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Because of the important role of electron-boson interactions in conventional superconductivity,
it has long been asked whether any similar mechanism is at play in high-temperature cuprate
superconductors. Evidence for strong electron-boson coupling is observed in cuprates with angle-
resolved photoemission spectroscopy (ARPES), in the form of a dispersion kink and peak-dip-hump
structure. What is missing is evidence of a causal relation to superconductivity. Here we revisit the
problem using the technique of time-resolved ARPES on Bi2Sr2CaCu2O8+δ. We focus on the peak-
dip-hump structure, and show that laser pulses shift spectral weight into the dip as superconductivity
is destroyed on picosecond timescales. We compare our results to simulations of Eliashberg theory
in a superconductor with an Einstein boson, and find that the magnitude of the shift in spectral
weight depends on the degree to which the bosonic mode contributes to superconductivity. Further
study could address one of the longstanding mysteries of high-temperature superconductivity.

I. INTRODUCTION

In conventional superconductors, the electron-phonon
coupling is the “glue” that allows Cooper pairing,
and leads to superconductivity[1]. In high-temperature
cuprate superconductors, electrons form Cooper pairs,
and have been found to strongly couple to a bosonic
mode, but it is unclear whether these two facts are re-
lated to each other. Critics observe that cuprates are
dominated by the Hubbard repulsion and antiferromag-
netic exchange coupling, and that any bosonic interaction
appears to be of lesser importance[2]. Experiments have
extensively explored the electron-boson interaction, but
have only begun to answer this fundamental question[3].

Early evidence for electron-boson coupling in cuprates
was found with angle-resolved photoemission spec-
troscopy (ARPES), in the form of a peak-dip-hump struc-
ture (PDHS) in the energy profiles of ARPES intensity[4–
7]. The PDHS was observed most strongly at the antin-
odal point below Tc. The PDHS was eventually under-
stood as one aspect of an electron dispersion kink[8–16].
In this picture, the dispersion kink is a sudden drop in
quasiparticle lifetime, arising from the decay pathway by
boson emission. A quasiparticle with a long lifetime is
observed as a sharp peak in intensity, while a quasipar-
ticle with short lifetime is observed as a broad hump.
The PDHS appears when the peak and hump are seen
together in ARPES energy profiles.

Other experimental techniques, such as scanning tun-
neling microscopy[17] and Raman spectroscopy[18], have
observed features that are similar to the PDHS. How-
ever, in this context the PDHS does not have exactly
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the same interpretation. The difference is that ARPES
studies look at a particular point in momentum space,
while these other techniques effectively integrate over
a large range of momentum. At a single momentum,
the peak represents a single quasiparticle pole; but in
a momentum-integrated measurement, the peak repre-
sents a pileup of many quasiparticle poles at the edge of
the superconducting gap. Some simulations have shown
that electron-boson coupling could create a momentum-
integrated PDHS[19], but other studies have argued that
it arises from charge order or the pseudogap[18, 20]. Sev-
eral recent studies have demonstrated the value of inte-
grating across just one dimension of momentum[21–24].
This analysis sacrifices resolution perpendicular to the
Fermi surface, but maintains resolution along the Fermi
surface and greatly improves statistics.

Time- and angle-resolved photoemission spectroscopy
(TARPES)[25–27] is another technique that could ad-
dress the electron-boson coupling and its link to super-
conductivity. TARPES uses a short laser pulse to pump
a material out of equilibrium, and after a given time de-
lay, uses a second laser pulse to take an ARPES mea-
surement. In the cuprate Bi2Sr2CaCu2O8+δ (Bi2212),
pump pulses with fluence on the order of 15 µJ/cm2

can partially or completely suppress superconductivity
on a picosecond timescale, leaving a transient pseudogap
state[28–32]. During this time, about 1 ps after pumping,
electrons are in quasithermal equilibrium, although they
are not yet in thermal equilibrium with other degrees of
freedom in the system[33, 34]. So far, TARPES studies
have addressed electron-boson coupling by investigating
its impact on quasiparticle dynamics[28, 33, 35–37], or
by focusing on the electron-boson kink along the super-
conducting node[30, 38, 39].

Here we look at the PDHS in Bi2212, applying
TARPES and integrating along one-dimensional momen-
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tum cuts. Laser pulses cause spectral weight to shift
into the dip, causing an increase of intensity near 70
meV (near the kink). We quantify the strength of the
dip by measuring the magnitude of the increase of inten-
sity, finding that it is stronger away from the node, and
roughly equal in underdoped and overdoped samples. We
also observe an increase of intensity near 140 meV, which
could indicate a second kink or a second-order effect of
the first kink.

To understand the PDHS in the context of one-
dimensional momentum integration, we built a simula-
tion using Eliashberg theory in a superconductor with an
Einstein boson. We find that a PDHS appears only when
both superconductivity and electron-boson coupling are
simultaneously present. Furthermore, the strength of
the dip depends on the extent to which the boson cou-
ples to the d-wave superconducting parameter. Further
study may be able to determine whether and how much
the bosonic mode is involved in the mechanism of high-
temperature superconductivity.

II. MATERIALS AND METHODS

We use the TARPES setup described in Ref. [25].
Samples of Bi2212 were cleaved in situ at base pressures
less than 5 × 10−11 Torr. An infrared (1.48 eV) laser
pulse with fluence of 24 µJ/cm2 was used to pump sam-
ples. Electrons were ejected with an ultraviolet (5.93
eV) pulse, to be measured by a SPECS Phoibos 150 mm
hemispherical analyzer. The time resolution is 300 fs,
the energy resolution is 23 meV, and the momentum

resolution is 0.003 Å
−1

.
Because of the precision required for this study, we

correct for several known systematic errors. We correct
for the nonlinear sensitivity of our detector[25]. All data
were taken in a fixed mode, which can create problems
because some parts of the camera are more sensitive than
others, and we correct for this by taking data accumu-
lated over several days and measuring the systematic bias
in intensity. We partially correct for the instrumental
energy resolution by applying five iterations of the Lucy-
Richardson deconvolution algorithm[40]. Over the course
of a measurement, laser power may drift, which causes
the Fermi level to drift due to space charging[41]. There-
fore, we take all measurements in cycles, and correct for
any drift in the Fermi level (never more than 0.2 meV per
cycle). Finally, laser pumping induces a shift in chemical
potential on the order of 2 meV, and while this has a
physical origin[24, 42], we correct for the shift as it is not
the focus of this study.

III. PUMP-INDUCED INTENSITY
DIFFERENCE

To introduce our technique, we begin with an over-
doped (OD) Bi2212 sample (Tc = 70 K), which is shown
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FIG. 1. (a) The ARPES intensity map of an overdoped
Bi2212 sample (Tc = 70 K) at equilibrium at 20 K. The
inset shows where in momentum space the cut was taken.
(b) A map of the same sample 0.9 ps after pumping with
a 24 µJ/cm2 pulse. (c) The intensity in (a) and (b) inte-
grated over momentum. The inset shows a closeup of the
two curves (after subtracting a quadratic fit). (d) A map
of the change in intensity between (a) and (b). (f) The
momentum-integrated change of intensity at t = 0.9 ps. (e)
The momentum-integrated change of intensity plotted as a
function of delay time.

in Figure 1. Panel (a) shows the ARPES intensity map at
equilibrium at 20 K, and Panel (b) shows the same map
0.9 ps after the pump pulse. We point out some basic
features of the spectra that would be familiar to ARPES
experts. The arrow roughly indicates the position of
the kink, a bend in the electronic dispersion that sep-
arates sharp coherent peaks at low binding energy from
broad incoherent peaks at high binding energy. Note that
the energy axis is customarily inverted, such that higher
binding energy corresponds to more negative E − EF .
Upon pumping, the kink is significantly weakened, al-
though it does not disappear entirely. The signature of
superconductivity is a gap between the ARPES intensity
and the Fermi energy EF . Although superconductivity
is suppressed by pumping, a gap remains because of the
transient pseudogap state[29, 30]. This particular mea-
surement is taken along the momentum cut indicated in
the inset of Panel (a), where both the superconducting
gap and pseudogap are present.

Figure 1(c) shows ARPES intensity integrated over
momentum. The integration window is given by our mea-
surement window, which is slightly larger than the maps
shown. To account for fluctuations in laser power, the
intensity curves are normalized by the intensity averaged
at high binding energy (200 to 300 meV). The intensity at
equilibrium shows a clear PDHS, but 0.9 ps after pump-
ing, the peak and dip have been suppressed. The inset
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shows a closeup of the two curves, and one can see that
pumping causes intensity to fill into the dip. These obser-
vations motivated us to consider the difference between
curves.

Figure 1(d) shows a map of the intensity difference
(∆I), and Panel (e) shows −∆I integrated over momen-
tum. Panel (e) uses the same units as Panel (c), so that
0.1 is approximately a 10% change in the spectral weight.
The increase of intensity near EF (blue region) corre-
sponds to intensity filling the superconducting gap, and
an increase in the occupation fraction of the quasiparticle
states above EF . The decrease of intensity near 30 meV
(red region) corresponds to the suppresion of the peak
in the PDHS, as well as a decrease in the occupation
fraction of the quasiparticle states. The most striking
observation is an increase of intensity near 70 meV (in-
dicated by arrow) which matches with the dip in Panel
(c) and the kink in Panel (a). This increase of intensity
cannot be explained by a change in the occupation frac-
tion of electrons, and implies a change in the density of
states itself. Note that this is similar to measurements
of the momentum-resolved PDHS at equilibrium, which
find that spectral weight shifts from the peak into the
dip as the temperature crosses Tc[4–10]; however, most
earlier measurements were taken at the antinode, and did
not have as much power to measure the PDHS near the
node.

In Figure 1(f), we show the delay dependence of the
momentum-integrated ∆I. It is clear that ∆I appears
nearly immediately after pumping, and decreases over
several picoseconds, but its qualitative features do not
change during that time. The saturated color scale also
make clear an increase of intensity near 140 meV, which
will be discussed further later.

IV. MOMENTUM AND DOPING
DEPENDENCE

In the previous section, we took overdoped Bi2212 and
integrated ∆I over a particular momentum cut. The
next step is to expand this measurement to other mo-
menta and other dopings. Figure 2(a) and 2(b) show the
−∆I curves measured on underdoped (UD) Bi2212 (Tc
= 78 K), and OD Bi2212 (Tc = 70 K), both measured
at 20 K. Each curve is taken at a different momentum
cut, parametrized by the Fermi surface angle ϕ, defined
in the upper right panel. In order to compare different
curves, we normalize each measurement such that the
equilibrium intensity at 100 meV is 1. In each curve, we
identify minima near 70 meV, corresponding to the dip.
We define the dip strength ∆Idip, shown in Fig. 2(c), to
be the change of intensity averaged in a 20 meV window
centered at the minimum.

In the UD sample, a dip cannot be identified near the
node; but apart from this, ∆Idip is similar in the UD
and OD samples. This disconfirms any relation between
the dip and the pseudogap, since the pseudogap is much

smaller in the overdoped sample[43]. It also suggests that
the bilayer splitting, which sometimes causes a PDHS in
overdoped samples near the antinode[44–47], is not the
source of the PDHS in our measurements.

We also observe that ∆Idip increases with ϕ. This
is consistent with previous studies, which all agree that
the PDHS is much stronger near the anti-node[4–10].
The momentum dependence of the PDHS is typically at-
tributed to the electron-boson coupling strength, which,
in the superconducting state, increases with distance
from the node[10, 12, 14]. However, we will later pro-
pose that the momentum dependence of ∆Idip is related
to the size of the gap.

Finally, we note additional minima appearing near 140
meV. Given the similarity between the minima at 70 meV
and 140 meV, it is tempting to identify the feature at 140
meV with an additional dip structure. Such additional
dip structures have previously been observed in sensitive
ARPES measurements[48].

V. CHARACTERISTIC ENERGY SCALES

In Figure 3, we identify local minima and maxima in
the momentum integrated intensity curves, and show how
these energy scales depend on doping and momentum.
Away from the node, p1 corresponds to the peak in the
PDHS, which arises from a pileup of quasiparticle states
at the superconducting gap edge. At the superconduct-
ing node, there is no superconducting gap, and p1 in-
stead corresponds to the increase in electronic tempera-
ture. Thus, as we move away from the node, p1 starts
near electronic temperature scale, and ends near the su-
perconducting gap size ∆eq.

The energy scale p2 corresponds to the dip in the
PDHS, which nearly matches the kink energy. The kink
energy is significant because it is expected to appear at
∆ + Ω, where ∆ is the superconducting gap size and Ω
is the energy of the bosonic mode[9]. ∆ is commonly
taken to be the size of the superconducting gap at the
same momentum[15, 16, 50, 51], but is sometimes inter-
preted to be the maximum gap size[52, 53]. However, we
note that p2 is not a very precise way to estimate the
kink energy, since p2 is not exactly the energy of the dip,
nor is the dip at exactly the same energy as the kink.
In earlier measurements of OD Bi2212 samples, the kink
appears near 60 meV at the node[11] and near 40 meV
at the antinode[15]. This does not match the energy of
p2 in panel (c) which appears near 60 meV at the node,
and nearly 80 meV away from the node. Later, simula-
tions will corroborate our conclusion that p2 may deviate
slightly from the kink energy.

The energy scales p3 and p4 are related to the mys-
terious feature at 140 meV. One interpretation is that
this feature arises from another bosonic coupling mode
at energy Ω′, with p4 appearing near ∆ + Ω′. A sec-
ond possibility is that they are a second-order feature of
the first bosonic coupling mode, with p4 appearing near
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FIG. 2. The momentum-integrated ∆I curves for an underdoped Bi2212 sample (a) and an overdoped sample (b). Each curve
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∆ + 2Ω.

VI. SIMULATIONS OF
MOMENTUM-INTEGRATED INTENSITY

The PDHS has a different interpretation depending on
whether it is measured at a single momentum, or us-
ing momentum-integrated techniques. Here we develop
a framework to interpret the PDHS in ARPES spectra
integrated over a single dimension of momentum, and we
support this framework with a simulation.

Our framework is based on the simulation in Ref. [54].
We begin with the Nambu-Gor’kov formalism, which
treats the electron Green’s function G and self-energy
Σ as a 2x2 matrices[55]. The diagonal components relate
to single particles, while the off-diagonal components re-
late to electron pairs. The Green’s function is given by
the Dyson equation

G−1(k, ω) = ω1− ε(k)τ3 − Σ(k, ω), (1)

where k is momentum, ω is energy, τi are the Pauli ma-
trices, and ε(k) is the bare electron dispersion. The self-
energy is has the canonical form

Σ(k, ω) = (1 − Z(k, ω))ω1 + φ(k, ω)τ1

+ φ̄(k, ω)τ2 + χ(k, ω)τ3, (2)

which defines the complex-valued functions Z, φ, φ̄ and
χ. φ̄ can be neglected by choice of phase convention, and
χ can be neglected when the slope of ε(k) is assumed to
be constant. The ARPES intensity is given by

I(k, ω) = −(1/π)f(ω)I0(k)Im G11(k, ω), (3)

where f(ω) is the electron distribution function, I0(k) is
the square of the dipole matrix element[56], and G11 is
the upper left entry of G.

To calculate
∫
I(k, ω)dk, we make two approximations.

First, we assume that the integration window is large
enough to cover most of the intensity of the dispersion.
Second, we assume that Σ, I0, and the bare electron ve-
locity are independent of momentum within the window
of integration. With these approximations, the momen-
tum integrated intensity obeys the form

f(ω) Re
Z(ω)ω√

(Z(ω)ω)2 − φ(ω)2
. (4)

Equation (4) generates a PDHS only when two con-
ditions are simultaneously fulfilled. First, φ must be
nonzero, or else the integrated intensity reduces to f(ω),
a function with no PDHS. This implies that the presence
of a superconducting gap. Second, either Z or φ must
have some dependence on energy; a kink fulfills this con-
dition. In our equilibrium data (except those taken at
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∫
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maxima below the EF . These characteristic energy scales are
shown as a function of Fermi surface angle in UD Bi2212 (b)
and OD Bi2212 (c). The size of the gap at equilibrium (∆eq)
is estimated with standard fitting methods[49]. Error bars
are determined by the variance between measurement cycles,
although measurements may also be affected by systematic
error.

the node), both of these conditions are fulfilled by the
presence of a gap and a kink. In pumped data, the gap
is partially or completely suppressed, which will partially
or completely suppress the PDHS.

In order to make more specific predictions, we con-
structed the simulations shown in Fig. 4. The simulation
uses Z(ω) and φ(ω) calculated self-consistently from the
Eliashberg equations[55]. The equilibrium simulations all
use T = 20 K and a gap size of 30 meV, while the tran-
sient simulations all use T = 80 K and set φ to zero.
We use an Einstein boson mode with 35 meV energy,
which is about the energy of the bosonic mode thought
to be responsible for the off-nodal kink, whether it is a
magnetic resonance mode[57] or phonon mode[50]. We
also assume a momentum-independent gap size, which is
equivalent to the limiting case where the antinodes dom-
inate electron-boson scattering. Following Ref. [54], we
use separate electron-boson coupling constants to calcu-
late Z and φ, with λZ = 1 and various values of λφ.
The physical meaning of λZ is the isotropic component
of the electron-boson coupling, while λφ is the compo-
nent with dx2−y2 symmetry. λφ is, in essence, the extent
to which this particular boson contributes to d-wave su-
perconductivity. In equilibrium simulations, we keep the
superconducting gap size fixed by adding a real constant
to φ; this real constant may be interpreted as the con-
tribution to superconductivity from other sources. The
real and imaginary components of φ at equilibrium are

shown in Figs. 4(a) and 4(b), respectively.
Figure 4(c) shows the simulated equilibrium ARPES

intensity map for λφ = 0.1, and Fig. 4(d) shows a map
of the difference between equilibrium and transient in-
tensity. In order to make the simulation more realistic,
we include a 35 meV contribution to the imaginary self-
energy from impurity scattering, and a 15 meV instru-
mental energy resolution. Identical to the experimental
procedure, we apply a normalization factor to each map
so that they have the same average intensity between 200
and 300 meV. The simulations suggest that it is inap-
propriate to normalize intensity at high binding energy;
however, it was experimentally necessary to correct for
laser power fluctuations. The resulting intensity maps
are remarkably similar to those observed in Fig. 1.

Figure 4(e) shows the momentum-integrated intensity
in both the equilibrium and transient states. In the equi-
librium state, we see a PDHS similar to that observed in
experiment, and in the transient state, the PDHS disap-
pears because of the suppression of the superconducting
gap. The differences between the equilibrium and tran-
sient curves are shown in Fig. 4(f), and they resemble
the experimental observations in Fig. 2. If we identify
p2 as we did in Fig. 3, we find that it appears around 80
meV, which is somewhat larger than the value of ∆ + Ω
= 65 meV. This may explain why in experimental mea-
surements, p2 does not precisely match the kink energy.

The most shocking prediction is that as λφ increases,
the dip strength decreases. By looking at the experimen-
tally observed dip strength and comparing to simulations,
we could in principle estimate the value of λφ, which
would tell us the extent to which the electron-boson kink
contributes to high-temperature superconductivity.

VII. DISCUSSION

In this study, we explored the PDHS in cuprates by us-
ing two novel techniques. The first technique, TARPES,
allows us to quickly compare measurements with and
without a superconducting gap. The second technique is
to integrate the intensity over a single dimension of mo-
mentum, unlike previous studies which either took mea-
surements at single momenta[4–10], or used techniques
that integrate over large regions of momentum[17, 18].
One-dimensional integration is a fruitful way to look at
electron-boson coupling because it improves statistics,
and because the intensity is expected to follow the simple
expression in Eq. (4).

Using these techniques, we observe a pump-induced
shift of intensity into the dip of the PDHS, similar to
what is seen in equilibrium temperature-dependent mea-
surements at the antinode[4–10]. The maximum intensity
change occurs near 70 meV for a wide range of momenta,
in both underdoped and overdoped samples. The pres-
ence over a wide doping range suggests that the observed
structure is related to electron-boson coupling, and not
to bilayer splitting or the pseudogap. Based on simu-
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lations and considerations of Eq. (4), we find that the
dip strength depends on the superconducting gap size,
and on the parameter λφ, which represents the degree
to which electron-boson coupling contributes to d-wave
superconductivity.

We also observe a similar change of intensity near 140
meV. This may arise from a dip produced by a sec-
ond bosonic mode[48], but if so it cannot be a phonon,
given that the phononic modes reach no higher than 80
meV[58]. Another possibility is that the dip at 140 meV
is a second-order effect of the same bosonic mode that
produced the dip at 70 meV. The first-order effect would
be expected to appear near ∆ + Ω, and the second-order
effect is a replica near ∆ + 2Ω, although simulations and
observations suggest these energies are not precise. Our
simulations do show second-order features, visible at 100
meV in Figs. 4(a) and 4(b), but to properly calculate
second-order effects, it may be necessary to use polaronic
simulations[59].

The most exciting implication of these results, is that
it may be possible to use the dip strength to determine
how much electron-boson coupling contributes to d-wave
superconductivity. In fact, Ref. [3] has already demon-
strated the capability to use ARPES experiments to mea-
sure the bosonic contribution to superconductivity, but

the method shown here is simpler and does not require as
high resolution. We caution against drawing specific con-
clusions from the present simulations, which make use of
several simplifications. First, we use a single constant gap
size, when in the real system, the gap size is a function
of momentum. Second, in using Eq. (4), we assume the
integration window is very large. In practice, the integra-
tion window is finite, which could lead to a PDHS even in
the nodal equilibrium data, which is experimentally ob-
served in Fig. 2. Third, we do not include the self-energy
contribution from electron-electron interactions, nor do
we attempt to account for the pseudogap. Nonetheless,
with more testing and refinement of the calculations, we
are hopeful that studies of the dip could address the long-
standing question of how the electron-boson coupling re-
lates to high-temperature superconductivity.
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