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We analyze the coupling of two qubits via an epitaxial semiconducting junction. In particular,
we consider three configurations that include pairs of transmons or gatemons as well as gatemon-
like two qubits formed by an epitaxial four-terminal junction. These three configurations provide
an electrical control of the interaction between the qubits by applying voltage to a metallic gate
near the semiconductor junction and can be utilized to naturally realize a controlled–Z gate (CZ).
We calculate the fidelity and timing for such CZ gate. We demonstrate that in the absence of
decoherence, the CZ gate can be performed under 50 ns with gate error below 10−4.

I. INTRODUCTION

Over the last 10 years, superconducting circuits based
on Al/AlOx/Al tunnel Josephson Junctions (JJ) have
clearly became a leading platform for implementing a
solid-state based quantum computer1–6. Many factors
contribute to this leadership. Absence of normal carri-
ers helps to reduce decoherence; reproducibility of junc-
tion fabrication allows the pursuit of complex devices; the
availability of quantum optics type of control of qubits,
such as interactions of superconducting circuits with mi-
crowave cavities7–12, helps to achieve the highest degree
of control at times even surpassing the benchmarks of
conventional atomic systems. The most challenging task
is to develop architectures that still maintain the high de-
gree of control and a reasonable cost for scaling up. The
scaling to a larger number of qubits meets technologi-
cal challenges for current approaches with complicated
circuitry necessary for individual control of large qubit
systems.

A spectacular solution to scaling up these systems
was found in conventional classical computers where suc-
cessful simultaneous control of over a trillion transistors
comes from the marvels of semiconductors. The tran-
sistor is the key element of this technology as it can
switch on and off conductivity of a nanoscale region of
a semiconductor chip by applying local nanosecond-scale
voltage pulses. It is therefore tempting to explore an ap-
proach where highly-scalable gate-control of semiconduc-
tors can be incorporated into superconducting devices.
A nanowire-based gatemon is a transmon whose tunnel
Josephson junction is replaced with a hybrid super/semi–
conductor junction. This junction can be formed by InAs
nanowires in epitaxial contact with Al leads13–19. The
Josephson energy EJ of such junctions is tuned by a side
electric gate that controls the transmission of conduct-
ing channels in the semiconductor. The ability to tune
the Josephson energy introduces Z gates for single qubit
operations18, permits additional reconfigurability of mul-
tiqubit systems to address frequency crowding and brings
options for scaling quantum processors to a large number
of qubits, by analogy with the operation of conventional

transistors of classical processors.
A universal quantum processor requires a combina-

tion of one and two qubit gates. One approach for two
qubit gates was proposed for frequency tunable qubits
by Strauch et al.20. This approach was demonstrated for
transmon-like qubits3,21,22 and more recently for gate-
mons18. However, as the number of qubits increases,
their energy spectrum becomes very dense, making two-
qubit gates based on frequency tuning a hardly scalable
solution. A preferable approach would be to use tunable
couplers between qubit pairs.
In this paper, we propose a realization of a controlled–

Z gate achieved by an electrically tuned semiconductor
junction connecting two transmon qubits, see Fig. 1 for
an illustration. This approach is similar to the two qubit
gates in g-mon systems23,24, but in our case, the inductive
coupling is controlled by the transparency of a semicon-
ductor junction connecting two superconducting qubits.
We assume that the connector can be completely closed

by a proper negative voltage applied to a nearby gate.
When the gate voltage is removed, an Andreev bound
state (ABS) forms in the connector and its energy de-
pends on the difference in phases of superconducting
order parameters on the transmon superconducting is-
lands. When the coupling between transmons through
the junction is turned on, the additional Josephson en-
ergy associated with the ABS introduces an effective in-
teraction between two qubits and changes energy spec-
trum of the two qubit system. This change allows one to
perform a controlled–Z gate (CZ), similar to frequency-
tunable CZ gates20. The great advantage of this electro-
statically controlled gate is that the interaction between
the qubits can be turned off and thus completely decou-
ple the qubits. At the same time, the interaction can
reach strong magnitude during the two-qubit gate oper-
ation necessary for a realization of fast high-fidelity CZ
gates.
The paper is organized as follows. In the next section

we introduce three transmon-like systems that we ana-
lyze in this paper. Then, in Sections III, IV and V we
consider a conventional transmon with Josephson junc-
tion formed by a tunnel junction, a gatemon and an H-
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FIG. 1. A schematic picture of two qubits connected by
an epitaxial semiconductor junction (green bar). The three
configurations presented here are: (a) two transmons formed
by tunnel Josephson junctions, (b) two gatemons, where the
Josephson elements are formed by other epitaxial semiconduc-
tor junctions, (c) two gatemon-like qubits, where their Joseph-
son junction are combined into an H-shaped four-terminal
epitaxial junction. The voltage on the gate (vertical bar)
switches connection between two qubits on (left column) and
off (right column). (d) The connector transmission Tc as
a function of time. The transmission changes according to
Eqs. (13) during time τs for switching on and off and is main-
tained at constant value T0 during waiting time τw.

shaped hybrid junction forming two gatemon qubits and
the coupling between them, respectively. In Sec. VI we
present discussion and conclusions.

II. TRANSMON-LIKE QUBIT SYSTEMS

In this paper, we focus on the following three qubit
configurations:

Transmon [Fig. 1(a)] is current favorite among super-
conducting qubits due to its reduction in sensitivity to
charge noise relative to the Cooper pair box and increase
in the qubit-photon coupling3,4,25–27. We analyze the
CZ gate characteristics for two transmons coupled by
an electrically-controlled epitaxial semiconductor junc-
tion. This configuration will take advantage of coherence

FIG. 2. Error as a function of gate time for qubit systems
with waiting time τw = 0. The charging energies are EC1/h =
240 MHz and EC2/h = 255 MHz. The Josephson energy Ej =
20.55 GHz for transmons and gatemons, and Ej = 20.24 GHz
for qubits in H-pair. The corresponding qubit frequencies are
listed in Table. I. For gate time about 50 ns, all three qubit
configurations allow for gate errors at the order of or less than
10−4.

of conventional Al/AlOx/Al transmons and electrically
tunable interaction between them, see Sec. III.

Gatemon [Fig. 1(b)] is a form of transmon, where the
tunnel junction is replaced by a semiconductor Joseph-
son junction14–19. The configuration of two gatemons
coupled by a semiconductor junction has a benefit as
this system has all-semiconductor system without AlOx
tunnel junctions. However, always "on" semiconductor
Josephson junction of a gatemon may reduce coherence
of the individual qubits. We discussed this configuration
in Sec. IV.

H-pair [Fig. 1(c)] is a system of two gatemon-like
qubits with their Josephson junctions combined into a
single H-shaped four-terminal junction which is litho-
graphically patterned as epitaxial super/semi Josephson
junctions16. The H-pair may simplify the fabrication pro-
cess of coupled qubits. This junction also shows interest-
ing physical structure of the Andreev bound states and
was a focus of recent theoretical studies13,28–32. We de-
scribe properties of an H-pair in Sec. V.
The energy spectrum of the three lowest energy states

of a transmon is characterized by the transition frequency
ω10 between the ground and first excited states and the
anharmonicity β:

~ω(α)
10 = E

(α)
1 − E(α)

0 , (1)
~β(α) = E

(α)
2 − E(α)

1 − ~ω(α)
10 . (2)

In this paper, we take parameters so that the
qubit frequencies and anharmonicities are practical in
experiments19. The values of the qubit frequencies and
anharmonicities for all three qubit systems are listed in
Table I. In general, a transmon has larger anharmonici-
ties than a gatemon or H-pair. This explains the different
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relative positions of states |̃11〉 and |̃02〉 for transmon sys-
tem and the other two in this paper. For other choices of
charging energies, this difference may not manifest as the
obvious different energy configurations, but depending
on different ways of realizing qubit gates, the transmon
with larger anharmonicity may have a better fidelity as it
distinguishes transitions among its computational basis
from other transitions better than small anharmonicity
system. Below, we choose parameters of transmon and
gatemon qubits that are consistent with experimentally
realizable devices.

The interaction between qubits is turned on when the
connecting junction acquires non-zero transmission Tc
and an Andreev bound state (ABS) develops in the junc-
tion with energy 33

δEABS = ∆
(

1−

√
1− Tc sin2

(
θ1 − θ2

2

))
, (3)

where θ1,2 are superconducting phases of the transmons
and ∆ is the superconducting energy gap. By changing
Tc in time using the gate voltage, we realize energy shifts
in the system of two interacting qubits and with proper
timing we realize the conditional Z gate, see Fig. 1(d).

The lowest order term that entangles the two qubits is

δE
(1,1)
ABS = ∆Tc

4 θ1θ2 ∝ Tc
√
ω

(1)
10 ω

(2)
10 , (4)

where the superscript (1, 1) denotes the order of θ1 and
θ2. The proportionality factor is determined by the trans-
mission coefficients of the qubit Josephson junctions. For
a conventional transmon system, The proportionality fac-
tor is at the order of one. Assuming the coupled two
qubits have similar qubit frequencies which are around
5 GHz, the expression (4) means a coupling energy of
' 10MHz for Tc at the order of 0.01 can be achieved.
Therefore, it is sufficient to keep Tc � 1 during the CZ
gate operations to have a CZ gate within 50 ns.
Since the semiconductor junction is turned off dur-

ing single qubit operations, we do not expect that these
junctions will degrade significantly coherent properties
of the qubit system, and should not exceed decoherence
of gatemon qubits over the short time interval when the
junction between qubits is on19. The decoherence and
relaxation times for the state-of-the-art gatemons are
' 10 µs, as reported in reference 19. Assuming a CZ
gate is realized in 50 ns, with similar structure but a
much smaller transmission, the gate-controlled semicon-
ductor junction may introduce infidelity that is much less
than 1−exp (−50/10000) ' 0.005, depending on the spe-
cific engineering of the tunable coupler and the system
to which this tunable coupler is applied. In this paper,
systems are assumed to be decoherence-free and we in-
vestigate the intrinsic errors in a CZ gate operation. In
practice, if the decoherence dominates the error genera-
tion of a qubit system, a shorter gate time is required.

In Fig. 2, with the decoherence-free assumption, we
show that all three qubit systems demonstrate small er-
ror (≤ 10−4) for gate time about 50 ns. The H-pair has

Transmon, GHz Gatemon, GHz H-pair, GHz
ω

(1)
10 /h 6.02 6.22 6.17
ω

(2)
10 /h 6.20 6.41 6.36

β(1)/2π -0.294 -0.063 -0.066
β(2)/2π -0.315 -0.067 -0.070

TABLE I. Eigenenergies for non–interacting (Tc = 0) two
transmons, two gatemons and H-pair qubit systems. The
Josephson energy EJ/h = 20.55 GHz for both transmon and
gatemon qubits and EJ/h = 20.24 GHz for H-junction qubits,
the charging energy for qubit one EC1/h = 240 MHz and
qubit two EC2/h = 255 MHz. All the eigenenergies are writ-
ten in reference to the ground state energy.

longer gate time in our choice of parameter set. How-
ever, when the coupling between beam splitter and con-
necting junction is small, it allows a wide range of con-
nector transmission for tuning the system. And when
equipped with gatemon, it inherits the freedom of tuning
qubit frequencies. Therefore, even with slightly longer
gate time and potential operation error compared to tra-
ditional transmon, it allows for easy control of the energy
scales and interactions, thus both single qubit gates and
two-qubit entangling gates can be easily realized with
little error coming from either cross-talk or frequency
crowding.

III. TWO COUPLED TRANSMONS

A. Model of coupled transmons

We consider two transmon qubits coupled by a semi-
conductor junction. When the junction is open, the
transmons are decoupled. Each transmon is character-
ized by the charging, EC,α, and Josephson, EJ,α, ener-
gies, where α = 1, 2. To suppress effects of charge noise
on qubit, transmon capacitances Cα are chosen large and
the charging energy ECα = e2/2Cα are much smaller
than the Josephson energy, ECα � EJα. The Hamilto-
nian of a transmon contains both charging and Josephson
energies25 and can be written in the form

H(0)
α = 4EC,αn̂2

α + EJ,α

(
θ̂2
α

2 −
θ̂4
α

24

)
. (5)

Here, the electron number operator, n̂α, and the super-
conducting order parameter phase operator, θ̂α, do not
commute, [n̂α, θ̂α] = i. The qubit transition frequency
and anharmonicity, see Eqs. , are approximately given
by the following expressions in terms of the Josephson
and charging energies25:

~ω(α)
10 ≈

√
8EJ,αEC,α − EC,α, β(α) ≈ EC,α/~. (6)

While the condition EJ,α � EC,α is necessary to reduce
transmon sensitivity to charge noise, this same condition
results in weak anharmonicity of transmons and imposes
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FIG. 3. (Color online) Energy shifts on eigenenergies, δEm =
Ẽm − Em, of the two-transmon system as a function of
transmission Tc. Only three out of four states in computa-
tional subspace are depicted. For both qubits, the Joseph-
son energy EJ/h = 20.55 GHz, and the charging energies
EC1/h = 240 MHz and EC2/h = 255 MHz.

certain constraints on time dependence of control pulses,
including the CZ gate.

In the discussion below, we assume that the Joseph-
son energies of both transmons are equal, EJ,α = EJ ,
but the charging energies EC,α are different to provide
distinguishable frequencies ω(α)

10 by about 3%, which re-
quires EC1/EC2 ' 0.94. In particular, we take

EJ
h

= 20.55 GHz, EC,1
h

= 240 MHz, EC,2
h

= 255 MHz.
(7)

The qubit energies and anharmonicities for this choice of
qubit parameters are presented in Table I. The energy
spectrum of two non-interacting qubits is such that com-
putational state |11〉 is above both non-computational
states |20〉 and |02〉. This order of energy states hap-
pens when the frequency separation between two qubits
is smaller than the qubit anharmonicities. A counter
example is considered in Sec. III for the case of two gate-
mons, where the anharmonicity is reduced and the com-
putational state |11〉 is between states |20〉 and |02〉.

Assuming that the phase fluctuations of both trans-
mons are small, θ1,2 � 1, we expand Eq. (3) to quartic
terms in the qubit phases:

Vint '
Tc∆

8

(
(θ̂1 − θ̂2)2 − 1

12(θ̂1 − θ̂2)4
)
. (8)

Here we consider small transmission coefficient Tc � 1
of the connecting junction, sufficient for high-fidelity CZ
gate. This interaction modifies the instantaneous eigen-
states |̃m〉 and energies Ẽm of the full system Hamilto-
nian

H = H1 +H2 + Vint. (9)

As the transmission coefficient Tc increases, the distance
between neighboring energy states increases as a conse-
quence of energy level repulsion.
Below, we identify states |̃m〉 by their adiabatic evolu-

tion as a function of Tc from the non-interacting case,
Tc = 0, i.e. index m is composed of two integers
m → (n1, n2), representing nαth excited state of non-
interacting transmon α = 1, 2. We evaluate the relative
energy shifts δẼm = Ẽm − E(1)

n1 − E
(2)
n2 of computational

subspace eigenstates, m = {00; 01; 10; 11} as a function
of transmission coefficient Tc, represented in Fig. 3.
The evolution operator in the computational subspace

in the eigenstate basis |̃m〉 has the form
W (t) = diag{e−iφ00 ; e−iφ01 ; e−iφ10 ; e−iφ11}, (10a)
φm(t) = Ẽmt/~. (10b)

The interaction provides a non-zero value for the CZ gate
rate20,34,35

∆CZ = (Ẽ11 + Ẽ00 − Ẽ01 − Ẽ10)/h, (11)
so that after time t = 1/(2 |∆CZ|), the evolution operator
is equivalent to the ideal CZ gate UCZ = diag{1; 1; 1;−1}
with the phase shifts φ10− φ00 and φ01− φ00 to be com-
pensated by single qubit Z gates Uz1 and Uz2. The de-
pendence of ∆CZ on Tc is shown in Fig. 3 by a solid thick
line. We demonstrate below that the energy shift ∆CZ
is sufficient for performing gate operation over time of
(2 |∆CZ|)−1 . 50ns.
With tunable coupler between two qubits, CZ gate can

be realized by simply switching interaction on over time
τs, waiting time τw ≈ 1/(2 |∆CZ|) and switching interac-
tion off over time τs. The total gate time is

τg = 2τs + τw. (12)
First, we analyze the phase accumulation and transition
probabilities during switching processes. In particular,
we demonstrate that the relatively small separation of
the computational state |̃11〉 from the leakage states |̃20〉
and |̃02〉 results in non-negligible leakage of the system
state from the computational subspace due to transitions
during switching on and off. Then, we describe the over-
all gate performance that combines the evolution of the
system during switching on and off processes and waiting
for τw at fixed Tc.

B. Switching interaction on/off

We now consider the process of switching on and off in-
teraction between the transmon qubits which is realized
by electrically changing the transparency of the connec-
tor by tuning the voltage on the gate. Specifically, we
assume that the connector transmission Tc(t) during the
switching on and off processes is

T (on)
c (t) = T0

erf(4t/τs − 2) + 1
2 , (13a)

T (off)
c (t) = T (on)

c (τs − t). (13b)
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During the switching on and off of the interaction be-
tween qubits, care is needed to avoid transitions from
|11〉 state to double excited states |20〉 and |02〉, as well
as transitions between states |01〉 and |10〉. We take τs
to be longer than the inverse anharmonicities 1/β(1,2) or
qubits detuning, 1/|ω(1)

10 − ω
(2)
10 | to suppress these transi-

tions.
The evolution operator of the two-qubit system dur-

ing the switching of interaction is a solution to the
Schrodinger equation

i~∂tU(t) = H(t)U(t), (14a)
H(t) =

∑
α=1,2

H(0)
α + Vint(t), (14b)

where the interaction Vint(t), see Eq. (8), changes in time
in response to the changing connector transmission Tc(t).
The evolution operators Uon/off(τs) at the end of switch-
ing on and off processes are used below to compose the
evolution operator for the whole gate and to evaluate the
gate fidelity.

In particular, the operators Uon(τs) define the phase
shifts ϕ(on)

m of instantaneous eigenstates |̃m〉 of the full
Hamiltonian H(t) that are utilized later to work out
timing for the full CZ gate. We numerically evaluate
Uon/off(τs) by solving Eq. (14a) in a 10 × 10 Hilbert
space in the basis of a harmonic oscillator wave func-
tions and make sure that the low energy states are eval-
uated accurately for the actual Hamiltonian H(t) of the
system, Eq. (14b). Then, we analyze the 4 × 4 matrix
[U (Q2)

on ]mm′ = 〈̃m|Uon(τs) |m′〉 in the computational sub-
spaceQ2 of two qubits. Matrix [U (Q2)

on ]mn defines the evo-
lution of a state from the non-interacting computational
subspace, Tc = 0, to a final state, projected to the dressed
computational subspace at Tc = T0, where m,n =
{00, 01, 10, 11}. The diagonal elements of this matrix de-
termine the phase factor accumulated by state |̃m〉 dur-
ing the switching process, ϕ(on)

m = −arg{[U (Q2)
on ]mm}. We

obtain the relative phase difference relevant for the CZ
gate

δΦ(on)
CZ = ϕ

(on)
11 + ϕ

(on)
00 − (ϕ(on)

10 + ϕ
(on)
01 ), (15)

which we utilize δΦ(on)
CZ in the next subsection to evaluate

the full gate time.
In the rest of this subsection, we evaluate the prob-

abilities of transitions between pairs of instantaneous
eigenstates since these transitions reduce the gate fidelity.
We compute [U (Q2)

on ]mn and determine the probability of
transition Pm,n = |〈̃m|U(τs) |n〉 |2 for a system of two
transmons from state |n〉 to state |̃m〉. The result of
this calculation is shown in Fig. 4 by dashed and dotted
lines for the transitions from state |̃11〉 to its neighboring
states |̃02〉 and |̃20〉. The probability of transitions be-
tween pairs of energy states decreases fast as the energy
difference increases. For the energy spectrum of the two

FIG. 4. Leakage probability from state |11〉 to |02〉 and |20〉
during the switching on of transmission Tc of a junction con-
necting two transmons as a function of switching time τs for
the final transmission T0 = 0.015. The solid line is obtained
by integrating Eq. (21), i.e., for a two-level system. The
dashed and dotted lines are obtained by numerical integra-
tion of Eq. (14a) and evaluating Pm,11 for a full two-transmon
system. This leakage implies the worst case of gate perfor-
mance since the transition from |11〉 to |02〉 is the dominant
undesired transition.

transmons analyzed here, the dominant leakage happens
from |̃11〉 to |̃02〉. The transition probabilities also de-
crease fast as the switching time τs increases and drop
below 10−3 for τs & 20ns.
To better understand the transition probabilities be-

tween the states during the switching on and off pro-
cesses, we perform the perturbation theory analysis
following Ref. 35. In our case the bare level spac-
ing is fixed and the interaction strength changes in
time, while in Ref. 35 the interaction was fixed and
individual qubit spectrum was changing. Denoting
a dressed state of interest by |̃m(t)〉, we can write
|̃m(t)〉 =

∑
n Cn(t) exp(iϑn(t))|̃n(t)〉, where ϑn(t) =

−
∫ t

0 Ẽn(t′) dt′/~ and Ẽn(t) is an eigenenergy of instanta-
neous eigenstate |̃n(t)〉 at time t. The coefficients Cn(t)
are obtained as solutions to the Schrödinger equation

Ċm(t) =− Cm(0)〈̃m(t)|
[
∂

∂t
|̃m(t)〉

]
−
∑
n

Cn(t)ei(ϑn−ϑm) 〈̃m(t)|Ḣ(t)|̃n(t)〉
Ẽn(t)− Ẽm(t)

,

(16)

where H(t) is the time-dependent Hamiltonian (14b) of
the system.
Here we only provide perturbative analysis for the leak-

age from |11〉 and |̃02〉, as these two states have the closest
energy separation. Other pairs of neighboring states can
be evaluated using the expressions obtained below with
corresponding values for the instantaneous energy states
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and matrix elements of the interaction. The resulting
transition probability from the initial state can be taken
as the sum of probabilities of transitions to nearby states,
provided that all these probabilities are small. We reduce
our problem to the analysis of a two-level system formed
by states |11〉 and |02〉:

H2L(t) =
(
E11(t) J(t)
J(t) E02(t)

)
. (17)

The time derivative of H2L is given by that of transmis-
sion Tc, which in general results in the time-dependence
of the energies E11/02(t) and the interaction J(t).
Starting from initial state |11〉, we take C11(t = 0) = 1

and assume that the C11(t) ≈ 1 throughout the switching
process. The equation for C02(t) takes the form

Ċ02(t) = −eiχ(t)M(t). (18)

Here

χ(t) =
∫ t

0

√
(E11(t′)− E02(t′))2 + 4J2(t′) dt′ (19)

and the matrix element of the time-derivative of the
Hamiltonian can be cast in the form

M(t) = 〈̃02(t)|Ḣ(t) ˜|11(t)〉
Ẽ11(t)− Ẽ02(t)

= J̇(t)(E11(t)− E02(t))− (Ė11(t)− Ė02(t))J(t)
(E11(t)− E02(t))2 + 4J2(t) .

(20)

The transition probability P02(t) after time t is deter-
mined by the integration of Eq. (18) over time with the
initial condition C02(t = 0) = 0:

C02(t) =
∫ t

0
Ċ02(t′)dt′, P02(t) = |C02(t)|2. (21)

The perturbative analysis of the transition probability
from |11〉 to |̃02〉 is then accomplished by a numerical in-
tegration of Eq. (18). The result is shown in Fig. 4. Solid
line in Fig. 4 represents P02(τs) at the end of the switch-
ing on the connector transmission to T0 = 0.015 during
time τs. Estimate (21) captures the main features of the
full numerical solution, to improve quantitative agree-
ment between the curves, we would have to expand the
above analysis to include multiple energy states into ac-
count. The structure of Eq. (21) reveals that the sup-
pression of P02(τs) as a function of switching time is due
to the fast oscillating factor exp(iχ(t)) in Eq. (18) for
Ċ02(t), whileM(t) is a smooth function of time.

C. Controlled–Z gate

Now we analyze the dynamics of quantum states when
the connector transmission is fixed, Tc = T0, during time
τw. The phase difference combination for the CZ gate is

given by 2π∆CZτw and the waiting time τw is found from
the condition

2δΦon
CZ

2π + ∆CZτw = 1
2 , (22)

where the phase difference δΦon
CZ was introduced in

Sec. III B. To evaluate fidelity of the full gate, we numer-
ically calculate the evolution operator U for the process
that is described by switching on transmission of the con-
nector in the form of Eq. (13), maintaining Tc(t) = T0 for
waiting time τw and switching off Tc as a time-reversed
process as illustrated in Fig. 1(d).
For numerical evaluations, the corresponding evolution

operator U = UoffUw(τw)Uon is defined as the product of
evolution operators Uoff and Uon, discussed in Sec. III B
and the evolution operator Uw(τw) = exp(−iHwτw/~),
where Hw is the Hamiltonian in Eq. (9) with Tc = T0.
Then, the fidelity is calculated by comparing matrix
[Ŵ ]nm = 〈n|U |m〉 in computational 2 × 2 subspace,
n,m = {00, 01, 10, 11}, to the ideal CZ gate, UCZ, us-
ing the following expression for the fidelity36:

F = 1
20

[
Tr
{
ŴŴ †

}
+
∣∣∣Tr
{
Ûz1Ûz2Ŵ ÛCZ

}∣∣∣2] , (23)

where Ûz1 and Ûz2 are single
qubit gates such that Ûz1Ûz2 =
diag{1, ei(φ01−φ00), ei(φ10−φ00), ei(φ10+φ01−2φ00)}, and
φm are the phases of the diagonal elements of matrix Ŵ .
The gate errors of this voltage-controlled CZ gate, de-

fined as 1 − F , are calculated as a function of T0, as
shown in Fig. 5(a). The error increases as T0 becomes
larger because for fixed switching time τs = 15 ns, larger
T0 means the energy levels are shifted faster, which re-
sults in greater transition error, see Fig. 4. The benefit
of larger transmission T0 is the shorter gate time because
it requires less time for Eq. (22) to be achieved, as shown
in Fig. 5(b). The trade-off between the gate fidelity and
time determines the optimal value for T0. The kink of the
red solid line, located at T0 ' 0.013, happens because the
relative phase accumulated during the switching on and
off processes equals −π, i.e., τw = 0. Further increasing
T0 means the relative phase during the switching pro-
cesses exceeds −π. To satisfy the phase condition (22), a
finite-time interacting plateau is needed to complete an-
other 2π rotation. The blue dashed lines represent the
gate error and time of pulses whose interacting plateau
is absent, τw = 0, and the gate time τgate = 2τs. The
time-averaged Tc(t) is smaller for τw = 0 pulses, there-
fore longer gate times are required. At the same time,
longer switching times allow for smaller gate errors. We
observe that for small T0 (≤ 0.01), the error can be re-
duced below 10−6 while the gate time is shorter than
100 ns.
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FIG. 5. (a) (Color online) Error for the CZ gate and (b)
corresponding gate time as functions of "on"-transmission T0
for two-transmon system. The solid red lines are calculated
assuming a pulse shape with an interacting plateau, so the
gate time is τw + 2τs. Here, we take τs = 15 ns. The dashed
blue lines assumes the transmission is turned off right after it
arrives its maximum value T0, thus τw = 0, and the gate time
is 2τs, which is determined by the phase condition Eq. (22).

IV. TWO COUPLED GATEMONS

Replacing the insulating tunnel barrier between su-
perconducting electrodes by semiconductor allows one to
easily tune the Josephson Energy by using a electrostatic
gate.14 This type of transmon is thus named as gatemon
for its gate tunable feature. With higher transparency
between the tunnel barrier and the superconducting elec-
trodes, expanding the ABS energy to the first order of
Tα no longer well approximates the ABS energy, where
α = 1, 2 denotes the qubit index. Here, we consider single
channel tunnel barriers with transmission Tα of gatemon
α = 1, 2. Then the Josephson energy of a qubit to the
quartic order in θα is

HJα = −∆

√√√√1− Tα sin2

(
θ̂α
2

)

' −∆
(

1− Tα
8 θ̂2

α + Tα
96

(
1− 3Tα

4

)
θ̂4
α

)
.

(24)

The anharmonicity of gatemon is suppressed19 by (1 −
3Tα/4) in Eq. (24), which can usually be ignored in
transmon systems with tunnel junctions containing many
weakly transparent channels, Tα � 1. We choose the pa-
rameters of the gatemon and transmon system to be iden-
tical and they are to be given by Eq. (7). The Josephson
energy EJ of a gatemons’ single channel junctions cor-

FIG. 6. (Color online) Energy shifts on eigenenergies, δEm =
Ẽm −Em, of the two-gatemon system as a function of trans-
mission Tc. Only three out of four states in computa-
tional subspace are depicted. The shift δE00, omitted for
a clearer view, can be calculated using the relative shifts
∆CZ = (Ẽ11 + Ẽ00 − (Ẽ10 + Ẽ01))/h, shown as thick black
solid line. The parameters are the same as the transmon sys-
tem, as listed in Eq. (7).

responds to Tα=1,2 = 1. The energy spectrum, includ-
ing their anharmonicities are different for transmons and
gatemons, see Table I, due to the difference in coefficients
of θ̂4

α terms in Eqs. (5) and (24).
The connecting junction between two qubits, once ac-

quires non-zero transmission, Tc 6= 0, introduces an inter-
action between two qubits the same way as in transmon
systems (see Sec. III A). With reduced anharmonicity, the
state |̃02〉 has higher energy than its counterpart in trans-
mon qubits. State |̃11〉 is therefore sandwiched between
|̃02〉 and |̃20〉 in this case. We also make a plot of the rela-
tive energy shift ∆CZ as a function of Tc for the gatemon,
shown in Fig. 6. As discussed in Sec. III C, the non-zero
∆CZ enables the realization of CZ gate by switching on
and off Tc, which inevitably introduces transition error.
The most probable transition, the same as in transmon
qubits, still happens between states |̃11〉 and |̃02〉 since
this transition has smaller energy gap and larger interac-
tion than other transitions involving computational basis.

To see how much the transition between states with
smallest energy separation can reduce the gate fidelity
during switching processes, we start from state |̃11〉 and
calculate the transition probability during switching-on
process by (i) numerically calculating the evolution oper-
ator and (ii) approximating the system by a 2-level model
and using Eq. (21). The 2-level approximation has been
discussed in Sec. III B.
As shown in Fig. 7, the transition probability from

state |11〉 to state |̃02〉 drops fast as the switching time
increases. Specifically, the transition probability to state
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FIG. 7. Leakage from state |11〉 to state |02〉 and |20〉 during
the switching on of transmission Tc of a junction connecting
two gatemon qubits as a function of switching time τs for
T0 = 0.015.

FIG. 8. (a) (Color online) Error for the CZ gate on gatemon
qubits and (b) corresponding gate time as functions of "on"-
transmission T0. The solid red lines are calculated assuming
a pulse shape with an interacting plateau, so the gate time is
τw + 2τs. Here, τs = 15 ns. The dashed blue lines assumes
τw = 0.

|̃02〉 can be smaller than 10−3 when the switching time
is larger than 20 ns.
The relatively smaller shift of ∆CZ in Fig. 6 indicates

longer CZ gate time for gatemon than transmon qubits
for the same Tc. And the decrease in anharmonicity re-
sults in potentially smaller fidelity for other qubit op-
erations not discussed in this paper, since it makes the
qubit transition frequencies among computational basis
less distinguished from other undesired transitions in-

volving levels out of the computational basis. Fig. 8
shows both the gate error and gate time as functions
of transmission T0 for gatemon qubits. The solid lines
are the gate error and gate time when finite-τw pulses
are applied while the dashed lines correspond to τw = 0
pulses.
Figure 8(a) does not show an obvious suppression in

fidelity compared to the transmon qubits due to the
reduced anharmonicity since the error in this CZ gate
mainly comes from the transition error between states
|̃11〉 and |̃02〉 during switching processes and no coher-
ent drive is applied. The oscillations are a result of in-
terference between states |̃11〉 and |̃02〉 during the gate.
Fig. 8(b) shows that the gate time can be well below 50 ns
when T0 > 0.01.

V. TWO QUBITS FORMED BY A 4-TERMINAL
JUNCTION

A. Josephson energy

We formulate a model for a system of two gatemon
qubits connected through lithographically formed mul-
titerminal junctions, such as an H–junction shown in
Fig. 9. We assume that the junction is short, its scat-
tering matrix Ŝ is energy independent and each termi-
nal has only one conduction channel. Two terminals are
connected to the superconducting ground lead, while the
other two terminals are connected to the gatemon capac-
itor plates, see Fig. 9.

θ

BS BS

1

1

θ2

2

θ=0

W

FIG. 9. H-junction consists of two semiconductor beam split-
ters, BS1,2, connected by a short wire (W). The other two
terminals of each beam splitter are attached to the ground
superconducting strip and to the superconducting plates of
the transmon–like qubit, with superconducting phase θ1,2.

A set of localized sub-gap Andreev bound states are
formed in the junction. These states are spin-degenerate
which is guaranteed by Kramer’s theorem. The energies
of Andreev bound states are determined by the eigen-
value equation 33

det
[
1− e−2iχŜeiθ̂Ŝ∗e−iθ̂

]
= 0, (25)
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where the phase factor χ = arccos(ε/∆) captures An-
dreev electron-hole reflection at the superconductor-
normal interface, ∆ is the superconducting gap in the
leads, ε is the energy of the Andreev bound state, and
eiθ̂ is a diagonal matrix that assigns the superconducting
phase θi to each channel, θ̂ = diag{θ1, θ2, θ3, θ4}. Ŝ is the
scattering matrix of size 4×4 for the H-junction, which is
a combination of two three terminal junctions with two
terminals connected by a short wire with transmission
Tc; see the supplementary information. Since the phases
of channels coupled to the ground superconducting lead
can be fixed to zero, the Josephson energy is defined by
Eq. (25) in terms of only two phase variables θ1,2.

The Andreev energy states of the H-junction are31

ε(θ) = ±

√
A(θ) + 4±

√
A2(θ)− 4B(θ) + 8

8 , (26)

where θ ≡ (θ1, θ2) and the A- and B-functions take the
form

A(θ) =A0 +
2∑

α=1
Aα cos θα +A12 cos(θ1 − θ2), (27a)

B(θ) =B0 +
2∑

α=1
Bα cos θα +B−12 cos(θ1 − θ2)

+B+
12 cos(θ1 + θ2). (27b)

In terms of the matrix elements of Ŝ the coefficients in
Eqs. (27a) and (27b) read

A0 = 2|S14|2 +
4∑

β=1
|Sββ |2, A12 = 2|S23|2,

Aα = 2
(
|S1,α+1|2 + |Sα+1,4|2

)
, (28)

and

B0 = 2
(
|S12S24 − S14S22|2 + |S13S34 − S14S33|2

)
+
∑
α<β

∣∣SααSββ − S2
αβ

∣∣2 ,
B1 = |S13S23 − S12S33|2 + |S14S24 − S12S44|2

+ |S12S14 − S11S24|2 + |S24S33 − S23S34|2,
B2 = |S12S23 − S13S22|2 + |S14S34 − S13S44|2

+ |S13S14 − S11S34|2 + |S23S24 − S22S34|2,
B−12 = |S12S13 − S11S23|2 + |S24S34 − S23S44|2

+ |S14S23 − S12S34|2 + |S14S23 − S13S24|2,
B+

12 = |S13S24 − S12S34|2.

(29)

The Josephson energy of an H-junction has a series ex-
pansion to the fourth order in the superconducting phases
θ1,2:

HJJ(θ1, θ2) = ∆
4∑

i,j=0
Kijθ

i
1θ
j
2, (30)

where coefficients Kij are obtained from the expansion of
Eq. (26) to the forth order in θ1,2, and we take Kij = 0
for i+ j > 4 to avoid higher order terms. For Tc = 0, the
two qubits do not interact and

HJJ(θ1, θ2) = ∆
(
K

(0)
20 θ

2
1 +K

(0)
40 θ

4
1 +K

(0)
02 θ

2
2 +K

(0)
04 θ

4
2

)
.

(31)
The full Hamiltonian of the system is similar to the
Hamiltonian of a transmon Hamiltonian, Eq. (5) with
EJ,1 = 2∆K(0)

20 , EJ,2 = 2∆K(0)
02 and a modified anhar-

monicity. When the wire acquires finite transmission,
Tc 6= 0, the interaction between the qubits develops with
the interaction term given by

Vint = ∆
4∑

i,j=0
δKijθ

i
1θ
j
2, δKij = Kij −K(0)

ij . (32)

The scattering matrix for the H-junction, Fig. 9, can be
constructed in terms of the scattering matrices for each
beam splitter and the connecting wire, see the Appendix.
We use Eqs. (26)-(29) to characterize the qubit system,
called H-pair, and evaluate the CZ gate fidelity for a par-
ticular choice of parameters for the beam splitters. We
demonstrate that this system is sufficient for control of
energy splitting of individual qubits and fast switching
the interaction between qubits.

B. Controlled–Z gate

For the H-pair, state |̃11〉 is close to leakage states |̃20〉
and |̃02〉. To reduce the excitations to non-computational
states, we keep the interaction strength below the anhar-
monicity level, ∼ EC , and imply that the transmission of
the connector is small, Tc .

√
Ec/∆� 1. Here we allow

for the wire transmission to have larger values Tc ' 1,
but we choose such parameters of the Y-junction that
the resulting conductance of the H-junction between the
qubits is small. The Josephson energy, Eq. (30), acquires
terms with small Kij 6= 0 for both i, j 6= 0, resulting in
interaction between the qubits. In particular, the coeffi-
cient K11 is the dominant term describing the coupling
between the qubits.
The anharmonicity of the H-pair is reduced by a nu-

merical factor as compared to conventional AlOx ox-
ide tunnel Josephson junction19, as we also discussed in
Sec. IV, but this reduction is not significant and still
permits high-fidelity gates for two qubits coupled by the
nanowire. We still choose the charging energies of each
gatemon to be Ec1 = 255 MHz and Ec2 = 240 MHz,
as shown in Eq. (7). Below we choose parameters for
beam splitters so that K20,02 ' 0.1. For the specific case
K20,02 = 0.123, the qubit transition frequencies and an-
harmonicities are listed in Table I. For non-ideal trans-
mission of conduction channels, the qubit frequency is
smaller, but additional conduction channels in the junc-
tion can help adjust this frequency to a desirable value.
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FIG. 10. Energy shifts on eigenenergies, δEm = Ẽm−Em, of
the H-pair system. The charging energies Ec1/h = 240 MHz
and EC2/h = 255 MHz for qubit one and qubit two respec-
tively, the same as the values given in Eq. (7). K02,20 = 0.123,
corresponding to Josephson energy EJ/h = 20.24 GHz.

Due to relatively large connectivity of the individual
qubit junction, the absolute value of anharmonicities are
suppressed so that the state |̃11〉 is sandwiched between
states |̃02〉 and |̃20〉. As expected from previously dis-
cussed two qubit systems, the non-zero transmission gives
rise to finite ∆CZ, shown by a thick solid line in Fig. 10,
enabling the construction of CZ gate by switching Tc.
In absence of decoherence, the gate error comes from

the transitions to levels outside the computational basis
during switching on/off interactions. Taking T0 = 0.6 for
the connecting wire, we investigate how transition proba-
bility decreases as switching time τs increases. As shown
in Fig. 11, the transition error can be readily reduced to
10−3 for switching time longer than 20 ns.

The relatively small change of ∆CZ in Fig. 10 in trans-
mission from Tc = 0 to Tc = 0.8 indicates a quite flex-
ible tunable coupler for the H-pair. For a fixed switch-
ing time, smaller ’on’-interaction, which corresponds to
smaller T0, can prevent transitions during switching, but
requires longer time to accomplish CZ gate. In contrast,
larger interaction is good for gate time, though it acquires
larger transition error. Truncating unpractical ranges for
’on’-transmission T0, we make plots of gate error and time
as functions of T0, as shown in Fig. 12. Figure 12 shows
that for a large range of wire transmission, the worst case
error can be smaller than or on the order of 10−2 with
the gate time shorter than 200 ns for this parameter set.

VI. CONCLUSIONS

We compared three kinds of qubits, namely a pair of
transmons or gatemons as well as an H-pair by theo-
retically realizing a CZ gates through tuning inter-qubit
interaction and taking a look at their gate fidelity and

FIG. 11. Transition probability to from state |11〉 to state |02〉
and |20〉 as a function of switching time for the H-junction
qubits. "On"-transmission T0 = 0.6. Charging energies and
superconducting gap are the same as the transmon qubits and
gatemon qubits. For our choice of parameters,K02,20 = 0.123,
corresponding to Josephson energy EJ/h = 20.24 GHz.

FIG. 12. (a) (Color online) Error for the CZ gate and (b)
corresponding gate time as functions of "on"-transmission T0
of an H-pair. The solid red lines are calculated assuming a
pulse shape with an interacting plateau, so the gate time is
τw + 2τs. Here, we take τs = 15 ns. The dashed blue lines
assumes the transmission is turned off right after it arrives
it’s maximum value T0, thus the gate time is 2τs.

gate time as functions of experimentally practical trans-
mission range. For all three systems, fidelity and gate
time are generally not positively correlated and optimal
transmission needs to be chosen to ensure reasonable gate
time and error. Fortunately, numerical analysis show the
existence of this optimal regime of transmission for all
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three systems, as shown in Fig. 2.
The CZ gate can be realized in systems with always-on

interaction by shifting qubits’ spectrum in resonance to
temporarily enhance the interaction between two qubits,
e.g. by bringing energies of states |11〉 and |20〉 to the
same value20,35. But even for the "off" configuration of
qubits, the phase difference ∝ ∆CZ continuously accu-
mulates and reduces gate fidelities of single qubits. Such
error accumulation becomes especially crucial for large
scale qubit systems. Also, changing qubit frequency in
the crowded spectrum of a large interacting system will
cause numerous level crossing that will cumulatively re-
sult in large gate errors. Therefore, a tunable coupler
between the qubits is a necessary element for a scalable
quantum processor. The previous realization of induc-
tive tunable coupler was utilized in g-mon systems23,24,37,
where the coupling is controlled by the flux bias. In this
paper we demonstrated that an inductive tunable cou-
pling can also be controlled by electrostatic gate voltages
by utilizing the epitaxial semiconductor Josephson junc-
tions.
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Appendix: Scattering matrix for the H-junction

We construct the scattering matrix Ŝ for the H-
junction as shown in Fig. 9. The short-wire scattering

matrix Ŵ takes the form

Ŵ =
(
r t
t r′

)
, (A.1)

with r =
√

1− Teiϑ, r′ =
√

1− Tei(2η−ϑ) and t =√
Teiη, where T is the transmission and ϑ and η are two

independent phases.
A beam-splitter scattering matrix Ŷ (l,r) is character-

ized by six parameters as follows:

Y11 = a eiϕ11 , Y12 = b
√

1− a2 eiϕ12 ,

Y13 =
√

(1− a2)(1− b2) eiϕ13 ,

Y22 = −ab2ei(2ϕ12−ϕ11) + (1− b2)eiϕ22 ,

Y23 = −b
√

1− b2 eiϕ13
[
aei(ϕ12−ϕ11) + ei(ϕ22−ϕ12)

]
,

Y33 = ei2ϕ13
[
−a(1− b2)e−iϕ11 + b2ei(ϕ22−2ϕ12)

]
,

Yαβ = Yβα, 1 ≤ α < β ≤ 3, (A.2)
where a, b ∈ [0, 1], and ϕ11,22,12,13 ∈ [0, 2π]. For a = 1,
b = 0, and b = 1, the 1, 2, and 3 lead is decoupled to
the rest, respectively. The H-junction scattering matrix
elements Sαβ are determined by the linear equationsS00
S10
x

 = Ŷ (l)

 1
0

rx+ ty

 ,

S20
S30
y

 = Ŷ (r)

 0
0

tx+ r′y

 ,

S01
S11
x

 = Ŷ (l)

 0
1

rx+ ty

 ,

S21
S31
y

 = Ŷ (r)

 0
0

tx+ r′y

 ,

S22
S32
y

 = Ŷ (r)

 1
0

tx+ r′y

 ,

S02
S12
x

 = Ŷ (l)

 0
0

ty + rx

 ,

S23
S33
y

 = Ŷ (r)

 0
0

tx+ r′y

 ,

S03
S13
x

 = Ŷ (l)

 0
0

ty + rx

 .

(A.3)
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