

We first describe the electronic structure properties of
both FeRh phases using ab initio simulations. The lo-
cal density approximation to the density functional the-
ory with SOC included, as implemented in the Quantum

ESPRESSO package [27], is used throughout the calcu-
lations. The ground-state for each phase is obtained by
setting the cutoff kinetic energy for the wavefunctions to
180 Ry (≈ 2.5×103 eV), and by using a 20×20×20 uni-
form k-points grid. Fully relativistic, norm-conserving
atomic pseudopotentials are built by using the Atomic
Pseudopotential Engine package [28], such that the re-
laxed structures for both phases to match the experi-
mental lattice constants [29] to less than 0.001 %.

The Hall conductivities for the ISHE, AHE, and ANE
are expressed as:

σ(E)
yx = σ

(E)
0

∑
n

∫
BZ

dkF
(E)
nk Ω(E)

n,yx(k) (1)

where the n-summation runs over all bands, E =

{SH,AH,AN} and σ
(SH)
0 = e/(2π)3, σ

(AH)
0 =

e2/h̄(2π)3, σ
(AN)
0 = e/[T h̄(2π)3]. Also, F

(SH,AH)
nk =

1/(1 + e(εnk−EF )/kBT ) represent the Fermi-Dirac distri-

bution and F
(AN)
nk = (εnk − EF )F

(AH)
nk + kBT ln(1 +

e−(εnk−EF )/kBT ) is the entropy density [30, 31]. The
Berry curvature of band n at point k in the Brillouin
zone is given by [3]:

Ω(AH,AN)
n,yx = −2Im

∑
m6=n

〈unk|v̂x|umk〉〈umk|v̂y|unk〉
(εnk − εmk)2

(2)

where εnk and |unk〉 are the eigenvalues and eigenvec-
tors of the Bloch Hamiltonian Ĥ and v̂i = h̄−1dĤ/dki is
the velocity operator of the i-direction, respectively. The
spin Berry curvature is [2]:
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Ω(SH)
n,yx = −2Im

∑
m 6=n

〈unk|Ĵzx |umk〉〈umk|v̂y|unk〉
(εnk − εmk)2

(3)

where the spin current operator Ĵzx = {v̂x, σ̂z}/2 de-
scribes the spin flow with z-polarization along the x-
direction (σ̂z is the Pauli spin operator).

The calculation of these properties is facilitated by em-
ploying the Wannier interpolation technique [32], where
the ab initio wave functions for each phase are projected
on 18 maximally-localized Wannier functions per atom
with the Wannier90 code [33]. The integration over the
occupied states of the Brillouin zone for the Berry cur-
vatures is performed by using an initial 100× 100× 100
k-point uniform mesh, followed by an adaptively-refined
k-mesh until a 5 % convergence is achieved. The elec-
tronic band structure for both FeRh phases is shown in
Figs. 1 (b) and (c) and it corresponds to previously re-
ported density of states (not shown graphically) [34, 35].
It has been suggested that the magnetic moments of the
Rh atoms play a conclusive role in the AFM-FM transi-
tion, although the complete picture of this transition is
not fully established yet [36]. Our calculations show that
the magnetic moments are 2.98 µB and 3.04 µB for the
Fe atoms in the AFM and FM states, respectively, and
1.18 µB for the Rh atoms in FM phase, which is in ex-
cellent agreement with previous calculations [34, 35] and
experiments [37, 38].

To understand the role of the Berry and spin Berry
curvatures in the conductivities, in Figs. 1 (d-g) we

show the summed over all occupied bands Ω
(SH,AH)
yx =∑

n Ω
(SH,AH)
n,yx along the energy bands symmetry lines.

Both Ω
(AH)
yx and Ω

(SH)
yx have distinct peak-like structures,

with large positive and negative contributions at small
regions of the k-space. These peaks usually occur when
the Fermi level lies between pairs of occupied-unoccupied
bands coupled through SOC with small energy separa-
tion. For example, as shown in Figs. 1 (d) and (f), the
peaks near the Γ-point for the AFM phase, and the peaks
along the X −M line for the FM phase in Figs. 1 (e)
and (g), are due to such pairs of bands, where the small
energy difference gives rise to small denominators in Eqs.

(2) and (3). Peak-like structure of Ω
(SH,AH)
yx of the same

origin is also found in other regions of the Brillouin zone
for both phases.

Results for the various intrinsic conductivities as a
function of the Fermi level are shown in Fig. 2 for both

FeRh magnetic phases. Similar to Ω
(SH,AH)
yx , the re-

sponse is sensitive to the EF position in the band struc-
ture. More importantly, significant differences between

the AFM and FM phases are found. For example, σ
(SH)
yx

for the AFM phase exhibits a relatively large negative
peak at E − EF ≈ −0.2 eV with values comparable to
other metallic AFMs found to support large spin currents

FIG. 2. (Color online) (a) Spin Hall conductivity for the AFM
state of FeRh, (b) Spin Hall conductivity for the FM state of
FeRh, (c) Anomalous Hall conductivity, and (d) Anomalous
Nernst conductivity for both FeRh phases. Results for two
temperatures are shown.

with intrinsic origin [39]. Changing EF probes different
parts of the energy band structure, which induces modifi-

cations in σ
(SH)
yx including sign change and different peak

locations. The spin Hall conductivity for the FM phase
exhibits different behavior as a function of EF , with a

pronounced sign switch of σ
(SH)
yx at E − EF ≈ −0.2 eV

(Fig. 2 (b)). We find that although higher T tends to re-
duce the absolute values of the conductivities and smooth
out the peaks, the peak structure is fairly robust. These

Berry curvature effects are also important for σ
(AH)
yx and

σ
(AN)
yx , for which T is found to have a similar role as for

the spin Hall conductivity for both phases. The AFM

σ
(AH)
yx and σ

(AN)
yx are negligible (shown by the blue hor-

izontal lines in Figs. 2 (c) and (d)). This is a direct
consequence of the preserved time reversal symmetry of
the AFM phase, leading to a vanishing integrated Berry
curvature.

The dramatic changes in the response properties across
the phase transition suggest to further explore how

σ
(SH)
yx , σ

(AH)
yx , and σ

(AN)
yx evolve as a function of tempera-

ture, which can further be used to analyze the behavior of
the induced charge current in FeRh. Our results for the T
dependence of the properties for different EF are given in
Fig. 3, which clearly shows the significant changes of all
studied conductivities across the phase transition. One

notes that σ
(SH)
yx for the AFM is rather large, has a non-

trivial behavior as a function of T , and can be positive or
negative depending on EF (Figs. 3 (a), (d) and (g)). As
the material is driven to its FM phase, the corresponding

σ
(SH)
yx switches its sign and it evolves almost linearly with

temperature. At the same time, while σ
(AH)
yx and σ

(AN)
yx

are of negligible magnitude (practically zero) in the AFM
phase, their FM counterparts show similar T -dependence
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FIG. 3. (Color online) Temperature dependence for: (a), (d) and (g) the spin Hall conductivity; (b), (e) and (h) the anomalous
Hall conductivity; (f), (i) and (c) the anomalous Nernst conductivity for different values of the Fermi level. The gray region
represents the temperature interval where the phase transition occurs.

as σ
(SH)
yx .

These thermally driven changes in the intrinsic Hall ef-
fect phenomena can be utilized as a reliable spin current
detection scheme (shown in Fig. 1 (a)). A spin current is
injected from the source material into the FeRh detector
by applying ∇xT , followed by measuring the transverse
charge current JCy at steady state. Since large ∇xT is
needed to generate the spin current, it is expected that
the FeRh is in its FM state. By lowering the temper-
ature FeRh is driven into its AFM phase for which the
current is expected to change discontinuously. If the mea-
sured steady state current remains nonzero, then this is
an unambiguous signature of the ISHE meaning that a
spin current is injected into the FeRh detector. If, how-
ever, JCy is found to vanish in the AFM phase, then the
transverse charge current in the FM phase is entirely the
result of the AHE and ANE in FeRh, and there is no
longitudinal spin current generated by ∇xT . This shows
that the thermally driven phase transition in FeRh en-
ables separation between the spin Hall conductivity and
the contaminating anomalous Hall and Nernst contribu-
tions.

Calculations performed at different EF show the same
overall behavior (Figs. 3 (a-c) and (g-i)), indicating that
this scheme is also fairly robust against changes in the
chemical potential. Direct comparison between our com-
putational results with experimental data is not possible
at this stage due to the very limited measurements of
FeRh across the phase transition (the available experi-
ments are at non-zero magnetic fields and doped samples
[22]). Nevertheless, typical values for the FeRh electrical

conductivity are σ < 106 (Ω cm)−1 [22], which is in the
range where skew and side-jump scattering are expected
to be not significant and the Hall effect is of intrinsic na-
ture [2, 3, 40]. Further ensuring that all measurements
are performed well below the Curie point, thermal spin
fluctuations are not expected to be important [41]. Also,

the calculated σ
(SH)
yx values are comparable with those of

other materials with significant ISHE and are accessible
with current lab capabilities [39, 42].

Let us note that at present, most spin current detection
set-ups use heavy metals such as Pt, W or Ta [24–26], in
which the ISHE generates a measurable charge current in
a transverse direction via a strong SOC. However, mag-
netic proximity effects induced in the detector give rise
to contaminating transverse charge currents through the
AHE and ANE. In practice, these unwanted contribu-
tions are usually removed by inserting additional layers
between the spin source and the detector [25, 43], which
is problematic for measurements control and reliability.
There is strong evidence, however, that Fe-terminated
surfaces in various FeRh/substrates retain the bulk FeRh
properties and there are no interface magnetic layers [44–
47], although this issue has to be investigated further
with magnetic substrates. By adjusting T , the set-up in
Fig. 1 (a) may be used to resolve the origin of injected
spin current, without the need for additional interface
layers. In the presence of a proximately magnetized in-
terface layer on the FeRh bulk AFM phase, one expects
that the resulting unwanted current is relatively small
since it scales as the ratio between the number of proxi-
mately magnetized atomic layers (typically <5) and the
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much bigger contact measurement length [2, 3, 44, 45].
Nevertheless, the FM FeRh measurements provide an up-
per bound estimate of such contaminating contributions
to the charge current. Thus even in the case of a proxi-
mate magnetism FeRh may be regarded as a useful spin
current detector.

In conclusion, intrinsic Hall effects and their AFM-FM
transitions in FeRh have been studied using a contempo-
rary approach based on DFT/Wannier function represen-
tation. The inherent symmetries in the electronic struc-
ture and Berry phase have important signatures in the
various Hall phenomena, including a sign change in the
spin Hall conductivity. Thus FeRh with its T -controlled
AFM-FM transition can be viewed as a spin current de-
tector capable of eliminating contaminations in a con-
trolled manner. We hope our study will stimulate much
needed experimental work in temperature dependent Hall
effect measurements in FeRh. Investigating thermally
driven intrinsic Hall and Nernst effect changes in other
materials exhibiting AFM-FM metamagnetic transitions,
such as manganites, CeFe2 or Mn2Sb alloys, will bring
basic science forward and give new perspectives in spin-
related applications.
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