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Three band crossings can arise in three dimensional quantum materials with certain space group
symmetries. The low energy Hamiltonian supports spin one fermions and a flat band. We study
the pairing problem in this setting. We write down a minimal BCS Hamiltonian and decompose
it into spin-orbit coupled irreducible pairing channels. We then solve the resulting gap equations
in channels with zero total angular momentum. We find that in the spin singlet channel (and also
in an unusual ‘spin quintet’ channel), superconductivity is enormously enhanced, with a possibility
for the critical temperature to be linear in interaction strength. Meanwhile, in the spin triplet
channel, the superconductivity exhibits features of conventional BCS theory due to the absence of
flat band pairing. Three band crossings thus represent an exciting new platform for realizing exotic
superconducting states with enhanced energy scales. We also discuss the effects of doping, nonzero
temperature, and of retaining additional terms in the k · p expansion of the Hamiltonian.

I. INTRODUCTION

The emergence of topological band structures has pro-
vided a new playground for many body theory (see e.g.
Ref. 1 and references contained therein). While most
effort has focused on systems with two band crossings
(topological insulator surface states, Weyl semimetals) or
four band crossings (graphene, Dirac semimetals), band
crossings of odd numbers of bands can also exist, stabi-
lized by certain space group symmetries2. A concrete
example of these novel materials is provided by the time
reversal (TR) symmetric materials with space group sym-
metry 199, where three band crossings arise.

It is by now well known that topological band struc-
tures present intriguing platforms for realizing novel cor-
related states of matter. For example, even restrict-
ing ourselves purely to superconductors, superconduct-
ing topological insulator surface states support Majo-
rana fermions in vortex cores3, superconducting Weyl
semimetals realize ‘monopole harmonic pairing’4, super-
conductivity in certain four band crossing materials real-
izes unusual ‘high spin’ superconducting states5–13, and
nodal line semimetals support unusual chiral states with
topological surface superconductivity14–17. However, in-
vestigations have thus far been restricted to two and four
band crossings, and the three band crossing setting is
one in which correlated states in general, and the pairing
problem in particular, has scarcely been explored.

Here we initiate the exploration of many body theory
in three band crossing systems by studying superconduc-
tivity in this setting. The BCS problem in this setting
is interesting for at least two distinct reasons. Firstly,
the effective theory of the three band crossing (as encap-
sulated in the k · p Hamiltonian) is a theory of spin one
fermions2. The pairing problem for spin one fermions has
not previously been studied, as far as we are aware. Ad-
ditionally, the k ·p Hamiltonian for three band crossings
supports a flat band with a concomitant large density of

states. This feature can bring about dramatical enhance-
ment of superconductivity18,19.

In this paper, we focus on an idealized model (the lead-
ing order k · p Hamiltonian from Ref. 2), which has full
spherical symmetry. This idealized problem is sufficient
to capture the key features of the pairing problem in
this setting. In the presence of full spherical symme-
try (but with significant spin-orbit coupling), the pairing
states are classified by quantum numbers (L, S, J,MJ),
where L is the orbital angular momentum, S the total
spin, J the total angular momentum, and MJ the pro-
jection of the total angular momentum along the (arbi-
trarily chosen) ẑ-axis. Unusually, because we are dealing
with spin one fermions, there is a possibility of a spin
quintet (S = 2) pairing state. We write down a general
action, including short range attractive interaction, and
decompose it into different irreducible pairing channels
labelled by (L, S, J), adapting the analysis from Ref. 9.
We then solve the (weak coupling) pairing problem in
channels with J = 0, such that the solutions are non-
degenerate. The restriction to channels with J = 0 is
purely for simplicity, and is sufficient to highlight the
key features. We investigate the superconductivity when
the Fermi level lies exactly at the band crossing points,
and discuss the effects of finite temperature and finite
displacement of Fermi level from band crossing points.
Interesting results show up when the Fermi level is at the
band crossing points. Otherwise one may simply project
the weak coupling pairing problem onto a single linearly
dispersing band, and the novel features of the spin one
problem are eliminated. In particular, the s-wave spin
singlet (0, 0, 0) and d-wave spin quintet (2, 2, 0) pairing
states display an enormous enhancement of the supercon-
ductivity. When Fermi level lies at band crossing points,
the critical temperature is linear in interaction strength,
instead of being exponentially small as in the standard
BCS problem. This is reminiscent of superconductivity
in flat bands18,19. The linear scaling still shows up when
the Fermi level is slightly shifted once the interaction is
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strong enough. Meanwhile, the pairing problem in the p-
wave spin triplet (1, 1, 0) pairing channel manifests con-
ventional BCS superconductivity due to the absence of
flat band pairing. In addition to the perfect flat band
setup, the effect of finite band curvature on supercon-
ducting behavior is also examined. The modifications of
weak coupling theories in s-wave spin singlet and d-wave
spin quintet pairing states are discovered. We conclude
with a discussion of our results and of future directions.

II. SETUP

A. Noninteracting Hamiltonian

In a TR symmetric material which exhibits space group
symmetry 199, there can exist a pair of three band cross-
ing points at the TR noninvariant P -point and its TR
partner −P in the bulk Brillouin zone (Fig. 1). A mini-
mal model k · p Hamiltonian about the P -point k = k0

is2

HP (k) = v (k− k0) · S, (1)

where Si’s are the spin-1 operators

Sx =
1√
2

 0 1 0
1 0 1
0 1 0

 , Sy =
1√
2

 0 −i 0
i 0 −i
0 i 0

 ,

Sz =

 1 0 0
0 0 0
0 0 −1

 ,

(2)

and v denotes the effective velocity. Notice the choice
~ = 1 in the setup. The Hamiltonian Eq. (1) exhibits
two linearly dispersing bands and a flat band

ε±k = ±v |k− k0| , ε0
k = 0. (3)

Such three band crossing structure exhibits nontrivial
topological features. The topological property of each
band can be captured by the Berry monopole charge
Ca = (1/2π)

∮
dSk · Ωa

k at the band crossing point P ,
where the integral goes over an arbitrary closed surface
enclosing P . The Berry flux Ωa

k = ∇k×Aa
k is calculated

from the Berry connection Aa
k = 〈uak|i∇k|uak〉 where |uak〉

denotes the state on the a-th band. One can check that
the two linearly dispersing bands carry Berry monopole
charge C± = ∓2, implying nontrivial topological struc-
ture, while the flat band is topologically trivial2.

The operator T of TR transformation is defined as
T = γK, where K is the complex conjugate operator
and γ is an unitary operator

γ = i exp (iπSy) =

 0 0 i
0 −i 0
i 0 0

 . (4)

FIG. 1. Schematic illustration of a pair of three band cross-
ing points ±P : k = ±k0 in the bulk Brillouin zone. The axis
kn is in the direction k̂0. The flat bands at the three band
crossing points ±P can produce nontrivial superconductivi-
ties with the pairing between states near ±P .

The additional factor i is introduced so as to fulfill the
condition T 2 = −1 for spin-orbit coupled electrons. Un-
der TR transformation, the spin operators are trans-
formed as

S→ T ST −1 = γS∗γ† = −S. (5)

To fulfill the TR symmetry, the Hamiltonian H−P (k) at
−P has to satisfy

T H∗P (k)T −1 = H−P (−k), (6)

which implies

H−P (−k) = v [−k− (−k0)] · S. (7)

The Hamiltonians H±P (k) take the same form in terms
of δk = k− (±k0). The Berry monopole charges at ±P
are the same, which is a general feature of TR symmetric
systems.

B. Noninteracting Action

It is convenient to recast the problem in (Matsubara)
coherent path integral language20,21, with noninteracting
action

S0 =
∑
a=±

∫
τr

ψ†a [∂τ + v(−i∇) · S− µ]ψa. (8)

The 3-component vectors of Grassmann numbers ψ±’s
characterize the states near ±P with a momentum differ-
ence ±k, respectively. The chemical potential is denoted
by µ. For the description at temperature T , the periodic
domain in temporal direction is defined by the inverse
temperature β = 1/kBT , where kB = 1 is chosen.
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The BCS superconducting states are generated by the

Cooper pairing between ψ†+ near P and γ(ψ†−)T near
−P . For future convenience, we rewrite the (ψ−)-part

of the noninteracting action Eq. (8) in terms of γ(ψ†−)T .
The noninteracting action Eq. (8) may then be expressed
as20,21

S0 = −
∫
τr

Ψ†(r, τ)G−1
0 (r, τ)Ψ(r, τ), (9)

where we have introduced the Nambu spinor

Ψ(r, τ) =

(
ψ+(r, τ)

γ[ψ†−(r, τ)]T

)
, (10)

and G−1
0 is the noninteracting inverse Gor’kov Green’s

function

G−1
0 =

(
−∂τ − v(−i∇) · S + µ 0

0 −∂τ − v(i∇) · S− µ

)
.

(11)
It is now convenient to proceed to a momentum space

representation. Consider the Fourier transform of the
Nambu spinor

Ψ(r, τ) =
1√
V

∑
k

Ψk(τ)eik·r, (12)

Ψk(τ) =

(
ψ+,k(τ)

γ[ψ†−,−k(τ)]T

)
, (13)

where V is the spatial volume. The noninteracting action
Eq. (9) becomes

S0 = −
∫
τ

∑
k

Ψ†k(τ)G−1
0 (k, τ)Ψk(τ), (14)

with the inverse Gor’kov Green’s function

G−1
0 =

(
−∂τ − vk · S + µ 0

0 −∂τ + vk · S− µ

)
. (15)

C. Interactions and Irreducible Pairing Channels

To complete the setup of the pairing problem, a short
range attractive density-density interaction is now intro-
duced to couple the states near ±P

Sint = −1

2

∫
τ

∫
rr′
V (r− r′)ψ†+(r)ψ+(r)ψ†−(r′)ψ−(r′).

(16)
The minus sign indicates an attractive interaction.

We decompose the density-density term into a summa-
tion over different irreducible spin representations, which
can be regarded as a kind of Fierz identity9. After projec-
tion on the Cooper channel, the four fermion interaction
in this setting takes the form

ψ†+,kψ+,k′ψ†−,−kψ−,−k′ (17)

= ψ†+,kψ+,k′ψ†−,−kγ
T γ∗ψ−,−k′ (18)

= ψ†+,kEmn[γ(ψ†−,−k)T ][γ(ψ†−,−k′)
T ]†Enmψ+,k′ . (19)

In the last line, each matrix Emn has only one nonzero
element 1 as the (m,n)-th entry. The summation over
Emn’s is equivalent to a summation over the (2S + 1)-

component vector ~MS ’s

ψ†+,kψ+,k′ψ†−,−kψ−,−k′

=
1

3

∑
S

ψ†+,k
~MS [γ(ψ†−,−k)T ] · [γ(ψ†−,−k′)

T ]† ~M†Sψ+,k′ ,

(20)
where 3 = 2s + 1 and S = 0, 1, 2 are the total spins
of the Cooper pairs. Each component MSMS

is a 3 ×
3 irreducible representation of the SU(2) group, which
characterizes the total spin S and z-component MS of a
Cooper pair

ψ†+,kMSMS
[γ(ψ†−,−k)T ]. (21)

The normalization condition of the matrices is defined as

Tr
(
MSMS

M†S′M ′
S′

)
= 3δSS′δMSM ′

S′
. (22)

The spatial potential may be treated in similar
fashion9. Due to the full spherical symmetry, the orbital
angular momentum L and z-component ML are good
quantum numbers for the spatial part. Therefore, the
spatial potential V (r−r′) can be decomposed into a series
of orbital modes with different angular momentums L’s.
Consider the momentum space representation V (k−k′).
The decomposition is performed by writing the potential
as a series of orbital modes, which are represented by the

spherical harmonics YLML
(k̂)’s

V (k− k′) = 4π
∑
LML

VL(k, k′)

×
[
kLYLML

(k̂)
] [
k′LY ∗LML

(k̂′)
]
.

(23)

The coefficients VL(k, k′)’s, which can be regarded as the
coupling strengths, are isotropic functions which only de-
pend on the magnitudes of momenta k and k′

VL(k, k′) =
1

4π(2L+ 1)kLk′L

×
∑
ML

∫
ΩΩ′

V (k− k′)Y ∗LML
(k̂)YLML

(k̂′).

(24)
We assume that the coupling strengths VL’s are con-
stants, which amounts to keeping the leading (most rele-
vant) terms in a Taylor expansion of a short range inter-
action.

Thus far, we have decomposed the spin and spatial
sectors in isolation. However, given the strong spin-orbit
coupling in the noninteracting Hamiltonian, the good
quantum numbers for the pairing channels are L, S, to-
tal angular momentum J = L + S, and z-component of
total angular momentum MJ . Therefore, the interacting
action Eq. (16) is better expressed as a summation over
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different pairing channels labelled by the good quantum
numbers of the full problem, i.e.

Sint = − 1

6V
∑
SLJ

∫
τ

∑
kk′

VL(~ΠSL
J,k)† · ~ΠSL

J,k′ . (25)

Each operator

(~ΠSL
J,k)† = ψ†+,kk

L ~N SL
J [γ(ψ†−,−k)T ] (26)

creates a zero momentum Cooper pair with total angular
momentum J and z-component MJ

11. The irreducible

representation of total angular momentum ~N SL
J is an ad-

dition of the spin and orbital modes

N SL
JMJ

=
∑

MLMS

〈LS;MLMS |LS; JMJ〉

×
[√

4πYLML
(k̂)
]
MSMS

,

(27)

where the summation with Clebsch-Gordan coefficients
〈LS;MLMS |LS; JMJ〉 obeys ML + MS = MJ . Notice
that inversion symmetry is absent in our setup. Conse-
quently, parity quantum number is not a good label for
the pairing channels.

With the interactions decomposed into irreducible
pairing channels of different angular momenta, the study
of superconductivity in each channel (L, S, J) may be
performed by considering the action

S(L,S,J) = S0 + S
(L,S,J)
int (28)

= −
∫
τ

[∑
k

Ψ†k(τ)G−1
0 (k, τ)Ψk(τ)

+
1

6V
∑
kk′

VL(~ΠSL
J,k)† · ~ΠSL

J,k′

]
.

(29)

Due to Fermi statistics, the even-S spin states must have
even-L, while the odd-S spin states must have odd-L.
Different choice of quantum numbers S, L, and J can
lead to different types of superconductivity.

We now discuss the range of the momentum space sum-
mation. In BCS theory, the attractive interaction −V
works within the narrow energy domain |εk − µ| < ωD,
where ωD � v is the Debye frequency. The momentum
space summations

∑0,±
k for the three bands are therefore

restricted, and are different from each other in general.
This feature can be characterized by the density of states
ν0,±(ε) near chemical potential µ

1

V
∑
k

0,±
=

∫ µ+ωD

µ−ωD

dεν0,±(ε). (30)

A remarkable thing happens when the chemical potential
is near zero µ ≈ 0. While the densities of states ν±(ε) for
linearly dispersing bands both vanish, the flat band ac-
quires an extremely large density of states (in fact, a delta
function at zero energy). As elucidated in the following
sections, this abnormally large density of states can lead
to striking departures from the conventional BCS theory.

D. Bogoliubov-de Gennes Quasiparticle Spectrum

Before embarking on the coherent path integral studies
of pairing states, we analyze the properties of BdG quasi-
particles in the framework of second quantization. The
analysis will also be useful in the following path integral
calculations.

With the analysis of pairing interactions in Sec. II C,
the second quantized BCS Hamiltonian in the pairing
channel (L, S, J) can be determined as20,21

H(L,S,J) − µN =
∑
k

∑
a=±

c†a,ak [v(ak) · S− µ] ca,ak

− 1

6V
∑
kk′

VL(~ΠSL
J,k)† · ~ΠSL

J,k′ ,
(31)

where (~ΠSL
J,k)† is the creation operator of a zero momen-

tum Cooper pair with quantum numbers (L, S, J,MJ)11

(~ΠSL
J,k)† = c†+,kk

L ~N SL
J [γ(c†−,−k)T ]. (32)

As in Sec. II C, the momentum space summation is per-
formed within the narrow energy range |εk − µ| < ωD.

Define the gap funtion ~∆, also known as the order pa-

rameter, and its adjoint ~̄∆ as the ground state expecta-
tion values of Cooper pair operators

~∆ =
VL
6V
∑
k

〈Ωs| ~ΠSL
J,k |Ωs〉 , (33)

~̄∆ =
VL
6V
∑
k

〈Ωs| (~ΠSL
J,k)† |Ωs〉 , (34)

where |Ωs〉 is the BCS ground state in this channel. The
quartic interaction term in the Hamiltonian can be re-

placed by the gap functions ~∆ and ~̄∆

H(L,S,J) − µN =
∑
k

{∑
a=±

c†a,ak [v(ak) · S− µ] ca,ak

− ~̄∆ · ~ΠSL
J,k − ~∆ · (~ΠSL

J,k)†

}

+
6V
VL
|~∆|2. (35)

With similar treatment of the (c−,−k)-part in Sec. II B,
the Hamiltonian can be expressed in the form of
Bogoliubov-de Gennes (BdG) Hamiltonian

H(L,S,J)−µN =
∑
k

Ψ†kH
(L,S,J)
BdG (k)Ψk−3

∑
k

µ+
6V
VL
|~∆|2.

(36)
The vector Ψk is defined as the Nambu spinor

Ψk =

(
c+,k

γ(c†−,−k)T

)
, (37)



5

and H(L,S,J)
BdG (k) is the matrix representation of BdG

Hamiltonian

H(L,S,J)
BdG (k) =

 H0(k) −~∆ · kL ~N SL
J

− ~̄∆ ·
(
kL ~N SL

J

)†
−H0(k)


(38)

in this channel. Notice that the diagnoal elements of

H(L,S,J)
BdG (k) are noninteracting Hamiltonians ±H0(k)

H0(k) = vk · S− µ =

 vk3 − µ 1√
2
vk− 0

1√
2
vk+ −µ 1√

2
vk−

0 1√
2
vk+ −vk3 − µ


(39)

about the two band crossing points ±P , where the mo-
mentum variables k± = kx ± iky are defined. The eigen-
values of H0(k) are given by

ξ0
k = ε0

k − µ = −µ, (40)

ξ±k = ε±k − µ = ±vk − µ. (41)

By diagonalizing the BdG Hamiltonian Eq. (38), the
energies λak’s of BdG quasiparticles can be obtained.
These BdG quasiparticle energies indicate various prop-
erties of the pairing state, including the energy gap and
the pairing between noninteracting states about the two
band crossing points ±P . They also play important roles
in the derivation of gap equation, which is the main topic
of Sec. II E.

E. From Action to Gap Equation

1. Partition Function

In order to probe the superconductivity in each irre-
ducible pairing channel (L, S, J), we study the quantum
partition function of the system, which appears as a co-
herent path integral20,21

Z(L,S,J) =

∫ ∏
a=±
D
(
ψ̄a, ψa

)
e−S

(L,S,J)[ψ̄,ψ] (42)

over the fields ψ±. The action S(L,S,J) is determined by
the previous analysis of pairing interactions in Sec. II C,
and is given by Eq. (29).

The quartic interaction in the action S(L,S,J) pro-
hibits exact calculations of the path integral. To
decouple the quartic interaction term, the Hubbard-
Stratonovich transformation20,21 is applied to the path
integral. At mean field level, the transformation is per-
formed by introducing the path integral of an auxiliary

MJ -component bosonic field ~∆(τ)

Z(L,S,J) =

∫
D
(
~̄∆, ~∆

)∫ ∏
a=±
D
(
ψ̄a, ψa

)
exp

∫
τ

{
− 6V
VL
|~∆|2 −

∑
k

[
−ΨkG−1

0 (k)Ψk

− ~∆ · (~ΠSL
J,k)† − ~̄∆ · ~ΠSL

J,k

]}
,

(43)

where the quartic interaction is replaced. The field ~∆
is identified with the gap function of the superconduct-
ing state. Define the interacting inverse Gor’kov Green’s
function

G−1(k, τ) =

(
−∂τ − vk · S + µ ~∆ · kL ~N SL

J
~̄∆ · (kL ~N SL

J )† −∂τ + vk · S− µ

)
,

(44)
which is related to the BdG Hamiltonian Eq. (38) by

G−1(k, τ) = −∂τ −H(L,S,J)
BdG (k). (45)

The partition function can be written as a path integral

of the gap function ~∆ and the Nambu spinor Ψk

Z(L,S,J) =

∫
D
(
~̄∆, ~∆

)∫
D
(
Ψ†,Ψ

)
exp

∫
τ

[
−6V
VL
|~∆|2 −

∑
k

(
−Ψ†kG

−1(k)Ψk

)]
.

(46)

Integrating out the Nambu spinor field Ψk, the only re-

maining field in the path integral is the gap function ~∆

Z(L,S,J) =

∫
D
(
~̄∆, ~∆

)
e−βF

(L,S,J)[ ~̄∆,~∆]. (47)

The free energy

F (L,S,J)[ ~̄∆, ~∆] =
6V
βVL

∫
τ

|~∆|2 − 1

β
ln detG−1 (48)

includes a determinant of the inverse Gor’kov Green’s
function as the product of Nambu spinor path integral.

It is worth mentioning that although the quartic in-
teraction in the original action S(L,S,J) is decoupled, the
path integral Eq. (47) is still not exactly solvable. How-
ever, it serves as a useful starting point for investigations
of superconductivity. For example, the expansion of free

energy F (L,S,J)[ ~̄∆, ~∆] Eq. (48) with respect to the gap

function ~∆ near the critical temperature Tc provides an
approximate description of the phase transition between
superconducting and normal states20. One can also de-

rive the mean field gap function ~∆ and critical tempera-
ture Tc from the gap equation, which describes the static
solution of the path integral Eq. (47). This analysis is
presented in the following subsection.
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2. Gap Equation

At mean field level, the gap function can be ob-
tained from a self consistent gap equation, which in
turn can be determined from the mean field free energy

F (L,S,J)[ ~̄∆, ~∆]. Assume that the gap function is tem-

porally static ~∆(τ) = ~∆. The mean field free energy

F (L,S,J)[ ~̄∆, ~∆] takes the form

F (L,S,J)[ ~̄∆, ~∆] =
6V
VL
|~∆|2 − 1

β
ln detG−1. (49)

We apply the Fourier transform in temporal direction

Ψk(τ) =
1√
β

∑
n

Ψkne
−iωnτ , (50)

Ψkn =

(
ψ+,kn

γ(ψ†−,−k−n)T

)
, (51)

G−1(k, ωn) = iωn −H(L,S,J)
BdG (k), (52)

where the Matsubara frequencies are ωn = (2n + 1)π/β
with n ∈ Z since the system is fermionic. This yields

F (L,S,J)[ ~̄∆, ~∆] =
6V
VL
|~∆|2 − 1

β

∑
kn

ln detG−1(k, n). (53)

The determinant of inverse Gor’kov Green’s function can
be evaluated by diagonalization. Due to the relation
Eq. (52) between inverse Gor’kov Green’s function and
BdG Hamiltonian, the result is determined by the ener-
gies λak’s of BdG quasiparticles

detG−1(k, n) =
∏
a

(iωn − λak) . (54)

The free energy Eq. (53) becomes a summation over BdG
quasiparticle modes

F (L,S,J)[ ~̄∆, ~∆] =
6V
VL
|~∆|2 − 1

β

∑
a

∑
k

a∑
n

ln (iωn − λak) .

(55)
The gap equation can be determined by minimizing

the free energy F (L,S,J)[ ~̄∆, ~∆] with respect to ~∆

6∆̄MJ

VL
= − 1

βV
∑
a

∑
k

a∑
n

1

iωn − λak
∂λak
∂∆MJ

. (56)

We carry out the Matsubara frequency summation

1

β

∑
n

h(iωn) =

∮
dz

2πi
f(z)h(z), (57)

where the Fermi function

f(z) =
1

eβz + 1
(58)

provides simple poles zn = iωn with residues −1/β. The
integral contour surrounds the poles zn’s on the imagi-
nary axis in a clockwise way, and can be deformed into

counterclockwise contour around the poles of h(z). After
the Matsubara frequency summation, the gap equation
becomes

6∆̄MJ

VL
= −

∑
a

1

V
∑
k

a
f(λak)

∂λak
∂∆MJ

. (59)

Notice that the exact form of gap equation in each ir-
reducible pairing channel depends explicitly on the BdG
quasiparticle energies.

3. Critical Temperature

For a system which exhibits superconductivity in
low temperature regime, there is a critical temperature
Tc which separates superconducting and normal states.
When the temperature T increases from T = 0, the

nonzero superconducting gap function ~∆ usually de-
creases, and ultimately vanishes at the critical temper-
ature T = Tc. Above the critical temperature, the gap
function is always zero, implying that only the normal
state exists in the high temperature regime.

The gap equation Eq. (59) provides a way to calculate
the critical temperature Tc

20,21. Normally, the right-
hand side of the equation carries a factor ∆̄MJ

, which
eliminates the same factor on the left-hand side. This
exclude the trivial solution ~∆ = 0 from the equation, and

only the nontrivial solutions remain. By taking ~∆ = 0 in
the remaining equation, the critical temperature T = Tc
at which the nontrivial solution, hence the superconduc-
tivity, vanishes can be solved.

This concludes the general setup of the basic BCS
problem in the three band crossing setting.

III. SUPERCONDUCTIVITY OF SPIN ONE
FERMIONS

In this section, we analyze the superconducting states
in different irreducible pairing channels. For simplicity,
we study only the single-component channels with J = 0,
including the s-wave singlet channel (L, S, J) = (0, 0, 0),
the p-wave triplet channel (L, S, J) = (1, 1, 0), and the
d-wave quintet channel (L, S, J) = (2, 2, 0). The zero
total angular momentum J = 0 implies that the vec-
tor of irreducible representation for pairing has only one
component NLL

00 . Correspondingly, the gap function is a
scalar ∆.

For each J = 0 pairing channel, one can verify that
the off-diagonal pairing representation kLNLL

00 in BdG
Hamiltonian Eq. (38) is Hermitian. This implies that
its eigenvalues ζk’s are real. In addition, the pair-
ing representation kLNLL

00 commutes with the diagonal
noninteracting Hamiltonian H0(k) Eq. (39). Therefore,
each eigenvalue ζak corresponds to an eigenstate |uak〉 of
H0(k). The two features provide a significant simpli-
fication of BdG Hamiltoinan Eq. (38). By choosing the



7

eigenbasis {|u0
k〉, |u

−
k 〉, |u

+
k 〉} of H0(k) in both (c+,k)- and

[γ(c†−,−k)T ]-sections, the BdG Hamiltonian becomes a
composition of diagonal blocks

H(L,L,0)
BdG (k)

=


ξ0
k 0 0 −∆ζ0

k 0 0
0 ξ−k 0 0 −∆ζ−k 0
0 0 ξ+

k 0 0 −∆ζ+
k

−∆̄ζ0
k 0 0 −ξ0

k 0 0
0 −∆̄ζ−k 0 0 −ξ−k 0
0 0 −∆̄ζ+

k 0 0 −ξ+
k

 .

(60)
A reordering of basis states further transforms the matrix
into a block-diagonal form

H(L,L,0)
BdG (k) =

⊕
a=0,±

H(L,L,0),a
BdG (k). (61)

Each block

H(L,L,0),a
BdG (k) =

(
ξak −∆ζak
−∆̄ζak −ξak

)
(62)

is the BdG Hamiltonian in the |uak〉-section, which de-
scribes the BCS physics in single band theory20,21. The
BdG Hamiltonian is now decomposed into independent
sections, each of which results from a single type of
noninteracting eigenstate |uak〉. The feasibility of such
decomposition indicates that Cooper pairing only hap-
pens between the bands about P and −P with the same
band index. By diagonalizing the BdG Hamiltonian

H(L,L,0),a
BdG (k) in each |uak〉-section, the BdG quasiparti-

cle energies are evaluated as

λa,±k = ±
√
|∆|2(ζak)2 + (ξak)

2
, a = 0,±. (63)

Different irreducible pairing channels provide different
sets of eigenvalues ζak’s, which leads to different energy
spectrums of BdG quasiparticles.

With the BdG quasiparticle energies, the gap equation
Eq. (59) becomes

6∆̄

VL
= −

∑
a=0,±

∆̄

V
∑
k

a∑
b=±

b(ζak)2f(b
√
|∆|2[ζak]2 + [ξak]2)

2
√
|∆|2(ζak)2 + (ξak)2

.

(64)
The equation supports a trivial solution ∆ = 0 which
corresponds to the normal state. Our interest lies in the
nontrivial solutions ∆ 6= 0. Since the Fermi function f(z)
Eq. (58) satisfies

f(z)− f(−z) = − tanh
β

2
z, (65)

the gap equation is equivalent to a summation over hy-
perbolic tangent functions in different modes

6

VL
=
∑
a=0,±

1

V
∑
k

a (ζak)2 tanh β
2

√
|∆|2(ζak)2 + (ξak)2

2
√
|∆|2(ζak)2 + (ξak)2

.

(66)

The calculation of gap equation is significantly simplified
from the original manipulation of 6 × 6 matrices. Once
the eigenvalues ζak’s of pairing irreducible representation
∆kLNLL

00 are obtained, the gap equation in the pairing
channel can be determined directly.

A. s-wave Pairing

As a starting point, we investigate the superconductiv-
ity in s-wave singlet pairing channel (L, S, J) = (0, 0, 0).
Since the orbital and spin parts are both trivial, the ir-
reducible representation N 00

00 in the Cooper pair is an
identity matrix

N 00
00 = 1. (67)

The only eigenvalue of pairing representation N 00
00 is

ζk = 1. (68)

1. Bogoliubov-de Gennes Quasiparticles

The energies of BdG quasiparticles are read off from
the general form Eq. (63)

λa,±k = ±
√
|∆|2 + (ξak)

2
, a = 0,±. (69)

An observation of energy spectrum Fig. 2 indicates that
the system is fully gapped. The minimal gap between
positive and negative BdG quasiparticle bands is deter-
mined by the gap function 2|∆|. Notice that the pairing
between flat bands about the band crossing points ±P
brings about the two BdG quasiparticle bands with en-
ergies λ0,±

k . As indicated by the following calculation
of gap equation, the existence of such flat band pairing
can lead to novel superconductivity with enhanced gap
function ∆ and higher critical temperature Tc.

2. Gap Function and Critical Temperature

The gap equation Eq. (66) for s-wave singlet pairing
channel takes the form

6

V0
=
∑
a=0,±

1

V
∑
k

a tanh β
2

√
|∆|2 + (ξak)2

2
√
|∆|2 + (ξak)2

. (70)

Each term in the sum results from the coupling between a
single type of noninteracting band about the band cross-
ing points ±P .

We are particularly interested in the small chemical po-
tential regime |µ| < ωD, where the Fermi level is close to
the band crossing points ±P . Since the densities of states
ν±(ε) of linearly dispersing bands are infinitesimal near
ε = 0, the contribution from these two modes are neg-
ligible. In contrast to the linearly dispersing bands, the
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(a)

kx

λk

λk
0,± λk

-,± λk
+,±

(b)

kx

λk

λk
0,± λk

-,± λk
+,±

FIG. 2. Schematic illustrations of the BdG quasiparticle
energy spectrum for (a) ωD > µ > 0 and (b) µ = 0 in the
s-wave singlet (0, 0, 0) pairing channel. When µ goes across
zero, the bands of λ−

k and λ+
k coincide and then switch with

each other. The spectrum is fully gapped in either case, with
energy gap 2|∆|.

whole flat band is covered by the momentum space sum-
mation

∑0
k, which enhances pairing. The dominating

contribution from flat band pairing suggests a simplified
form of gap equation

6

V0
=

1

V
∑
k

0 tanh β
2

√
|∆|2 + µ2

2
√
|∆|2 + µ2

. (71)

Assume that the flat band exists within a spherical mo-
mentum space domain about each band crossing point.
For the convenience of calculations, we assume a momen-
tum cutoff k = Λ for the spherical domain, and rewrite
the momentum space summation as a continous momen-
tum integral

1

V
∑
k

0
=

1

2π2

∫ Λ

0

dkk2. (72)

The integral version of gap equation reads

6

V0
= ṼFB

tanh β
2

√
|∆|2 + µ2

2
√
|∆|2 + µ2

, (73)

where the volume of flat band domain ṼFB = Λ3/6π2

characterizes the density of states ν0(ε) = ṼFBδ(ε). The
behavior of gap function can be probed from the exami-
nation of this equation.

In the zero temperature limit β → ∞, the hyperbolic
tangent function goes to 1. The gap equation reduces to

6

V0
= ṼFB

1

2
√
|∆(0)|2 + µ2

, (74)

where ∆(0) denotes the zero temperature gap function.
The solution of this equation

|∆(0)| =

√√√√(V0ṼFB

12

)2

− µ2 (75)

describes the dependence of zero temperature gap func-
tion ∆(0) on the coupling strength V0 and the chemical
potential µ. A remarkable feature shows up when the
Fermi level lies exactly at the band crossing points µ = 0.
The zero temperature gap function ∆(0) acquires a linear
dependence on the coupling strength V0 [Fig. 3(a)]

|∆(0)| = 1

12
V0ṼFB, (76)

unlike the conventional BCS problem where pairing
strength is exponentially small in coupling strength20,21.
This linear scaling of gap function is a result of the ex-
tremely large density of states of the flat band ν0(0),
which enhances the growth of gap function with increas-
ing coupling strength V0 (similar to Ref. 18 and 19). It is
therefore suggested that three band crossings may sup-
port unusually strong superconductivity. Furthermore,
doping suppresses pairing, since it moves the Fermi sur-
face away from the energy with large density of states.
(While the above equation suggests absence of supercon-
ductivity for infinitesimal coupling when µ 6= 0, bear
in mind that in deriving the above equation we have
neglected the linearly dispersing bands. The equation
above is thus only valid for V0ṼFB/12 > |µ|, when the
interaction can access the flat band. When this condi-
tion is violated, we need to retain the linearly dispersing
bands in the analysis. This will yield superconductiv-
ity with conventional BCS scaling, where the density of
states goes as µ2.)

When the temperature is finite, thermal fluctuations
can lead to the suppression of superconductivity. This
thermal effect can also be observed from the gap equation
Eq. (73). The hyperbolic tangent function decreases from
its zero temperature value 1 as the temperature increases.
Correspondingly, the denominator becomes smaller in or-
der to solve the gap equation. The observation indicates
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that the gap function decreases with increasing temper-
ature [Fig. 3(b) and Fig. 3(c)], and ultimately vanishes
at the critical temperature T = Tc. This amounts to
the phase transition between superconducting and nor-
mal states.

(a)

V0

|Δ(0)|

μ = 0

μ = μ

μ = 2μ

μ = 3μ

(b)

V0

|Δ|

T = 0

T = T


T = 2T


T = 3T


(c)

T

|Δ|

V0 = V


V0 = 2V


V0 = 3V


FIG. 3. Numerically obtained gap function in the s-wave
singlet pairing channel. T̃ , Ṽ , and µ̃ are positive constants.
(a) At T = 0, gap function ∆(0) is proportional to coupling
strength when µ = 0, and is suppressed by finite chemical
potentials µ’s. (b) When µ = 0, the gap function ∆ is pro-
portional to coupling strength V0 at T = 0, and is suppressed
when T > 0. (c) A critical temperature T = Tc marks the
full elimination of gap function ∆.

The critical temperature T = Tc is calculated by taking
|∆| → 0 in the gap equation Eq. (73)

6

V0
= ṼFB

tanh βc

2 |µ|
2|µ|

, (77)

which provides the solution

Tc =
|µ|
2

[
tanh−1

(
12|µ|
V0ṼFB

)]−1

. (78)

As µ = 0, the critical temperature scales linearly as the
gap function does Eq. (76)

Tc =
1

24
V0ṼFB, (79)

unlike the exponentially small scaling of normal BCS
superconductors20,21. Therefore, superconductivity in
three band crossings may exhibit unusually high critical
temperatures. Notice that the ration between zero tem-
perature gap function |∆(0)| and critical temperature is

2|∆(0)|
Tc

= 4, (80)

which is different from the value 2|∆(0)|/Tc ≈ 3.53 in
conventional BCS superconductivity20,21.

It is worth mentioning that the results obtained in this
section assume a perfect flat band. The effect of pertur-
bations that give the flat band nonzero band curvature
is discussed in Sec. IV. Our discussion has also assumed
that |µ| < ωD. When this condition is violated, the inter-
action cannot access the flat band, no matter how strong
it may be. In this case the pairing is dominated by the
linearly dispersing bands (which were neglected in the
preceding analysis). Assume that the Fermi level crosses
one of the linearly dispersing bands aµ > 0. The gap
equation becomes

6

V0
=

1

V
∑
k

a tanh β
2

√
|∆|2 + (ξak)2

2
√
|∆|2 + (ξak)2

. (81)

The potential superconductivity in this regime acquires
the conventional behavior. In the weak coupling regime,
the gap function ∆ and the critical temperature Tc both
acquire the exponentially small scaling in conventional
BCS theory20,21

|∆(0)| , Tc ∼ ωD exp

(
− 6

V0νa(µ)

)
, (82)

with νa(µ) ∼ µ2. Notice that the scalings in the regimes
|µ| < ωD and |µ| > ωD are remarkably different. Due to
this significant difference, discontinuities in the scalings
occur when the Fermi level crosses the Debye frequency
energy scale |µ| = ωD. Such discontinuities actually re-
sult from the hard cutoff in the applicable energy domain
of attractive interaction |ε − µ| < ωD. By relaxing the
hard cutoff to a soft one, the discontinuities in scalings
can be smeared.
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B. p-wave Pairing

In addition to the s-wave singlet pairing channel, we
also expand our investigations to the irreducible pair-
ing channels with higher orbital angular momenta. One
of the channels we study is the p-wave triplet pairing

channel (L, S, J) = (1, 1, 0). The vector ~M1 for 3 × 3
irreducible representations of S = 1 is

M11 = −
√

3

2
S+ =

√
3

2

 0 −1 0
0 0 −1
0 0 0

 , (83)

M10 =

√
3

2
Sz =

√
3

2

 1 0 0
0 0 0
0 0 −1

 , (84)

M1−1 =

√
3

2
S− =

√
3

2

 0 0 0
1 0 0
0 1 0

 , (85)

and the orbital spherical harmonics for L = 1 are

√
4πY1±1(k̂) = ∓

√
3

2
k̂±,

√
4πY10(k̂) =

√
3k̂z. (86)

To obtain the irreducible representation N 11
00 for total

angular momentum of Cooper pair, the spin irreducible
representations M1MS

’s and the orbital spherical har-

monics Y1ML
(k̂)’s are added

N 11
00 =

√
4π

3

[
Y11(k̂)M1−1 − Y10(k̂)M10 + Y1−1(k̂)M11

]
(87)

=


−
√

3
2 k̂z −

√
3

2 k̂− 0

−
√

3
2 k̂+ 0 −

√
3

2 k̂−

0 −
√

3
2 k̂+

√
3
2 k̂z

 . (88)

The pairing representation kN 11
00 takes the k · S form

as the noninteracting Hamiltonian H0(k) Eq. (39) does.
This implies that kN 11

00 commutes with H0(k). The
eigenvalues of kN 11

00 are

ζ0
k = 0, ζ±k = ∓

√
3

2
k. (89)

1. Bogoliubov-de Gennes Quasiparticles

With the general form Eq. (63), the BdG quasiparticle
energies in this channel are determined with ζak’s

λ0,±
k = ±

∣∣ξ0
k

∣∣ , (90)

λa,±k = ±
√

3

2
k2|∆|2 + (ξak)

2
, a = ±. (91)

The energy spectrum is demonstrated in Fig. 4. No-
tice the absence of change in flat band energies, which
indicates that the p-wave pairing, hence the supercon-
ductivity, does not affect or ‘benefit from’ the flat band.
The idleness of Cooper pairing between flat bands follows
from the fact that flat band states are the zero modes
of the operator k · S, which describes both p-wave pair-
ing representation kN 11

00 and noninteracting Hamiltonian
H0(k). Without the enhancement of pairing from the
extremely large density of states of flat band ν0(0), the
novel superconductivity with linear scaling in coupling
strength is not supported in this channel.

(a)

kx

λk

λk
0,± λk

-,± λk
+,±

(b)

kx

λk

λk
0,± λk

-,± λk
+,±

FIG. 4. Schematic illustration of the BdG quasiparticle en-
ergy spectrum for (a) ωD > µ > 0 and (b) µ = 0 in the p-wave
triplet (1, 1, 0) pairing channel. The system is fully gapped
when the Fermi level is away from band crossing points µ 6= 0.
As µ goes across zero, the bands of λ−

k and λ+
k coincide and

then switch with each other. Notice that the system becomes
gapless when µ = 0. The absence of flat band pairing and
the vanishing of the density of states of the linearly dispers-
ing bands at µ = 0 implies the vanishing of the gap function
∆ = 0 at µ = 0.
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2. Gap Function and Critical Temperature

The gap equation is determined from the general form
for J = 0 irreducible pairing channels Eq. (66)

6

V1
=
∑
a=±

1

V
∑
k

a 3k2 tanh β
2

√
3k2|∆|2/2 + (ξak)2

4
√

3k2|∆|2/2 + (ξak)2
. (92)

Due to the lack of gap function ∆ in the BdG quasi-
particle energies λ0,±

k , there is no flat band term in the
gap equation. The absence of flat band contribution to
gap equation justifies our argument that the flat band
does not involve in the superconductivity in the p-wave
triplet pairing channel. Since only the linearly dispersing
bands contribute to the pairing state, the p-wave triplet
pairing channel supports the conventional p-wave BCS
superconductivity20,21. The gap function ∆ and the crit-
ical temperature Tc are characterized by exponentially
small scaling, which are similar to Eq. (82).

When the Fermi level is near the band crossing points
µ ≈ 0, the densities of states of both bands vanishes
as νa(µ) ∼ µ2. The critical temperature thus vanishes
as lnTc ∼ −1/µ2. Therefore, p-wave triplet pairing is
strongly disfavored when the Fermi level is close to the
band crossing points ±P .

C. d-wave Pairing

The other higher angular momentum irreducible pair-
ing channel we consider is the d-wave quintet pairing

channel (L, S, J) = (2, 2, 0). The vector ~M2 of the 3× 3
irreducible representations for S = 2 is

M22 =

√
3

2
S2

+ =
√

3

 0 0 1
0 0 0
0 0 0

 , (93)

M21 = −
√

3

2
{S+, Sz} =

√
3

2

 0 −1 0
0 0 1
0 0 0

 , (94)

M20 =
1√
2

[
3 (Sz)

2 − S2
]

=
1√
2

 1 0 0
0 −2 0
0 0 1

 , (95)

M2−1 =

√
3

2
{S−, Sz} =

√
3

2

 0 0 0
1 0 0
0 −1 0

 , (96)

M2−2 =

√
3

2
S2
− =

√
3

 0 0 0
0 0 0
1 0 0

 , (97)

and the orbital spherical harmonics for L = 2 are

√
4πY2±2(k̂) =

√
15

8
k̂2
±,

√
4πY2±1(k̂) = ∓

√
15

2
k̂±k̂z,

√
4πY20(k̂) =

√
5

4

(
3k̂2
z − 1

)
.

(98)

By adding the spin irreducible representations M2MS
’s

and the orbital spherical harmonics Y2ML
(k̂)’s, the irre-

ducible representation N 22
00 for total angular momentum

of Cooper pair is derived

N 22
00 =

√
4π

5

[
Y22(k̂)M2−2 − Y21(k̂)M2−1 + Y20(k̂)M20

− Y2−1(k̂)M21 + Y2−2(k̂)M22

]
(99)

=


1

2
√

2
(3k̂2

z − 1) 3
2 k̂−k̂z

3
2
√

2
k̂2
−

3
2 k̂+k̂z − 1√

2
(3k̂2

z − 1) − 3
2 k̂−k̂z

3
2
√

2
k̂2

+ − 3
2 k̂+k̂z

1
2
√

2
(3k̂2

z − 1)

 .

(100)

It can be verified that the pairing representation k2N 22
00 is

Hermitian and commutes with the noninteracting Hamil-
tonian H0(k) Eq. (39). The eigenvalues of k2N 22

00 are

ζ0
k = −

√
2k2, ζ±k =

k2

√
2
. (101)

1. Bogoliubov-de Gennes Quasiparticles

We obtain the BdG quasiparticle energies by inserting
ζak’s into the general form Eq. (63)

λ0,±
k = ±

√
2k4|∆|2 + (ξ0

k)
2
, (102)

λa,±k = ±
√

1

2
k4|∆|2 + (ξak)

2
, a = ±. (103)

An illustration for the energy spectrum is presented in
Fig. 5. The spectrum is fully gapped when the Fermi
level is away from the band crossing points µ 6= 0. When
the Fermi level lies exactly at the band crossing points
µ = 0, a nodal point which separates the positive and
negative bands emerges at k = 0.

2. Gap Function and Critical Temperature

With the eigenvalues ζa,±k ’s of the pairing represen-
tation k2N 22

00 , the gap equation in this channel can be
calculated from Eq. (66)

6

V2
=

1

V
∑
k

0 k4 tanh β
2

√
2k4|∆|2 + (ξ0

k)2√
2k4|∆|2 + (ξ0

k)2

+
∑
a=±

1

V
∑
k

a k4 tanh β
2

√
k4|∆|2/2 + (ξak)2

4
√
k4|∆|2/2 + (ξak)2

.

(104)
The flat band pairing contributes to the gap equation,
which implies that the superconductivity can receive en-
hancement from the extremely large density of states
ν0(0) at the level of band crossing points ±P . There-
fore, the novel superconductivity with linear scaling in
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coupling strength V2 can be supported in this channel.
The superconducting properties in various regimes with
different values of coupling strength V2, chemical poten-
tial µ, and temperature T resemble those in the s-wave
singlet channel (Sec. III A).

In the regime where Fermi level is close to the band
crossing points |µ| < ωD, the flat band pairing dominates
the superconducting behavior. A suitable gap equation
for this regime in the integral language Eq. (72) is

6

V2
=

1

2π2

∫ Λ

0

dkk2 k
4 tanh β

2

√
2k4|∆|2 + µ2√

2k4|∆|2 + µ2
. (105)

When the Fermi level lies exactly at the band crossing
points µ = 0, the zero temperature gap function ∆(0)
acquires exactly linear growth with increasing coupling

(a)

kx

λk

λk
0,± λk

-,± λk
+,±

(b)

kx

λk

λk
0,± λk

-,± λk
+,±

FIG. 5. Schematic illustration of the BdG quasiparticle spec-
trum for (a) ωD > µ > 0 and (b) µ = 0 in the d-wave quintet
(2, 2, 0) pairing channel. The spectrum is fully gapped when
µ 6= 0. As µ goes across zero, the bands of λ−

k and λ+
k coin-

cide and then switch with each other. A nodal point which
separates the positive and negative energy bands emerges at
k = 0 when µ = 0.

strength

|∆(0)| = Λ5

60
√

2π2
V2. (106)

Thermal fluctuation suppresses the superconductivity at
finite temperature T 6= 0. The critical temperature

Tc =
Λ7

168π2
V2 (107)

marks the temperature where the superconductivity is
fully eliminated, and grows linearly with increasing cou-
pling strength V2. The linear scalings Eq. (106) and
Eq. (107) suggest that the d-wave quintet pairing chan-
nel supports novel superconductivity which is stronger
and survives higher temperature than conventional BCS
superconductivity. This pairing is suppressed by both fi-
nite doping and temperature in a manner analogous to
the s-wave singlet pairing case discussed in Sec. III A.

IV. NONZERO BAND CURVATURE

So far, we have kept only the leading order of k · p
Hamiltonian in three band crossing materials. In this
setup, a perfect flat band exists about each band cross-
ing point ±P . In actual band structures, however, the
flat band may be perturbed by higher order corrections
in the Hamiltonian. For the completeness of our stud-
ies of superconductivity in three band crossing materi-
als, we examine the effect of such perturbations on the
superconducting behavior of J = 0 pairing states. For
simplicity, we assume that the perturbations continue to
respect spherical symmetry.

We add a quadratic term to the k ·p Hamiltonian at P
Eq. (1) as a perturbation. With the preservation of full
spherical symmetry about three band crossing point P ,
the quadratic perturbation term takes the form

δHP (k) =

√
2

2m
|k− k0|2N 22

00 . (108)

Since the irreducible representation N 22
00 is quadratic in

spin operators Si’s, it is even under TR transformation
Eq. (5)

T N 22
00 T −1 = N 22

00 . (109)

To preserve TR symmetry Eq. (6) of the whole system,
the Hamiltonians at ±P are given by

H±P (±k) = v [± (k− k0)] · S +

√
2

2m
|± (k− k0)|2N 22

00 .

(110)
Notice the same sign for the quadratic terms in H±(k).

With the addition of quadratic perturbation term, the
noninteracting Hamiltonian H0(k) Eq. (39) in the BdG
Hamiltonian Eq. (38) becomes

H0(k) = vk · S +
√

2
k2N 22

00

2m
− µ. (111)
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The eigenvalues are

ξ0
k = −k

2

m
− µ, ξ±k = ±vk +

k2

2m
− µ. (112)

Notice that the noninteracting Hamiltonian H0(k) still
commutes with the pairing representations in all three
J = 0 irreducible pairing channels, implying the applica-
bility of our setup in Sec. III.

We investigate the effect of finite band curvature on
the superconductivity in the regime |µ| < ωD, where the
Fermi level is close to the band crossing points. The
linearly dispersing bands do not change significantly in
this regime. Therefore, the p-wave triplet (1, 1, 0) pair-
ing state, which receives only contributions from linearly
dispersing bands, still exhibits similar superconducting
behavior to the nonperturbed theory. The s-wave sin-
glet (0, 0, 0) and d-wave quintet (2, 2, 0) pairing states,
however, are affected. Finite band curvature leads to
a significant change in the density of states of flat band
ν0(ε), and therefore brings about different superconduct-
ing behavior from the nonperturbed theory.

We first study the effect of perturbation on s-wave sin-
glet pairing state. With the observation of dominating
flat band contribution, the gap equation Eq. (71) reads

6

V0
=

1

V
∑
k

0 tanh β
2

√
|∆|2 + (−k2/m− µ)2

2
√
|∆|2 + (−k2/m− µ)2

. (113)

As in the nonpeturbed theory, we transform the mo-
mentum space summation into a momentum space inte-
gral within the nearly flat band spherical domain k < Λ
Eq. (72). The integral version of gap equation takes the
form

6

V0
=

1

2π2

∫ Λ

0

dkk2 tanh β
2

√
|∆|2 + (−k2/m− µ)2

2
√
|∆|2 + (−k2/m− µ)2

.

(114)
A significant difference from the nonperturbed theory
is the existence of a finite threshold coupling strength
V0 = V th

0 at T = 0 when the Fermi level lies at the band
crossing points µ = 0 [Fig. 6(a)]

V th
0 =

24π2

Λ

1

m
. (115)

The absence of superconductivity in weak coupling
regime results from the vanishing density of states
ν0(ε) = 0 induced by the finite band curvature. How-
ever, since the band curvature is perturbative (i.e. 1/m
is small), the interaction required for turning on super-
conductivity is small. As the coupling strength V0 in-
creases beyond the threshold value V0 = V th

0 , the zero
temperature gap function ∆(0) recovers the linear scal-
ing Eq. (76) in strong coupling regime. Notice the linear
dependence of threshold coupling strength V th

0 on band
curvature 1/m. The nonperturbed theory V th

0 = 0 is
recovered in the zero curvature limit 1/m → 0. These
results are illustrated in Fig. 6(a).

(a)

V0

|Δ(0)|

1/m = 0

1/m = 1/m

1/m = 2/m

1/m = 3/m

(b)

V0

|Δ|

T = 0

T = T


T = 2T


T = 3T


(c)

V0

|Δ(0)|

μ = μ

μ = 0

μ = -μ

μ = -2μ

FIG. 6. Numerically obtained gap function in the s-wave
singlet pairing channel with band curvature. Here m̃, µ̃, and
T̃ are positive constants. (a) At µ = 0 and T = 0, finite band
curvature 1/m shifts the threshold coupling strength V th

0 lin-
early. (b) Thermal fluctuations suppress the superconductiv-
ity. Here µ = 0 and m = m̃. (c) While positive µ suppress the
superconductivity, negative µ provides enhancement in weak
coupling regime. Here T = 0 and m = m̃.

We also investigate the effect of finite temperature T
and finite chemical potential µ on the superconductivity.
The suppression of superconductivity by thermal fluctu-
ations is similar to the nonperturbed theory [Fig. 6(b)].
Raising the Fermi level from band crossing points µ > 0
makes it farther from the middle band, which leads to
the suppression, as well [Fig. 6(c)]. However, a different
behavior arises when the Fermi level is lowered from the
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V0

Tc

μ = μ

μ = 0

μ = -μ

μ = -2μ

FIG. 7. Critical temperature as a function of coupling
strength in the s-wave singlet (0, 0, 0) pairing channel with
band curvature. We choose the band curvature 1/m = 1/m̃
for some positive constant m̃. Another positive constant µ̃
is chosen for plotting. It can be observed that the critical
temperature increases when the chemical potential goes down
from zero.

band crossing points µ < 0. The Fermi level crosses the
middle band and creates a finite Fermi surface. Due to
the finite density of states ν0(µ), the conventional super-
conductivity is supported in the weak coupling regime.
The zero temperature gap function ∆(0) starts to grow
once the interaction is turned on, and the exponentially
small scaling is observed. As µ goes down, the growing
density of states implies the strengthening of supercon-
ductivity, with the zero temperature gap function and
critical temperature (Fig. 7) increasing. The linear scal-
ing in coupling strength is recovered as the interaction
becomes stronger.

The behavior of d-wave quintet pairing state with finite
band curvature is similar to the s-wave singlet pairing
state. We note that with the gap equation

6

V2
=

1

2π2

∫ Λ

0

dkk2 k
4 tanh β

2

√
2k4|∆|2 + (−k2/m− µ)2√

2k4|∆|2 + (−k2/m− µ)2
,

(116)
the threshold coupling strength for zero temperature gap
function ∆(0) at µ = 0 can be determined

V2 =
60π2

Λ5

1

m
. (117)

The linear dependence of threshold coupling strength V th
2

on band curvature 1/m still holds in this channel.

V. DISCUSSION AND CONCLUSION

In this work, we have studied the pairing problem of
spin one fermions, which arises near three band crossing
points in certain topological band structures. We have
identified the minimal BCS Hamiltonian, decomposed it
into spin-orbit coupled irreducible pairing channels la-
belled by (L, S, J), and have obtained the gap equation
in each channel. We have solved these gap equations for

the three channels with zero total angular momentum
(L, S, J) = (0, 0, 0), (1, 1, 0), and (2, 2, 0) with the Fermi
level at the band crossing points. Discussions on the
effects of finite temperature and finite displacement of
Fermi level from band crossing points are also presented.
Interesting results show up when the Fermi level is close
enough to the band crossing points. Otherwise one may
simply project the weak coupling pairing problem onto a
single band and eliminate the novel features of the spin
one problem. We have found that in the s-wave spin
singlet and d-wave spin quintet pairing channels, pairing
is enormously enhanced. In particular, when the Fermi
level lies exactly at the band crossing points, the critical
temperature is linear in interaction strength. This enor-
mous enhancement arises because of a flat band with a
concomitant large density of states. When the Fermi level
is shifted slightly away from the band crossing points,
the linear characteristic can still show up with strong
enough interaction. Meanwhile, superconductivity ex-
hibits features of conventional BCS theory in the p-wave
spin triplet pairing channel, since this pairing channel is
not able to take advantage of the flat band. In addition
to the perfect flat band setup, the effect of finite band
curvature on superconducting behavior is also examined,
and the modifications of weak coupling theories in s-wave
and d-wave pairing states are discovered. These results
suggest that three band crossings may represent good
platforms for exotic superconductivity (e.g. spin quin-
tet) with enormously enhanced energy scales.

This work thus opens a new direction in the study of
superconductivity in topological band structures. Much,
however, remains to be explored. For example, the cur-
rent work focuses on single-component pairing channels.
In general, the three band crossing materials can also sup-
port multi-component pairing channels, where the total
angular momentum J ’s are nonzero and the gap functions
are multi-component vectors10,11. The studies of multi-
component pairing channels requires Landau-Ginzburg
analysis, and would be an interesting topic for future
work. One can also consider the superconductivity with
finite momentum pairing, which is known as the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state22,23. We did
not consider FFLO pairing in this work. Since the non-
interacting Hamiltonians at ±P are identical at leading
order in the k · p expansion, the zero momentum and
FFLO pairings will be degenerate at this order. The de-
generacy will be lifted when higher order terms in the k·p
expansion are retained, presumably in favor of the zero
momentum pairing states. However a careful investiga-
tion of the possibilities of FFLO pairing in such materials
would also be an interesting direction for future work.

Additionally, the analysis in this manuscript assumed
full spherical symmetry, such that the angular momenta
constituted good quantum numbers. While this symme-
try is indeed present in the low energy Hamiltonian, the
full problem will have only the lower symmetry of the
lattice space group. The decomposition of the pairing
problem into irreps of the lattice space group, and the
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solution of the resulting gap equations, will differ in de-
tails from the analysis presented herein, and is also left
as a problem for future work. Furthermore, the present
work has focused on mean field analysis in clean (disor-
der free) systems. Going beyond mean field, or including
the effects of disorder on superconductivity, would both
be interesting challenges in their own right, as would an
analysis of correlated states besides superconductivity.
These problems too are left to future work. Finally, the
large density of states of the flat band could also en-
hance alternative instabilities e.g. to density waves. The
investigation of the competition between superconductiv-
ity and other orders would also be an interesting problem
for future work.

The most important conclusion of this work, however,
is the following: three band crossings represent good plat-
forms for realizing superconductivity with enormously
enhanced energy scales. We eagerly anticipate experi-
mental searches for superconductivity in this setting.

VI. ACKNOWLEDGEMENTS

We acknowledge valuable conversations with Yang-Zhi
Chou. We also thank Yang-Zhi Chou, Jörn Venderbos,
and Yuxuan Wang for feedback on the manuscript. This
research was sponsored by the Army Research Office and
was accomplished under Grant Number W911NF-17-1-
0482. The views and conclusions contained in this doc-
ument are those of the authors and should not be in-
terpreted as representing the official policies, either ex-
pressed or implied, of the Army Research Office or the
U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government pur-
poses notwithstanding any copyright notation herein.

APPENDIX: SUPERCONDUCTIVITY FROM
PAIRING OF BAND CROSSING POINTS WITH

DIFFERENT SIGNS

We have conducted a comprehensive investigation of
the potential superconductivities in the TR symmetric
three band crossing materials, where the k · S Hamilto-
nians at band crossing points ±P take same sign. As
a complementary study, we briefly examine the super-
conductivity in the systems where the Hamiltonians at
the band crossing points have opposite signs H±P (±k) =
±(±k)·S. This type of Hamiltonian may describe, for ex-
ample, three band crossing materials with inversion sym-
metry.

For the J = 0 irreducible pairing channels, the
whole BdG Hamiltonian can be decomposed into the

BdG Hamiltonians H(L,L,0),a
BdG (k)’s of different |uak〉-

sections Eq. (61). The single band BdG Hamiltonian

H(L,L,0),a
BdG (k) is similar to that in the TR symmetric sys-

tems Eq. (62). Due to the changed sign in H−P (−k),

(a)

kx

λk

λk
0,± λk

-,± λk
+,±

(b)

kx

λk

λk
0,± λk

-,± λk
+,±

(c)

kx

λk

λk
0,± λk

-,± λk
+,±

FIG. 8. BdG quasiparticle energy spectrum at µ = 0 for
(a) s-wave (b) p-wave and (c) d-wave J = 0 pairing channels,
in the case when the noninteracting Hamiltonians at ±P take
opposite sign. Nodal shell exists in s-wave and d-wave pairing
channels with radius |∆|/v and

√
2v/|∆|, respectively. The

latter vanishes in weak coupling regime. In p-wave pairing
channel, superconductivity is absent and ∆ = 0. Each band
is two fold degenerate due to the overlap of bands about ±P .

the sign of noninteracting band energy εak in the (2, 2)-

element of H(L,L,0),a
BdG (k) is flipped

H(L,L,0),a
BdG (k) =

(
εak − µ −∆ζak
−∆̄ζak εak + µ

)
, a = 0,±. (118)
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The BdG quasiparticle energies λak’s become

λa,±k = εak ±
√
|∆|2(ζak)2 + µ2, a = 0,±, (119)

indicating that the Cooper pairing modifies the nonin-
teracting energies εak’s by a momentum dependent shift
(Fig. 8). The resulting BdG quasiparticle energy spec-
trums can contain some nontrivial nodal structures in
the bulk, which are different from the spectrums in TR
symmetric systems.

Substituting the BdG quasiparticle energies into the
gap equation Eq. (59) yields

6∆̄

VL
= −

∑
a=0,±

∆̄

V
∑
k

a

∑
b=±

b(ζak)2f(εak + b
√
|∆|2[ζak]2 + µ2)

2
√
|∆|2(ζak)2 + µ2

.

(120)

With the exact form of Fermi function f(z) Eq. (58), the
gap equation for nontrivial gap function ∆ 6= 0 is

6

VL
=
∑
a=0,±

1

V
∑
k

a (ζak)2

2
√
|∆|2(ζak)2 + µ2

×
sinhβ

√
|∆|2(ζak)2 + µ2

coshβεak + coshβ
√
|∆|2(ζak)2 + µ2

.

(121)
The potential superconductivity in each irreducible pair-
ing channel can be probed by examining the solutions of
this gap equation.

We focus on the regime |µ| < ωD, where the Fermi
level is close to the band crossing points and novel su-
perconductivities appear in the TR symmetric systems
(Sec. III). For the s-wave singlet (0, 0, 0) and d-wave quin-
tet (2, 2, 0) pairing channels, the flat band pairing domi-
nates the pairing state. Neglecting the contribution from
linearly dispersing bands, the gap equations are exactly
the same as Eq. (73) and Eq. (105) in the TR symmetric
systems. Therefore, the novel superconductivity with lin-
ear scaling in coupling strength shows up in this regime.

The superconducting behavior is the same as in the TR
symmetric systems, except for the difference in infinites-
imal corrections from linearly dispersing bands.

For the p-wave triplet (1, 1, 0) pairing channel, the gap
equation takes the form

6

V1
=
∑
a=±

1

V
∑
k

a 3k2

4
√

3k2|∆|2/2 + µ2

×
sinhβ

√
3k2|∆|2/2 + µ2

coshβvk + coshβ
√

3k2|∆|2/2 + µ2
.

(122)

The flat band does not involve in the Cooper pairing,
implying the absence of novel superconductivity which
appears in the other two J = 0 pairing channels. As an
examination, we inspect the behavior of pairing state at
µ = 0 in the weak coupling regime. In the zero temper-
ature limit β → ∞, the second fractional number in the
gap equation reduces to a step function

lim
β→∞

sinhβ
√

3k2|∆|2/2 + µ2

coshβvk + coshβ
√

3k2|∆|2/2 + µ2

= θ
([

3|∆|2/2− v2
]
k2 + µ2

)
.

(123)

Notice that the gap function ∆ should be infinitesimal in
the weak coupling regime. When µ = 0, the step function
always vanishes, and the gap equation does not support
nontrivial solution. Therefore, superconductivity does
not exist in weak coupling regime.

Note that in the inversion but not TR symmetric case,
when the noninteracting Hamiltonians at ±P have op-
posite sign, zero momentum pairing states are generally
gapless, containing ‘nodal shells.’ In contrast, FFLO
pairing states, involving only a single ‘valley’, will pre-
sumably be fully gapped (similar to the states discussed
in the main text). As such, FFLO pairing states may be
expected to maximize condensation energy better than
zero momentum pairing states. We therefore speculate
that inversion but not TR symmetric three band cross-
ings (if such can be realized) may be a good platform for
stabilizing FFLO pairing with enhanced energy scales. A
detailed discussion of this issue is left to future work.
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