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Abstract

We introduce an effective point-particle action for generic particles living in a zero-
temperature superfluid. This action describes the motion of the particles in the medium
at equilibrium as well as their couplings to sound waves and generic fluid flows. While we
place the emphasis on elementary excitations such as phonons and rotons, our formalism
applies also to macroscopic objects such as vortex rings and rigid bodies interacting
with long-wavelength fluid modes. Within our approach, we reproduce phonon decay
and phonon-phonon scattering as predicted using a purely field-theoretic description of
phonons. We also correct classic results by Landau and Khalatnikov on roton-phonon
scattering. Finally, we discuss how phonons and rotons couple to gravity, and show
that the former tend to float while the latter tend to sink but with rather peculiar
trajectories. Our formalism can be easily extended to include (general) relativistic effects
and couplings to additional matter fields. As such, it can be relevant in contexts as
diverse as neutron star physics and light dark matter detection.

1 Introduction

Neutron scattering experiments [1] show that the spectrum of elementary excitations in su-
perfluid helium-4 at very low temperatures looks schematically as in Figure 1. A similar
dispersion relation was also observed numerically [2] as well as experimentally [3] in trapped
gases made of weakly interacting dipolar particles. There are two regions of momenta where
the corresponding excitations are always kinematically stable1: one is around p = 0, the
other is around p = p∗. Excitations in these regions are usually treated as different species of
particles and are referred to as phonons and rotons respectively. Phenomenologically, their
dispersion relations can be extracted by Taylor expanding the experimental dispersion curve
around p = 0 and p = p∗ to obtain

Ephonon ' csp , Eroton ' ∆ +
(p− p∗)2

2m∗
. (1)

1Depending on the precise shape of the dispersion curve, excitations in the region surrounding the local
maximum could also be kinematically stable. Such excitations are usually referred to as maxons. The formalism
that we will here can be applied to maxons as well.
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Figure 1: Prototypical phonon-roton dispersion curve.

The precise values of the parameters cs,∆, p∗, and m∗ depend on temperature and pressure
(or, equivalently, temperature and chemical potential), but their orders of magnitude are cor-
rectly determined by dimensional analysis alone. For instance, the only relevant microscopic
quantities in liquid helium-4 are the mass of the helium atom m, the Bohr radius a, and the
typical interatomic distance, also of order a. In terms of these quantities, we have

cs ∼
1

ma
, ∆ ∼ 1

ma2
, p∗ ∼

1

a
, m∗ ∼ m . (2)

(Throughout the paper we are working in units such that ~ = kB = 1. Moreover, for non-
relativistic systems such as the one at hand, the speed of light c cannot appear in our esti-
mates.)

It is important to stress that phonons and rotons have a very different status. In fact,
phonons are the Goldstone modes associated with the spontaneous breaking of the particle
number U(1) symmetry, which occurs in all superfluids. Specifically, calling Q the generator
of such a symmetry and H0 the Hamiltonian, superfluids can be thought of as systems that
spontaneously break both while preserving the combination

H = H0 − µQ , (3)

which is the relevant generator of time translations at finite chemical potential µ [4]. The
existence and physical properties of phonons follow exclusively from symmetry principles [5]
and, as a consequence, they belong in the spectrum of any superfluid. On the other hand, the
existence of rotons is not enforced by any symmetries and, in fact, not all superfluids feature
roton-type excitations.

This dichotomy also manifests itself in the field theory description of these two kinds of
excitations. On the one hand, at energy scales much smaller than the roton gap ∆, phonons are
the only relevant degrees of freedom and admit a well-known effective field theory description
based on the action [6]

S =

∫
d4xP (X), X = µ/m+ π̇ − 1

2
(~∇π)2. (4)

Here π(x) is the phonon field; it is a scalar under rotations, but transforms nontrivially under
(Galilei or Lorentz) boosts. The quantity X is the local value of the chemical potential per
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unit mass, which, in the presence of a nontrivial π(x), differs from the equilibrium value µ/m.
Furthermore, the equation of motion for π(x) coincides with the hydrodynamical equation for
the superfluid, which allows one to infer the definition of other macroscopic quantities such
as the pressure, mass density, and velocity fields:

p = P, ρ =
dP

dX
, ~u = −~∇π. (5)

Different choices for the function P (X) correspond to different equations of state for the
superfluid. Moreover, by expanding the action (4) up to quadratic order in π, one finds that
the speed of sound is indeed equal to dp/dρ, as expected for a compressional wave. Since in the
following we will use ‘p’ also to denote the momentum of our excitations, to avoid confusion
from now on we will denote the pressure simply by ‘P ’.

On the other hand, it is not obvious how to extend the action (4) in order to include rotons
in the effective field theory description. Perhaps the main difficulty in achieving this is that
phonons are no longer meaningful degrees of freedom at the typical roton momentum scales,
since at such high scales an infinite number of higher derivative corrections to (4) become
important. Nevertheless, unconcerned by these theoretical challenges, rotons play a crucial
role in determining low-temperature macroscopic quantities that can be measured in the lab,
such as the specific heat and the viscosity coefficients [7, 8]. Notice that this is true even at
temperatures as low as 1 K, even though the roton gap is ∆ ∼ 10 K. This is because, compared
to gapped excitations at zero momentum, the roton contribution to thermodynamic quantities
has an enhanced phase space, due to their large typical momentum. It is therefore important
to have both phonons and rotons under full theoretical control.

In this paper we are going to propose a unifying effective field theory (EFT) framework2 to
describe mutual interactions of phonons and rotons. Since rotons are stable at low energies, we
are going to treat them as “heavy”, point-like objects that can interact either with soft phonons
or with each other by exchanging virtual phonons. Our formalism is heavily inspired by recent
developments concerning vortex lines in relativistic fluids and superfluids [10, 11, 12, 13] as well
as by the non-relativistic General Relativity (NRGR) approach [14, 15, 16] to the dynamics
of non-relativistic extended objects coupled to gravity.

Since phonons and rotons lie on the same dispersion curve, they are usually said to to be
the same kind of excitation, just with different momenta. It is not obvious what operational
meaning to attach to that statement. In systems with boost invariance, either of the Galilei or
the Lorentz type, we have a symmetry that relates identical particles with different momenta:
a very energetic electron is the same as an electron at rest, seen from a highly boosted reference
frame. Here instead, the surrounding medium breaks boosts (spontaneously), and so there
is no symmetry that relates particles with different momenta. The most precise meaning we
can find for the above statement is: (i) Phonons and rotons have the same quantum numbers,
that is, they transform in the same way under the symmetries, and (ii) in the energy vs.
momentum plane for states with those quantum numbers, at low enough energies there is
only one line occupied by single particle states (for any given momentum, at higher energies
there will be a continuum occupied by multi-particle states).

From this viewpoint, the qualitative difference between rotons and phonons is no more
dramatic than that between two phonons of different momenta. In the following we will

2See for instance [9] for a review of effective field theory techniques in a condensed matter context.
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invest in this idea, and argue that from the standpoint of an effective theory for a point-
particle interacting with long wavelength bulk modes (i.e. soft phonons or macroscopic fluid
flows), phonons, rotons, and even macroscopic objects such as vortex rings and rigid bodies
can all be described by the same general Lagrangian, expanded about different values of the
point particle’s velocity and with different parameters.

As a check of our formalism, we will compute the rates for certain phonon processes in
kinematical regimes that are also amenable to a more standard effective field theory analysis,
and we find perfect agreement between the two approaches. Encouraged by these results, we
will compute the cross section for roton-phonon scattering, a process originally considered by
Landau and Khalatnikov in [7]. We find new interaction terms that had been overlooked in
their computation.

Finally, in the point-particle limit it becomes straightforward to discuss an aspect rarely
considered in the condensed matter literature, namely the coupling of collective excitations
to gravity. In this respect, phonons resemble photons to the extent that their effective grav-
itational mass is proportional to their momentum, but differ in a very important way: they
have a negative effective gravitational mass, so their trajectories bend upwards rather than
downwards in a gravitational field. This result can also be understood in more conventional
terms using the language of wave mechanics. However, our results concerning rotons are novel:
we find that rotons in superfluid helium-4 tend to sink, although they do so by following very
peculiar trajectories. While the individual trajectories are unlikely to be directly observable,
it is at least plausible that they might lead to measurable effects in the aggregate, especially
when compared with the qualitatively different behavior of phonons. For instance, at nonzero
temperature the thermal distributions of phonons and rotons will depend on height in different
ways.

2 The effective point-particle theory

Consider one of the excitations of Fig. 1, propagating in a homogeneous superfluid at rest.
According to standard representation theory, single particle states have to fall into irreducible
representations of the unbroken symmetries. Our medium breaks spontaneously the origi-
nal internal U(1) symmetry and boosts, but preserves spatial translations, time translations
(modified as in (3)), and rotations. For given momentum ~p, as usual, one looks for irreducible
representations of the little group of ~p, which in this case are nothing but rotations around ~p.
The associated quantum number is the particle’s helicity, and we already know that phonons
are zero-helicity particles, since they are the quanta of longitudinal compressional waves. As-
suming that all excitations of fig. 1 have the same quantum numbers as phonons (apart from
~p ), we thus see that the single-particle states we are interested in are labelled just by ~p, and
have no other degrees of freedom.

The curve in Fig. 1 gives the Hamiltonian as a function of ~p,

E = H(|~p |) . (6)

In the point-particle limit, that is if we consider a small wave packet localized around ~x(t),
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the associated classical Lagrangian is just the Legendre transform of this:

Lp.p. = ~p · ~̇x−H(|~p |) = f(|~̇x|) , ~̇x =
∂H

∂~p
. (7)

Such a Lagrangian is clearly invariant under translations and rotations. It is not invariant un-
der Galilei boosts, but that has to be expected since the surrounding medium breaks boosts. In
fact, if we now consider turning on long-wavelength perturbations in the surrounding medium,
Galilei invariance forces ~̇x to always appear in the combination ~̇x − ~u, where ~u is the local
fluid velocity at the particle’s position. Moreover, the parameters that define the function
Lp.p., who are in one-to-one correspondence with those that define the curve E = H(|~p|) in
fig. 1, can now depend on the local invariants one can construct using the bulk degrees of
freedom. To lowest order in the bulk modes’ derivatives, the only such invariant is X, defined
in Eq. (4). In the presence of perturbations π(x), the most general point-particle action for
helicity-zero particles thus is

Sp.p.[~x, π] =

∫
dt f(|~̇x− ~u|, X) . (8)

Notice that, in principle, we could add to this action the standard Galilean kinetic energy:∫
dt 1

2
Mi ~̇x

2 , (9)

with constant inertial mass Mi. This is invariant under Galilean boosts only up to total
derivatives, which is why it is not contemplated by the form (8). However, recalling that

~u = −~∇π and X = µ/m+ π̇ − 1
2
(~∇π)2, after straightforward manipulations we get

1
2
Mi ~̇x

2 = 1
2
Mi|~̇x− ~u|2 +Mi(X − µ/m) + d

dt

(
Miπ

)
, (10)

which is in fact of the form (8) up to a total derivative term. We can thus restrict ourselves
to the original action (8).

This action includes the most general interactions of our particle with long-wavelength
bulk modes, such as fluid flows, pressure gradients, or soft phonons. We should keep in mind
though that, according to standard effective field theory logic, the action (8) is just the leading
order one in a derivative expansion. Subleading corrections will involve:

• Higher spatial derivatives acting on the bulk fields: these are suppressed by coefficients
that scale like the appropriate power of the typical size of our particle. For small material
objects or classical fluid configurations (such as a vortex ring), this is just their size; for
quantum excitations such as phonons and rotons, this is the generalized de Broglie
wavelength, 1/p.

• Higher time derivatives acting on the bulk fields or on ~x(t): these are suppressed by
coefficients that scale like the appropriate power of the typical internal timescale for our
particle. This be could the period of the slowest normal mode if our particle has any,
or just the sound-crossing time—the typical size defined above over cs—, whichever is
longer.
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For all the computations that follow, the lowest-order action above will suffice.
The symmetries of the system do not constrain the functional dependence of the function f

in (8) any further. The actual function has to be determined from experimental data. However,
it is interesting that, at this order, for phonons and rotons all the necessary information is
contained in the H(|~p|) of fig. 1 and in its dependence on any thermodynamic quantity at
equilibrium, such as the pressure or the chemical potential: At X = µ/m, f as a function of
|~̇x − ~u| is just the Legendre transform of H(|~p|); the X dependence instead can be inferred
by looking at how the parameters in H(|~p|) vary with pressure or chemical potential. We will
see explicitly how this works for phonons, rotons, and vortex rings. In particular, for phonons
and vortex rings, the functional form of f is uniquely determined by the superfluid’s equation
of state.

Because of certain technical subtleties that we will encounter in taking the Legendre trans-
form of H in the phonon and roton limits, it is useful to keep in mind that an action can
always also be interpreted as a functional of the q’s and the p’s separately,

S[q, p] ≡
∫
dt pαq̇

α −H(q, p) . (11)

The variational problem with arbitrary δq and δp (with fixed boundary conditions for q) yields
Hamilton’s equations in this case. If the q̇ = ∂H/∂p equations can be solved for all the p’s, then
one can plug back the solutions into the action and obtain the usual Lagrangian formulation,
with a variational principle for S[q]. If instead some of the p’s cannot be integrated out,
one can keep them explicitly in the action as in (11). In fact, from a quantum mechanical
viewpoint the mixed q, p formulation in (11) is the fundamental one, since that’s what appears
in the path integral starting from the canonical formalism.

2.1 Phonons

Phonons correspond to the low-momentum region in Fig. (1). For the moment, let’s set to
zero the perturbations in the surrounding fluid. The phonon Hamiltonian thus is

H = cs|~p |+ . . . (12)

where cs is the sound speed, and the dots stand for higher powers of |~p |. To take the Legendre
transform, we first need to solve

~̇x =
∂H

∂~p
' csp̂ (13)

for ~p. However, at this order this equation does not involve the magnitude p, and thus cannot
be solved to eliminate ~p completely. As recalled above, we can still define the action as usual,
but now we should treat p as an independent variable. So, starting from the full action
functional for p, p̂, and ~x,

S ≡
∫
dt (~̇x · ~p−H) '

∫
dt p (~̇x · p̂− cs) , (14)

we only impose the Hamilton equation associated with varying p̂, which, recalling that p̂ is
constrained to have unit norm, reads

(δij − p̂ip̂j)ẋj = 0 ⇒ p̂ =
~̇x

|~̇x|
. (15)
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Notice that in principle the equation above doesn’t determine the sign of p̂. However, it is
easy to check that the solution with the opposite sign, i.e. p̂ = −~̇x/|~̇x|, would lead to a
dynamical system that doesn’t admit any solution for cs > 0. This can already be seen at the
level of eq. (13). Plugging therefore the solution (15) into the action, we finally get an action
functional for p and ~x only:

S[~x, p] '
∫
dt p

(
|~̇x| − cs

)
. (16)

Alternatively, we could have kept the first correction to the phonon Hamiltonian,

H = cs |~p |+
cs
Λ2

|~p |3

3
+ . . . , (17)

where Λ is some large momentum scale of order 1/a, which eventually we would like to send
to infinity (in the sense that p � Λ). Such a cubic term is indeed needed to describe the
phonon spectrum beyond leading order, and it makes phonon decay a kinematically allowed
process in helium-4 [17]. The velocity now reads

~̇x =
∂H

∂~p
' csp̂

[
1 +

p2

Λ2

]
, (18)

which allows us to eliminate ~p completely:

p̂ ‖ ~̇x , p = Λ
(
|~̇x|/cs − 1

)1/2
. (19)

The resulting action is:

S[~x] =

∫
dt 2

3
Λcs
(
|~̇x|/cs − 1

)3/2
. (20)

At this stage, the limit Λ→∞ is clearly not well defined. This is of course just a reflection
of the fact that Eq. (18) cannot be solved for p in this limit. An analogous situation occurs
for an ordinary relativistic point particle, whose Lagrangian does not admit a straightforward
massless limit. In that case, the m → 0 limit can be taken only after introducing an aux-
iliary variable playing the role of an “einbein” [18]. A similar procedure allows one to go
from the Nambu-Goto action for a relativistic string to the Polyakov action by introducing a
dynamical metric on the worldsheet—although in that context this step is taken to simplify
the quantization procedure rather than to take a zero-tension limit.

We can follow a similar approach, and rewrite the Lagrangian (20) by introducing an
auxiliary variable, which with the benefit of hindsight we are going to denote as p:

S[~x, p] =

∫
dt p

(
|~̇x| − cs

)
− csp

3

3Λ2
. (21)

It is easy to check that after integrating out p one indeed recovers the Lagrangian (20). Written
in this form, though, S remains well defined in the limit Λ → ∞, where it reduces to our
original action (16).
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We can now introduce long wavelength bulk modes π(x) according to the general prescrip-
tion outlined above. We get

Sphonon[~x, p, π] =

∫
dt p
[
|~̇x− ~u| − cs(X)

]
. (22)

Recall that c2
s = dP/dρ, and that X can be interpreted as the local chemical potential per

unit mass. The function cs(X) is thus uniquely determined by the superfluid’s equation of
state at equilibrium, i.e. by how P and ρ depend on the chemical potential.

We can use the action above to describe the interactions of our phonon with much softer
ones. All the couplings follow from expanding this action in powers of the bulk phonon
field π(x). Of course, interactions that only involve phonons can also be described using the
effective theory (4). The point-like action (22) offers an alternative viewpoint which, as we
will see in Sec. 3, is completely equivalent to the field theory approach.

2.2 Rotons

Rotons correspond to excitations close to the minimum in Fig. 1. They are stable for kine-
matical reasons, as shown in Appendix A. In the absence of external perturbations, their
Hamiltonian reads

H = ∆ +
(|~p | − p∗)2

2m∗
+ . . . , (23)

where the dots stand for higher powers of (|~p | − p∗). The velocity/momentum relationship
now is

~̇x =
∂H

∂~p
' p̂

(p− p∗)
m∗

, (24)

which can be inverted, but yields two branches of solutions for the momentum:

p > p∗ : p̂ ‖ ~̇x , p = p∗ +m∗|~̇x| (25)

p < p∗ : p̂ ‖ −~̇x , p = p∗ −m∗|~̇x| (26)

Correspondigly, there are two branches for the resulting action, depending on whether the
roton is to the right (R) or to the left (L) of the minimum:

SR,L[~x ] '
∫
dt
[
−∆± p∗|~̇x|+ 1

2
m∗|~̇x|2

]
. (27)

Clearly, this action is singular right at the minimum, where ~̇x = 0, which is also related to the
fact that eq. (24) cannot be solved for the direction p̂ for zero velocity. So, for computations
that require regularity at ~̇x = 0, one can refrain from integrating out p̂, in which case both p
and the action are single-valued and regular at any ~̇x:

p = p∗ +m∗(~̇x · p̂) , S[~x, p̂] '
∫
dt
[
−∆ + p∗(~̇x · p̂) + 1

2
m∗(~̇x · p̂)2

]
(28)

Introducing bulk perturbations as above, we finally get

SR,Lroton[~x, π] '
∫
dt
[
−∆(X)± p∗(X)|~̇x− ~u|+ 1

2
m∗(X)|~̇x− ~u|2

]
, (29)
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or, equivalently,

Sroton[~x, p̂, π] '
∫
dt
[
−∆(X) + p∗(X)(~̇x− ~u) · p̂+ 1

2
m∗(X)

(
(~̇x− ~u) · p̂

)2]
. (30)

Like for phonons above, the actions (29, 30) describe all possible low-energy interactions
of a roton with long wavelength bulk modes. These interactions can be deduced by expanding
the action in powers of the bulk phonon field π(x). The associated coupling constants involve
X-derivatives of the parameters ∆, p∗, and m∗, which can be traded for derivatives with
respect to pressure, which for helium-4 have been measured experimentally [19].

2.3 Vortex rings

We can apply the same formalism to describe macroscopic circular vortex rings and their
interactions with long wavelength bulk modes. Clearly, in no sense is a macroscopic vortex
ring an elementary excitation. However, from the viewpoint of our symmetry considerations
above, a circular ring has the same transformation properties as a phonon or a roton: definite
momentum, and zero helicity. It should thus be possible to describe it in the point particle
limit using the general formalism developed above. Let’s see how this works.

Starting from the classical action for a vortex line in an unperturbed fluid, one can
parametrize a circular vortex ring by its center’s position ~x(t), its orientation—the normal
unit vector n̂(t)—and its radius R(t), and end up with an effective action for these degrees of
freedom only [11]

S[~x, n̂, R] =

∫
dt
[
πρ̄ΓR2

(
n̂ · ~̇x

)
− 2πRT (1/R)

]
, (31)

where Γ is the vortex line’s circulation, ρ̄ the background mass density, and T the vortex
line’s energy per unit length (i.e., its tension), which runs logarithmically with momentum
scale [11]:

T (1/R) =
ρ̄Γ2

4π
log(Rp0) , (32)

where p0 is a UV momentum scale, typically of order of the string’s inverse thickness ∼ 1/a,
but logically separate from it.3

However, we can see right away that R and n̂ appear in the action without time derivatives,
and can thus be integrated out. In fact, it’s clear that together they play the role of the
conjugate momentum to ~x:

~p =
∂L

∂~̇x
= πρ̄Γ ·R2n̂ , (33)

so that the action above is really a mixed q, p action of the form (11):

S[~x, ~p ] =

∫
dt ~p · ~̇x−H(|~p|) , (34)

3If needed, the exact value of p0 has to be determined from experiment. However, for rings much bigger
than the string’s thickness, the log is large and one can safely replace p0 with 1/a.
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with associated Hamiltonian

H(p) =

√
ρ̄Γ3

16π
· p log

( p2
0 p

πρ̄Γ

)
. (35)

Solving ~̇x = ∂H/∂~p for ~p we get

p̂ ‖ ~̇x , p ' ρ̄Γ3

16π|~̇x|2
log2 Γp0

8π|~̇x|
(36)

(we are assuming that the logs are large and positive, so that one can invert the relation

y = log z
z

approximately by z ' log 1/y
y

.) Plugging back into the action, we get the desired

action for ~x(t) only

S[~x ] ' −
∫
dt
ρ̄Γ3

16π

1

|~̇x|
log2 Γp0

8π|~̇x|
. (37)

Using the same logic as above, we can now introduce long wavelength bulk modes simply by
replacing ~̇x with the relative velocity ~̇x−~u, and the background quantities ρ̄ and p0 with their
X-dependent counterparts. Notice that the circulation Γ does not depend on bulk quantities
for a non-relativistic superfluid (it is in fact quantized in units of 1/m). Notice also that,
within our large-log approximation, the X-dependence of p0 can be safely ignored. We thus
get

Sring[~x, π] ' −
∫
dt
ρ(X)Γ3

16π

1

|~̇x− ~u|
log2

( Γp0

8π|~̇x− ~u|

)
. (38)

We thus see that the interactions of a circular vortex ring with much longer bulk modes are
completely constrained, in the sense that they are uniquely determined by the symmetries
and by the superfluid’s equation of state, via the function ρ(X).

A macroscopic vortex ring with R� a has a typical speed much lower than that of sound:
up to logs, we have v ∼ cs(a/R). However, the zero-velocity limit is singular, as clear from the
action above, since it corresponds to infinitely large rings. We can thus think of rotons and
vortex rings as qualitatively different low-velocity point-particles. Their difference is clearer
in the Hamiltonian formulation: rotons have typical momenta of order p∗ ∼ 1/a and typical
energies of order ∆ ∼ cs/a, while vortex rings have much bigger momenta and energies: up
to logs,

p ∼ ρΓ3

v2
� 1/a , H(p) ∼

√
ρΓ3p� cs/a . (39)

From this viewpoint, macroscopic vortex rings with, say, one quantum of circulation can be
thought of as occupying the far right of the energy spectrum in Fig. 1, with an energy scaling
as
√
p log p. (This statement however should be taken with a grain of salt, since experimentally

one finds that the thin curve of fig. 1 gets in fact significantly smeared out on the right by a
two-roton state continuum.)
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2.4 Objects

Finally, we can also use our formalism to describe how an ordinary material object (or an
ordinary massive particle) interacts with long-wavelength modes in the surrounding super-
fluid. We will publish elsewhere a more complete analysis that takes into account possible
anisotropies in the object’s shape as well as the effects of considering an ordinary fluid rather
that a superfluid. Here instead we just want to mention some basic facts.

What is an “ordinary object”? To some extent, the answer is a matter of definition.
However, we can notice that phonons, rotons, and vortex rings all correspond to somewhat
peculiar limits of our general action (8). Phonons have small momenta (p � p∗) but large
velocities (v ' cs), rotons and vortex rings have small velocities (v � cs) but large momenta
(p ' p∗ and p � p∗.) We can thus define an ordinary object in our point-particle limit
as a particle described by an action of the general form (8), but with an ordinary v → 0,
p→ 0 limit: at least at low speeds, we want p ∝ v. We thus have (in the presence of generic
perturbations in the superfluid)

Sobj =

∫
dt
[
− E0(X) + 1

2
Meff(X)|~̇x− ~u|2 + . . .

]
, (40)

where the dots stand for higher powers of |~̇x−~u|, which we expect to be suppressed by inverse
powers of cs. Our definition of an object tells us nothing about the structure of the action
at high (relative) speeds, which suggests that there might not be any fundamental difference
between ordinary objects and more general excitations at high speeds.

The E0 term in the action above measures the rest energy of the object. It can depend on
the local value of X, which is related to the local pressure. This is obvious for a compressible
object—such as a balloon—but in fact the X-dependence of E0 is associated which much
more general effects, as we will see in Sec. 5. The coefficient of the kinetic energy Meff also
depends on the local value of X, and in general can be very different from the mass of the
object in empty space: on general grounds, one expects the interactions between the object
and the surrounding superfluid to yield contributions to Meff of order of the mass of the
fluid displaced (see e.g. [20], §11, Problem 1). In our formalism, these come from a classical
self-energy diagram in which the object exchanges a π field with itself.

3 A check: phonon processes

As a check of our point-particle formalism, we will now consider two processes involving
phonons, and show that they match the results obtained from the effective field theory de-
scribed by (4). There is in fact a nontrivial overlap of the regimes of validity of the two
effective theories: Our point-particle theory is valid for a phonon of momentum p interacting
with much longer bulk modes, such as phonons with typical momenta k � p; the P (X) effec-
tive field theory is valid for any number of low-energy phonons, with momenta much smaller
than the UV cutoff p∗ ∼ 1/a. If we consider processes with one incoming and one outgoing
phonon with typical momenta p� p∗, and any number of much softer incoming or outgoing
phonons, we should be allowed to use either theory. We will call ‘hard’ the former phonons,
and ‘soft’ the latter.
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As a first application, consider the decay of a hard phonon into a hard one and a soft
one. This is nothing but Cherenkov sound emission by the hard phonon. It is kinematically
possible in helium 4, because the phonons’ dispersion law is E = csp+αp3 + . . . , with positive
α, and so hard phonons have faster propagation speeds than soft ones. In both descriptions,
there is only one Feynman diagram contributing to this process to leading order.

In the P (X) theory, we need the expansion of the action up to cubic order in π:

S =

∫
d4xP (X)→

∫
d4x

ρ

c2
s

{
1

2

[
π̇2 − c2

s(~∇π)2
]

+
g3

3!c2
s

π̇3 − 1

2
π̇(~∇π)2 + . . .

}
, (41)

where g3 and all the gn’s below are equation of state-dependent dimensionless coupling con-
stants defined as

gn = c2(n−2)
s P (n)/P ′′ , (42)

evaluated at the X = µ/m equilibrium value, and ρ and cs are also equilibrium values.

Denoting by ~k and ~p the momenta of the outgoing soft phonon and of the incoming hard one,
and using the fact that k � p, we find that the probability amplitude M for the process
under consideration is given at lowest order by the following Feynman diagram:4

iM' ' 2c2
s√
ρ
p2k

[
cos θ + 1

2
(1− g3)

]
, (43)

with θ the angle between the two momenta. The three dashed lines in this diagram represent
the three phonons involved in the process—one incoming (hard) and two outgoing (one hard
and one soft). The final expression for this diagram follows from the cubic terms in the
Lagrangian (41) using standard quantum field theory techniques (see e.g. [21] for a pedagogical
discussion of Feynman diagrams, albeit in a relativistic context). Im particular, notice how
the three momenta p2k (two hard, one soft) follow from the three derivatives in each cubic
term.

The decay rate associated with the probability amplitude in Eq. (43) is

dΓ =
1

2E
|M|2dΠf (44)

=
c2
sp

2k2

ρ

[
cos θ + 1

2
(1− g3)

]2 × d3k

(2π)3 2csk
× (2π)δ

(
E − (E ′ + ω)

)
, (45)

where in the last line we have used the momentum-conserving delta to integrate over the final
hard phonon’s momentum. The energy-conserving delta can be simplified in the small k limit:
from E ′ = E(|~p− ~k|), we get

δ(E − (E ′ + ω)) ' δ(ω − ~v0 · ~k) , (46)

where

~v0 =
∂E

∂~p
(47)

4Notice that each external phonon line comes with a factor of cs/
√
ρ because our π field is not canonically

normalized.
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is the hard phonon’s group velocity. This gives the usual Mach-cone condition for Cherenkov
radiation,

cos θ = cs/v0 . (48)

Integrating over the solid angle we finally get the emission rate per unit frequency:

dΓ

dω
=

p2

16πρc3
s

(3− g3)2 ω2 , (49)

where we took the limit v0 → c+
s . Notice that the final state phase space is nonzero even in

this limit, that is, even if one neglects the higher order corrections to the dispersion law that
make the decay possible in the first place.

Consider now the same process in the point-particle effective theory. To this end, we need
to expand the action (22) in powers of the external field π and read off the terms linear in π:

Sphonon →
∫
dt p
(
v̂0 · ~∇π − c′sπ̇

)
, (50)

where c′s is the X-derivative of cs. Treating the hard phonon as a source and neglecting its
change in momentum from initial to final state, the probability amplitude for emission of a
soft phonon is given by the following Feynman diagram:

iM' ' cspk√
ρ

(cos θ + c′scs) . (51)

Here, the double lines represent the incoming and outgoing hard phonon, whereas the dashed
line represents the outgoing soft phonon. We have denoted the hard phonon with a different
kind of line compared to the Feynman diagram in (43) to emphasize the fact that hard and
soft phonons have a different status in the point-particle theory. The single dashed line in
(51) corresponds to the single factor of π that appears in Eq. (50). In the final expression,
the overall factor of cs/

√
ρ follows from the non-canonical normalization of the field π (see

previous footnote) whereas the factor of k comes from the derivative acting on π (the time
derivative also contributes a factor of cs, as dictated by the dispersion relation of the soft
phonon).

Using c2
s = dP/dρ, we can rewrite c′s as

c′s =
(1− g3)

2cs
, (52)

so that the amplitude in Eq. (51) becomes

iM =
cspk√
ρ

[
cos θ + 1

2
(1− g3)

]
. (53)

We recognize the same angular dependence as in (43), but with different overall normalization
and dependence on p and k. This had to be expected, for the two computations correspond to
formally different processes from an S-matrix viewpoint: (43) corresponds to a 1→ 2 process,
whereas (53) corresponds to a 0→ 1 process.
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To compare the two results we should compute the rate, which is physical and independent
of how we normalize the states. Notice that in the point-particle theory, the only conservation
delta function we have is

(2π)δ(ω − ~v0 · ~k) . (54)

This is because in the background of a particle moving at constant velocity, ~x0(t) = ~v0t, spatial
and time-translations are broken down to this particular combination. This is made explicit
by considering the structure of a generic term in the world-line action involving external fields
as well as point particle degrees of freedom:∫

dtf(~x0(t), t) =

∫
dt

d3k

(2π)3

dω

(2π)
f̃(~k, ω) ei

~k·~v0te−iωt (55)

=

∫
d3k

(2π)3

dω

(2π)
f̃(~k, ω) (2π)δ(ω − ~v0 · ~k) . (56)

The rate associated with (53) thus is

dΓ = |M|2dΠf =
c2
sp

2k2

ρ

[
cos θ + 1

2
(1− g3)

]2 × d3k

(2π)3 2csk
× (2π)δ(ω − ~v0 · ~k) , (57)

in perfect agreement with Eq. (44).
Consider now a slightly more complicated process: elastic hard phonon-soft phonon scat-

tering. To simplify the algebra somewhat, let’s assume that we have an head-on collision5,
i.e. k̂ = −p̂.

For the P (X) theory, the relevant Feynman diagrams are those in Fig. 2. Unlike in the
previous case, now there is more than one diagram contributing to the probability amplitude
at lowest order in perturbation theory (i.e., at tree-level in particle physics parlance). These
diagrams all have four external legs, representing the four phonons involved in a scattering
process (two incoming, two outgoing). The diagrams built out of cubic vertices can again be
calculated using the cubic action in Eq. (41). The first diagram though consists of a vertex
with four legs, and to calculate it we will need the expansion of the action up to quartic order.
The relevant quartic terms are:∫

d4x
ρ

c2
s

{
g4

4!c4
s

π̇4 − 1

4c2
s

π̇2(~∇π)2 +
1

4!
(~∇π)4

}
. (58)

By adding the contributions of all four diagrams in Fig. 2, we find the tree-level scattering
amplitude to be

iM =
2ic2

s

ρ
× 1− g3 − g2

3 + g4 − (1 + g3) cos θ

1− cos θ
× p2k2 , (59)

where k is the incoming soft momentum, p is the incoming hard momentum, and θ is the angle
between the momentum of the hard phonon and that of the outgoing soft one. We have also
used that, by conservation of energy and momentum, the outgoing soft momentum is equal
to

k′ ' 2k

(1− cos θ)
(60)
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Figure 2: Lowest order contributions to phonon-phonon scattering in the P (X) theory.

in the limit of small k and k′ (compared to p).
On the other hand, for the point-particle theory, if we treat again the hard phonon as

an external source, the diagrams are those in Fig. 3, with the understanding once again
that the double (dashed) line represents the hard (soft) phonon. Notice that, besides the
straight double lines, the third diagram also contains wiggly double lines, whose meaning we
are now going to explain. The third diagram arises because of a technical subtlety: even
in the k � p limit, it is incorrect to treat the hard phonon as an external source as far as
intermediate states are concerned. This is because in the point-particle theory expanded about
the unperturbed trajectory ~x(t) = ~v0 t, the perturbations δ~x(t) of the trajectory are gapless—
they are the Goldstone modes of spontaneously broken translations—and can thus be excited
at arbitrarily low energies. It turns out that their contribution as intermediate states to the
amplitude under study is of the same order as the other contributions of Fig. 3, and should
thus be kept (the same is true for, e.g., low frequency Compton scattering in QED.) The same
holds for the fluctuations of p, since p is one of the canonical conjugate variables of ~x. That
is why we also need to consider the third diagram in Fig. 3, in which the wiggly double line
represents the propagator of the fluctuations in the trajectory of the hard phonon. Notice
finally that there is no point-particle analog of the fourth diagram in Fig. 2. This is because
in our point-particle approach the external hard phonon lines do not actually correspond to
asymptotic states—they are just a visual aid to make the physical meaning of this diagram
more transparent.

In order to calculate the first two diagrams, we need to expand the point-particle action
(22) up to quadratic order in π:

Sphonon '
∫
dt p

{
v − cs − c′sπ̇ + v̂ · ∇π + 1

2

[
1
v
P ij
⊥ ∂iπ∂jπ + c′s(∇π)2 − c′′s π̇2

]}
, (61)

where we have simplified the notation by defining ~v ≡ ~̇x and P ij
⊥ = δij− v̂iv̂j. Setting ~v = csv̂0,

we find the following on-shell results for the first two diagrams in Fig. 2:

= −2icsp0k
2

ρ

[
c′scs cos θ + c′′sc

3
s

1− cos θ

]
(62a)

=
icsp0k

2

ρ
(1 + csc

′
s)(c

′
scs − cos θ)

1 + cos θ

(1− cos θ)2
(62b)

5In systems with boost invariance, this corresponds to a choice of reference frame. Here however boost
invariance is broken by the medium, and so this assumption corresponds to a specific choice of initial state.
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Figure 3: Lowest order contributions to phonon-phonon or roton-phonon scattering in the effective
point-particle theory.

Remember again that we are considering a head-on collision. It is worth to point out that
the second diagram reproduces, up to an overall constant, the contribution coming from the
second diagram in Fig. 2. This is known as the “u-channel” contribution in high energy
physics parlance. This result should not be surprising. In fact, each of these two diagrams
is given by the product of three factors—two vertices and one propagator. The propagators
and the bulk vertices are identical for the two diagrams, and our discussion of phonon decay
has shown that the world-line vertex reproduces the physics of the bulk vertex. The fact that
the soft phonon interacting with the world-line is on-shell for the decay process and off-shell
in the case of scattering is inconsequential: matching in effective field theories can always be
performed on- or off-shell [22].

To compute the δ~x and δp propagators that enter the third diagram in Fig. 3, we need
the point-particle action expanded to quadratic order in δ~x, δp and to zeroth order in π:

Sphonon ⊃
∫
dt

1

2

[p0

cs
P⊥ij δẋ

iδẋj + 2(v̂0 · δ~̇x) δp
]
. (63)

The associated propagators are

〈δp δp〉 = 0 , 〈δp δ~x〉 = −〈δ~x δp〉 = − v̂0

ω
, 〈δxi δxj〉 =

cs
p0

i

ω2
P⊥ij . (64)

Moreover, to compute the new interaction vertices, we also need to keep all the δ~x-π bilinear
terms: ∫

dt

{
δp(v̂0 · ∇π − c′sπ̇) +

p0

cs
P ij
⊥ δẋi∂jπ − p0c

′
sδ~x · ∇π̇ + p0v̂

i
0δx

j∂i∂jπ

}
. (65)

The new contribution to the scattering amplitude thus is

=
icsp0k

2

ρ
(1− csc′s)(c′scs + cos θ)

1− 3 cos θ

(1− cos θ)2
(66)

Adding this result together with the diagrams in equations (62) we find the following total
amplitude:

iM =
2icsp0k

2

ρ

(csc
′
s − 1) cos θ + (csc

′
s)

2 − c3
sc
′′
s

1− cos θ
(67)
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Using now the fact that

c′′s = − 1

4c3
s

(
1− 3g2

3 + 2g4

)
(68)

together with eq. (52), we can rewrite this amplitude as

iM =
icsp0k

2

ρ
× 1− g3 − g2

3 + g4 − (1 + g3) cos θ

1− cos θ
. (69)

As we can see, this agrees with the result (59) we obtained from the P (X) theory up to
an overall normalization, as in the case of Cherenkov radiation. Once again, though, this
discrepancy disappears once we calculate a physical quantity such as the cross section. The
two theories require different kinematical factors to relate the amplitude to the cross section,
because the asymptotic states are different. Once such factors are taken into account, the
cross sections are the same and are given by6

dσ

dΩ
=

p2k4

32π2c2
sρ

2

[
1− g3 − g2

3 + g4 − (1 + g3) cos θ

1− cos θ

]2

, (70)

with p and k denoting the incoming hard and soft momenta respectively.
We thus see that, for kinematical configurations such that both effective theories can be

applied, our effective point-particle theory is equivalent to the more standard P (X) effective
field theory. The only technical subtlety one should consider is that fluctuations of the point
particle’s trajectory contribute as intermediate states in scattering amplitudes, even in the
limit in which the point particle is much harder that the bulk modes it interacts with. We are
now ready to apply this know-how to rotons, regarding which the P (X) effective theory has
nothing to say. We also refer the reader to Appendix B, where we sketch how to describe in
our formalism the emission and scattering of soft phonons by a generic particle or point-like
object.

4 Roton-phonon scattering

Let us now turn our attention to the scattering of a soft phonon off a roton. In order to discuss
this process, we will use the action (30) where p̂ has not been integrated out. The relevant
diagrams describing this scattering process at lowest order are again the ones in Fig. 3, where

6 We are implicitly using the so-called relativistic normalization for asymptotic states (see related comments
in [23]). So, for the point-particle theory (a 1→ 1 process), we have

dσ =
1

2ω
× 1

2cs
× |M|2 × 2πδ(ωi − ωf − ~v0 · (~ki − ~kf ))× d3kf

(2π)32ωf
,

where the conservation δ-function is the appropriate one for world-line processes (see eq. (54)), whereas for
the P (X) theory (a 2→ 2 process) we have

dσ =
1

(2ω)(2csp)
× 1

2cs
× |M|2 × (2π)4δ(cspi + ωi − cspf − ωf )δ3(~p+ ~k − ~pf − ~kf )× d3kf

(2π)32ωf

d3pf
(2π)32cspf

.
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now the double line stands for a roton rather than a hard phonon. In order to calculate
these diagrams, we will need linear and quadratic couplings of the phonon field to the roton
worldline. These can be easily obtained by expanding the Lagrangian (30) in powers of π:

Lroton ' L0 + L1 + L2 , (71)

with

L0 = −∆ + p∗(~̇x · p̂) +
m∗
2

(~̇x · p̂)2 (72a)

L1 = π̇L′0 + ~∇π · ~p (72b)

L2 = 1
2
π̇2L′′0 − 1

2
(~∇π)2L′0 + π̇ ~∇π · ~p ′ + 1

2
m∗(~∇π · p̂)2, (72c)

We have simplified the notation by introducing the total momentum of the roton, ~p = (p∗ +
m∗~̇x · p̂)p̂ and, as in the previous sections, primes denote derivatives with respect to X,
evaluated on the X = µ/m background.

For a roton with
~̇x = v0 p̂0 , ~p = p0 p̂0, (73)

we have

= −~k · ~p0 + ωL̄′0 (74a)

= i
[
~k1 · ~k2 L̄

′
0 − ω1ω2L̄

′′
0 −m∗(~k1 · p̂0)(~k2 · p̂0) + (ω1

~k2 · ~p ′0 + ω2
~k1 · ~p ′0)

]
, (74b)

where by convention all the ω’s and k’s are incoming (and related by the conservation delta-
function (54)), and we have denoted by L̄0 the on-shell value of L0 calculated on the solution
(73).

As remarked in the previous section, in general we also need to consider contributions
coming from intermediate fluctuations of the point-particle trajectory. For the scattering
process we are considering, these effects are captured by the last diagram in Fig. 3. In order
to calculate it, we need the propagator for the fluctuations δ~x and δp̂ of the trajectory. To
this end, we expand L0 up to quadratic order to find

L
(2)
0 ' 1

2
m∗(δ~̇x · p̂0)2 + p0 δ~̇x · δp̂− 1

2
p0v0 δp̂ · δp̂. (75)

We then invert this kinetic term to find the propagator, keeping in mind that δp̂ contains only
two independent components because p̂ has unit norm. It is easier to work with a slightly
redundant parametrization of the propagator that consists of a 6 × 6 matrix acting on the
(δ~x, δp̂) space and satisfying the constraints

p̂i0〈δp̂iδp̂j〉 = 0, p̂i0 〈δp̂iδxj〉 = p̂i0 〈δxjδp̂i〉 = 0 , (76)

which, to the order we are working, implement the constancy of p̂ · p̂. Then, the propagator
for the fluctuations of the roton trajectory is

=

(
iv0P ij

ω2p0
+

ip̂i0p̂
j
0

ω2m∗
− P ij

ωp0
P ij

ωp0
0

)
, P ij = δij − p̂i0 p̂

j
0. (77)
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The Feynman rules for the vertices that appear in the third diagram are obtained by expanding
L1 up to linear order in δ~x and δp̂. In Fourier space, this yields

=

(
−i~k(~k · ~p0 − ωL̄′0) + iω̃p̂0(m∗~k · p̂0 − ωp′0)

−p0
~k

)
, (78)

where ω̃ ≡ ω − ~v0 · ~k is the frequency of the δ~x, δp̂ perturbation, and the phonon’s frequency
and momentum are again incoming. Physically, this diagram describes the perturbation that
an incoming phonon induces on the trajectory of a roton.

We are now ready to combine all the ingredients we have derived so far and use them to
calculate the Feynman diagrams in Fig. 3. Denoting with ωi and ~ki (ωf and ~kf ) the frequency

and momentum of the incoming (outgoing) phonon, and with ~q ≡ ~ki − ~kf the momentum
transfer, we find

=
ic2
s

ρ

[
ωfωiL̄

′′
0 − ~kf · ~kiL′0 +m∗(~ki · p̂0)(~kf · p̂0)− (ωi~kf · ~p ′0 + ωf~ki · ~p ′0)

]
(79a)

= −2i

ρ

(
~ki · ~kf +

c′s
cs
ωiωf

)
(~v0 · q̂)(L̄′0~v0 − ~p0) · q̂ (79b)

= −ic
2
s

ρ

{
~k⊥i · ~k⊥f

[
v0

ω2p0

(~kf · ~p0 − ωf L̄′0)(~ki · ~p0 − ωiL̄′0) +
(~ki + ~kf ) · (~p0 − ~v0L̄

′
0)

ω

]

+
1

ω2m∗

[
(~kf · ~p0 − ωf L̄′0)(~kf · p̂0) + ω̃(m∗~kf · p̂0 − ωfp′0)

]
(79c)

×
[
(~ki · ~p0 − ωiL̄′0)(~ki · p̂0) + ω̃(m∗~ki · p̂0 − ωip′0)

]}
,

where ~k⊥ is the component of ~k perpendicular to ~v0. Notice also that, like before, there is a
factor of cs/

√
ρ associated with each external phonon line.

We can now use the total amplitude—obtained by adding the three results above—to
calculate the scattering cross section. For simplicity, we will restrict ourselves to a process in
which the roton is at rest, v0 = 0. In this case, the diagram in eq. (79b) vanishes, and the
phonon frequency is conserved:

ki = kf ≡ k , ωi = ωf = csk . (80)

We should stress once more that this is not just an innocuous choice of reference frame: since
boosts are spontaneously broken by the medium, the scattering amplitude depends on the
velocities of the excitations with respect to the medium, and not just on their relative velocity
like in a scattering process in vacuum. In order to make the comparison with earlier results [7]
easier, we will trade X-derivatives for derivatives with respect to the density,

d

dX
=
dP

dX

dρ

dP

d

dρ
=

ρ

c2
s

d

dρ
. (81)
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Then, the total amplitude reduces to

iM
∣∣
v0=0

=

− icsp∗k
2

ρ

{
(k̂i · k̂f )(k̂i + k̂f ) · p̂0 +

p∗
m∗cs

(k̂i · p̂0)2(k̂f · p̂0)2 +
ρ2

csp∗

[
d2∆

dρ2
+

1

m∗

(dp∗
dρ

)2
]

+B · ρ

p∗cs

d∆

dρ
− ρ

m∗cs

dp∗
dρ

[
(k̂i · p̂0)2 + (k̂f · p̂0)2

]}
, (82)

where

B ≡ 1− 2
ρ

cs

dcs
dρ

+ (k̂i · p̂0)(k̂f · p̂0)

[
2 +

ρ

m∗c2
s

d∆

dρ
+

p∗
m∗cs

(k̂i + k̂f ) · p̂0

]
(83a)

− ρ

m∗cs

dp∗
dρ

(k̂i + k̂f ) · p̂0 .

The differential cross section is given in terms of this amplitude by7

dσ

dΩ
=
|M|2

16π2c4
s

. (84)

The cross section for roton-phonon scattering was first calculated by Landau and Kha-
latnikov (LK) [7] in the limit of small d∆/dρ. The first line in our total amplitude (82)
reproduces exactly their result. However, the second line of our amplitude introduces some
corrections: while the first term, proportional to d∆/dρ, was consistently neglected in LK’s
approach, the second term should have been kept. We are quite confident of this result, since
we have derived it also starting from the action in eq. (29), as opposed to the one in eq. (30)
used in this section. The action (29) leads to different Feynman rules, but the final result
for the total amplitude remains the same.8 Using standard kinetic theory arguments, one
can relate the phonon-phonon and roton-phonon cross sections to macroscopic observables,
such as the temperature dependence of viscosity [8]. Hence, our corrections have potentially
observable consequences.

5 On floating and sinking

Let us now turn our attention to a question that is probably quite natural for a reader with
a high energy background, but it’s admittedly a bit unusual in a condensed matter context:
how does gravity act on a medium’s excitations, such as phonons and rotons? For ordinary
objects immersed in a generic fluid we have the Archimedean principle, but it is not obvious
how to apply that to more general “objects”: what is the volume displaced by a phonon or a
roton? And what are their gravitational masses?

The effect of gravity on sound waves can easily be understood using heuristic arguments
based on classical wave mechanics.9 An external gravitational field gives rise to a pressure

7This cross-section is defined similarly to the one for phonon-phonon scattering (see footnote 6), except
that here the relative velocity in the initial state is cs rather than 2cs.

8In fact, after this paper was completed, the same result was also found in [24].
9We thank Eric Cornell for discussions about this point.
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gradient in the fluid, which in turn induces a gradient in the sound speed. Consider now a
wavepacket propagating along a surface of constant pressure. The upper and lower parts of
this wavepacket will move at slightly different speeds, and as a result its trajectory will bend
in the direction opposite to that of the sound speed gradient. The sound speed is usually
larger in regions of larger pressure10, and so sound will tend to float rather than sink. It is
thus natural to expect that phonons—the quanta of sound—want to float. But what about
inherently quantum mechanical excitations such as rotons?

The effective point-particle theory developed in Sec. 2 is perfectly suited to tackle this
question. Essentially, this is because it is constructed starting from considerations involving
spacetime symmetries, and can thus be extended straightforwardly to incorporate gravitational
phenomena, since gravity is the gauge field for spacetime symmetries. As shown in detail in
Appendices C and D, the effect of an external gravitational potential Φ(x) on a non-relativistic
superfluid and on the particles living in it is captured by a simple Φ-dependent shift of the
chemical potential, or, equivalently, of our variable X:

X = µ/m+ π̇ − 1
2
(~∇π)2 − Φ. (85)

For a reader familiar with trapped superfluids, this shift of the chemical potential will be
reminiscent of the way in which trapping potentials are usually included in the Gross-Pitaevskii
model (see e.g. §4.4 of [25]).11 Indeed, a gravitational potential can always be interpreted
as a (admittedly, quite weak) trapping potential of sorts. However, we should stress that
the rule-of-thumb for trapping potentials is derived at weak coupling—which is the regime in
which Gross-Pitaevskii is applicable—whereas (85) is completely general and can be derived
without making any assumption about the underlying physics that gives rise to the superfluid
state.

For what follows, it is also instructive to realize that, when applied to a superfluid at
rest, the prescription (85) is nothing but a rewriting of hydrostatic equilibrium in a static
gravitational field. In fact, setting the perturbations of the superfluid to zero, π = 0, we have
X = µ/m − Φ(~x). According to our effective theory the superfluid density and pressure are
ρ = P ′(X) and P = P (X) (see eq. (5)), and thus it follows immediately that

~∇P = −ρ~∇Φ , (86)

which is the hydrostatic equilibrium condition. This means that, when applied to the effective
point-particle theory for particles living in the superfluid, the shift (85) describes the net
effect of gravity onto these particles: it includes the direct gravitational pull as well as the
buoyant force of Archimedean fame, because the pressure gradients induced by gravity are
automatically taken into account.

Let’s first see explicitly how this works in the case of an ordinary object, which we are
all familiar with. Performing the replacement (85) in the action (40), setting to zero the π

10For instance, for zero-temperature liquid helium cs ∼ 1/ma ∝ ρ1/3, with a the interparticle separation,
and thus

dc2s
dP

=
1

c2s

dc2s
dρ

> 0.

11We are grateful to Angelo Esposito for pointing this out to us.
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perturbations, and expanding to first order in Φ we get

Sobj →
∫
dt
[
E ′0 Φ + 1

2
Meff ~̇x

2 + . . .
]
, (87)

where the prime denotes a derivative w.r.t. X and we neglected terms of order Φẋ2, which in
the non-relativistic limit are subleading compared to those that we have kept. The equation
of motion for our particle reads

d~p

dt
= E ′0~∇Φ , ~p = Meff ~̇x . (88)

Comparing this to the Archimedean principle, we see that E0(X) must be such that

E ′0(X) = −
(
M(X)− V (X)ρ(X)

)
, (89)

or, equivalently,

E0(X) = −
∫
dX
(
M(X)− V (X)ρ(X)

)
, (90)

where M is the mass of the object, and V the volume displaced, both evaluated at the local
value of X (we keep a potential X-dependence in M for reasons that will be relevant in the
example below.) However, unless we know in advance the mass and the displaced volume for
our object, our effective point particle theory shows that in general there is no clear physical
distinction between the two contributions to the force: the two quantities only appear in the
combination E ′0(X). This is also related to the manipulations that we performed in Eq. (10): a
mass parameter for the standard, empty space-like kinetic and gravitational energies, eqs. (9)
and (147), can be completely reabsorbed into our more general structure (8).

Perhaps the following example will clarify the arbitrariness of the gravitational/buoyant
splitting of the net force: consider a sponge. In empty space, when it’s dry, it’s easy to
determine its mass, but essentially impossible to determine its “solid” volume. Once we
immerse it water and it gets completely soaked, the Archimedean principle formally applies,
but in practice we do not know what the displaced volume is. There is a completely equivalent
description in which we never talk about the dry sponge in empty space, but only about the
soaked one in water: we can assign a net mass to it (sponge + soaked up water), which
we do not know how to determine, a displaced volume, which now is easy to compute in
principle—say the volume of a parallelepiped if the sponge has that macroscopic shape—and
again the Archimedean principle applies. Clearly, an experimenter who never had access to
the dry sponge and who does not have enough spatial resolution to determine that it’s made
of porous material, will adopt this second viewpoint. In going from one description to the
other the mass of the water soaked up by the sponge moves around as far as the Archimedean
principle is concerned: it moves from the buoyant term to the gravitational term. But the net
buoyancy, which is the only measurable thing in water, remains the same.

As a further check, consider the gravitational field produced by an object immersed in a
fluid. To simplify the discussion, consider the case in which we have a big self-gravitating
sphere of an incompressible fluid of given density ρ, and we place at its center a much smaller
rigid sphere of total mass M and volume V . The Poisson equation in the presence of the
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object reads

∇2Φ = 4πG
(
ρ θ(r −R) + ρobj θ(R− r)

)
(91)

= 4πG
(
ρ+ (ρobj − ρ) θ(R− r)

)
, (92)

where ρobj is the density of our object, and R its radius. In the point-particle limit, we can
perform the replacement

(ρobj − ρ)θ(R− r)→ δ3(~x)(M − ρV ) , (93)

as can be seen from integrating both sides in d3x. The Poisson equation thus reduces to

∇2Φ = 4πG
(
ρ+ (M − ρV )δ3(~x)

)
, (94)

from which we see that, even as far as the production of gravitational fields goes, the coupling of
our material object to gravity is determined solely by the combination (89), with no physically
relevant distinction between the two individual contributions.

All this is reassuring for us, because for more general “objects” such as our excitations,
there are no obvious candidates for masses and displaced volumes. Fortunately, all the infor-
mation that we need is already contained in the actions that we wrote down. In particular,
in the presence of gravity we will derive for our excitations equations of motion of the form

d~p

dt
= −mg

~∇Φ , (95)

where ~p is the excitation’s momentum, and mg a quantity playing the role of what−E ′0 is for an
ordinary object. This follows simply from the fact that, to first order in Φ, our Hamiltonians
have the general structure H(~p, ~x) = H0(|~p |) + mg(p)Φ(~x). Given the discussion above, we
will call mg the “net gravitational mass” of the excitation in question.

5.1 Phonons

For phonons, performing the replacement (85) and setting to zero the π perturbations, we get

Sphonon →
∫
dt p
[
|~̇x| − cs(µ/m− Φ)

]
. (96)

By varying this action w.r.t. p we recover the constraint that the phonon must move at the
speed of sound, which now depends on the position if Φ is not homogeneous. The variation
w.r.t. ~x yields instead

d~p

dt
= p c′s

~∇Φ, ~p ≡ p ~̇x/|~̇x| . (97)

Thus, the net gravitational mass of a phonon of momentum p is mg = −pc′s, and its sign
determines whether the phonon tends to sink (positive) or float (negative). Using c2

s = P ′/P ′′,
and ρ = P ′, we have

c′s =
dρ

dX

dcs
dρ

= ρ
dcs
dP

, (98)
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where the derivatives are understood to be taken at constant temperature (zero, in our case).
Experimental data show that the sound speed of superfluid helium-4 at low temperatures
increases with pressures [26]. This implies that phonons have negative net gravitational mass,
and thus tend to float, in agreement with the heuristic argument above. Notice that the effect
is small, but not incredibly so: on dimensional grounds one has c′s ∼ 1/cs ∼ 10−2 s/m, and
so a phonon traveling horizontally in the Earth’s gravitational field (∇Φ ∼ 10 m/s2) tends to
bend upwards at a rate

dθ

dt
∼ (10 s)−1 , (99)

where θ is the angle with the horizontal.
It is interesting to compare our effect to the standard refraction of sound waves in inhomo-

geneous media. For so-called stratified media (cs = cs(z), with z being the vertical), refraction
is usually phrased in terms of Snell’s law (see e.g. [27]),

cos θ

cs(z)
= const , (100)

where θ is again the angle with the horizontal. It is a matter of simple algebra to see that our
eq. (97) implies such a conservation law. In fact, this is just a combination of the conservation
laws for energy, cs(z)p = const, and for horizontal momentum, p cos θ = const, which apply
because time translations and horizontal spatial translations are unbroken. We thus see that
our effect is nothing but ordinary refraction in disguise. We find it interesting that within
our formalism this phenomenon is gravitational in origin, in the sense that it encodes the
net effect of gravity onto phonons, formally on the same footing as the net effect of gravity
(gravitational force + buoyant force) onto ordinary objects. We are not sure whether this
hints at something deep or trivial.

It is also interesting to compare our eq. (97) to the relativistic phenomenon of light bending
in vacuum. According to general relativity, the gravitational mass of a photon in the weak
field limit is also proportional to its momentum, and its equation of motion reads [28]

d~p

dt
' −2p

c
~∇Φ. (101)

Thus, the gravitational mass of photons is positive, which is why light bends towards rather
than away from massive objects. In other words, while phonons rise in a gravitational field,
photons fall in accordance with the equivalence principle. The effect on photons is also much
weaker, by a factor cs/c ∼ 10−6. What a difference a single letter can make!

5.2 Rotons

Let us now turn our attention to rotons. A roton in a static superfluid placed in a gravitational
field is described by the action (29) with ~u = 0 and X = µ/m− Φ, i.e.

SR,Lroton '
∫
dt
[
−∆(µ/m− Φ)± p∗(µ/m− Φ)|~̇x|+ 1

2
m∗(µ/m− Φ)|~̇x|2

]
. (102)
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Figure 4: Possible trajectories for rotons in a vertical gravitational field ~g = −gẑ. For all the
trajectories displayed, the horizontal component of the momentum, which is conserved, is directed
towards the right. The arrows point in the direction of forward time evolution. We truncated the
trajectories in the past and in the future when the rotons get too far from the roton minimum for
our approximations to apply, which for definiteness we characterized by |p − p∗|/p∗ > 30%. The
coordinates are in units of p2

∗/m∗mgg. According to the classification in the main text, we have
green = no turning points (px = 1.1 p∗); red = two turning points (px = 0.9 p∗); blue, right = one
turning point + metamorphosis (px = 0.69 p∗); blue, left = vice-versa (ditto). For comparison, we
are showing in dashed grey the trajectory of a normal object with parameters such that the curvature
and velocity at the top are the same as for our no turning point roton trajectory.

Recall that the + (−) sign in the Lagrangian refers to rotons with momenta on the right (left)
of the roton minimum. Varying this action w.r.t. ~x, we find

d~p

dt
= ∆′ ~∇Φ , ~v ≡ ~̇x , ~p ≡ (±p∗ +m∗v)v̂ , (103)

where we neglected terms of order Φv and Φv2, since for rotons v � cs. The net gravitational
mass of a roton thus is mg = −∆′, which following the same manipulations as above we can
rewrite as

mg = −ρd∆

dP
. (104)

Experimental results for helium-4 show that this is positive [29], suggesting that rotons tend
to sink. However, given the unconventional relationship between momentum and velocity,
determining the actual trajectory of a sinking roton can be quite complicated.

In practice, it is easier to first solve for the momentum as a function of time, and then to
integrate eq. (24) to find the trajectory. For a constant gravitational acceleration ~g ≡ −~∇Φ,
the momentum is simply

~p (t) = ~p0 +mg~g t , (105)

where ~p0 is the initial momentum. The velocity thus is

~̇x(t) =
~p0 +mg~g t

m∗

(
1− p∗
|~p0 +mg~g t|

)
, (106)
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Figure 5: Possible velocity-space trajectories for rotons in a vertical gravitational field. The same
conventions as in fig. 4 apply. The velocities are in units of p∗/m∗.

and this can be integrated analytically to yield ~x(t). The actual expression is not particularly
illuminating12, but for generic initial ~p0 the trajectory can be quite spectacular, with the roton
initially exhibiting an erratic behavior before deciding to sink to the bottom—see fig. 4.

One can gain some intuition into such a peculiar behavior by noticing that, depending
on the relative direction of ~p0 and ~g, and on whether p0 is bigger or smaller than p∗, the
velocity (106) can end up crossing zero. This happens whenever |~p0 + mg~g t| crosses p∗. At

that moment the direction of ~̇x relative to that of ~p changes sign, and, since this happens
while ~p is nonzero and evolving smoothly with time, this corresponds to a turning point in
the trajectory. In other words: ~p (t) is smoothly “sinking” as in (105), but by doing so it can
make the roton move between the left and the right of the roton minimum, thus inverting the
sign of its velocity.

Specifically, imagine extrapolating the trajectories to all times, past and future. The time-
evolution of the momentum, eq. (105), happens on a plane, and so does that of the velocity,
which is aligned or anti-aligned with the momentum. We can thus restrict to motion in the
x-z plane without loss of generality. Then, in going from t = −∞ to t = +∞, pz(t) spans
all possible values, whereas px is conserved, px(t) = p0,x for all t’s. We can thus classify these
extrapolated orbits by their px, which without loss of generality we assume to be positive.

12With px in units of p∗, t in units of mgg/p∗, and x and z in units of m∗mgg/p
2
∗, the solution for motion

in the (x, z) plane reads:

x(t) = pxt− px log
t+
√
p2x + t2

px
, z(t) = −t2/2 + (

√
p2x + t2 − px) . (107)
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Since |~p | =
√
p2
x + p2

z becomes large at large positive and negative times, because pz does,
we see that all orbits start and end on the right of the roton minimum. We also have that
|~p | ≥ px for all times. Keeping in mind that our approximations break down when we get too
far from the roton minimum, we thus see that trajectories can feature:

• No turning points: This happens for px > p∗. In this case |~p (t)| is always on the right
of the roton minimum.

• Two turning points: This happens for px < p∗, but with (p∗ − px) � p∗. In this case
|~p (t)| momentarily drops below p∗ at intermediate times, while staying always close to
the roton minimum.

• One turning point + Metamorphosis (or viceversa): This happens for px < p∗, but with
(p∗− px) ∼ p∗. In this case |~p (t)| drops below p∗ at intermediate times, but it decreases
so much that it ends up violating the condition p∗ − |~p | � p∗. At that point we are far
from the roton minimum, and our approximations break down. The roton has effectively
turned into something else. The reverse can also happen: a roton is created at time t = 0
with overall momentum |~p | < p∗, with negative pz, and with px substantially smaller
that p∗; the extrapolation back in time of its trajectory at some point would take it
too far to the left of the roton minimum for our approximations to be valid; however,
the forward time-evolution is within the regime of validity of our approximations, and
makes the roton experience one turning point and then sink.

Of course our approximations also break down at large times, both in the past and in the
future, because the momentum becomes much bigger than p∗ then. So, overall, during the
lifespan of our roton, we can have zero, one, or two turning points in its trajectory. All these
possibilities are depicted in position space and in velocity space in figs. 4 and 5.

On dimensional grounds, the timescale for all these phenomena to happen in the Earth’s
gravitational field is roughly the same as the one relevant for phonon bending,

τ ∼ 10 s . (108)

This is because mg = −∆′ ∼ m∗, and ~p changes by p∗ (in direction or magnitude) over a
time τ ∼ p∗/mgg ∼ cs/g. However, for an initially very slow roton with momentum p0 =
p∗(1 + ε) forming a small (positive) angle θ0 &

√
ε with the horizontal, the two-turning point

phenomenon happens on a parametrically shorter timescale,
√
ε τ , because the momentum only

has to change by δ~p ∼ p∗
√
ε. The typical velocities during this period are of order v ∼ εcs,

corresponding to typical displacements of order δx ∼ ε3/2csτ ∼ ε3/2 km, unfortunately still
too large to be relevant for experiments unless ε is extremely small.

6 Discussion and outlook

We have introduced an effective point-particle formalism to describe how particles—which
could be actual particles, collective excitations, or macroscopic objects alike—couple to long-
wavelength sound modes and bulk flows in an s-wave superfluid. We have explicitly checked
that when this formalism is applied to phonons it is equivalent to the usual approach based
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on a P (X) effective field theory. We also considered phonon-roton scattering, and corrected
earlier result by Landau and Khalatnikov as well as subsequent calculations based on similar
techniques [30, 31]. Purely on dimensional grounds, we would expect our corrections to the
scattering amplitude to have an O(1) impact on observable quantities such as finite temper-
ature transport coefficients. A kinetic theory calculation along the lines of [8] is required to
confirm this expectation, and we leave it for future work. Ultimately, since an alternative the-
oretical approach to rotons is presently not available, it is our hope that experiments will soon
be able to weigh in on this discrepancy, given that interactions between phonons and rotons
have already been the subject of very interesting experimental work [3, 32, 33, 34]. Possible
further applications of our formalism to liquid helium include analyses of phonon-mediated
interactions between rotons [35], of roton-roton bound states [36], of phonon emission by fast
rotons [37], and of light dark matter detectability [38].

We have also derived how a generic particle living in a superfluid couples to gravity.
Although the associated effects for liquid helium’s excitations in the Earth’s gravitational
field are probably too weak to be relevant for experiments, we wonder whether they could
be made big enough to be observable by simulating a much stronger gravitational field by
means of inertial forces, e.g. with a centrifuge13. Another possibility would be to look for
the same phenomena in superfluid ultra-cold quantum gases, whose trapping potentials, like
the gravitational one, can also be thought of as shifts in the chemical potential14. In all
these cases our formulae still apply, but the gravitational acceleration has to be replaced by
the appropriate one, that is, the centrifugal acceleration in the case of a centrifuge, and the
gradient of the trapping potential energy per unit mass in the case of ultra-cold quantum
gases. There could also be interesting applications to neutron star physics, where phonons are
expected to have interesting seismological consequences [39], and gravity is obviously much
stronger.

More in general, there are interesting consequences due to the fact that for a non-relativistic
superfluid an external gravitational field only appears as a shift of the chemical potential,

µ/m→ µ/m− Φ , (109)

and that the phonon field also enters the effective theory as a modulation of the local chemical
potential. These are particularly evident for ordinary objects immersed in our superfluid, for
which gravitational phenomena are more readily observable.

For instance, for a given object in a superfluid at equilibrium in the Earth’s gravitational
field, one could use a dynamometer to measure the net buoyancy, and then let the object go
and measure the associated acceleration. According to the discussion in sect. 5, these two
measurements yield the quantities E ′0 and Meff . However, if one now imagines expanding
the object’s action (40) in π perturbations, one immediately sees that precisely these two
quantities determine how our object couples to π at linear order and at low speeds. And, so,
by the simple gravitational experiment just described one can straightforwardly predict how
our object will be shaken by an incoming sound wave, or how, conversely, it will generate

13One should spin the system without producing vortex lines. In principle this can be achieved by setting
up a 1/r profile for the superfluid velocity, with r being the distance from the centrifuge axis. Clearly the
superfluid should be kept away from the r = 0 axis.

14We thank Angelo Esposito for this suggestion.
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sound waves if shaken or if its volume “pulsates.” In our approach these phenomena are
sensitive, respectively, to the combinations (Meff + E ′0)/Meff and Meff + E ′0, and to the time-
dependence of E ′0. One can easily check that, with a different parametrization, precisely the
same combinations enter the final results of [20], §11 and §74, which were derived by more
standard (and more laborious) hydrodynamical equations + boundary conditions techniques.

We will publish soon a more general analysis of how particles and small objects interact
with superfluids and normal fluids, including the effects associated with anisotropies and spin.
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A Roton stability

Consider a roton at rest, that is one with momentum ~p = p∗n̂ and energy E(p∗) = ∆. By
energy conservation, it can only decay to a combination of excitations (i = 1, . . . , N) with
lower energies, that is, excitations that, in the spectrum of fig. 1, lie to the left of p̄. Momentum
conservation reads

~p = ~p1 + · · ·+ ~pN , (110)

which in particular implies
p∗ = |~p | ≤ |~p1|+ · · ·+ |~pN | . (111)

Let’s now denote by cr the roton’s phase velocity ∆/p∗. It is a fact about superfluid helium
that all the excitations to the left of p̄ have a strictly larger phase velocity,

Ei
|~pi|

> cr , i = 1, . . . N . (112)

Using this in the conservation of energy,

∆ = E1 + · · ·+ EN , (113)

we get
crp∗ > cr|~p1|+ · · ·+ cr|~pN | , (114)

in clear contradiction with eq. (111). This proves that, purely because of kinematical reasons,
rotons at rest cannot decay.

Consider now a roton that has a small but non-vanishing group velocity. Its momentum
is ~p = (p∗ + δp)n̂, with |δp| � p∗, and its energy is E ' ∆ + δp2/(2m∗). It cannot decay to
excitations to the left of p̄ for the same reasons as above (the modifications to cr due to a
non-vanishing δp are negligible), but, by energy conservation, it could decay to a lower energy
roton with momentum ~p ′ = (p∗+δp′)n̂′ (with |δp′| < |δp|) plus a combination of soft phonons,
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with very low momenta compared to p∗. In other words, it could emit soft phonons and slow
down. Momentum conservation now implies

|δp | ≤ |δp′|+ |~p1|+ · · ·+ |~pN | , (115)

while energy conservation reads

δp2

2m∗
' δp′2

2m∗
+ E1 + · · ·+ EN . (116)

Using Ei = cs|~pi| for each phonon, these equations can be rewritten as

|~p1|+ · · ·+ |~pN | ≥ (|δp | − |δp ′|) (117)

|~p1|+ · · ·+ |~pN | '
1

2m∗cs
(|δp |+ |δp ′|)(|δp | − |δp ′|)� (|δp | − |δp ′|) , (118)

in clear contradiction with each other (we used that |δp|, |δp′| � m∗cs ∼ p∗). We thus see
that all excitations close to the roton minimum are absolutely stable.

B Generic point particle-soft phonon interactions

It is interesting to notice that interactions between point-like objects and soft phonons can
be described in full generality without the need to specify the form of the function f that
appears in the effective action (8). For example, to describe soft phonon emission (Cherenkov
radiation) all we need are the interactions that are linear in π,

fv (~∇π · v̂) + fX π̇ , (119)

whereas to describe soft phonon scattering we also need those that are quadratic in π,

1
2
(fvv − fv/v)(~∇π · v̂)2 + 1

2
(2fv/v − fX)(~∇π)2 + 1

2
fXX π̇

2 + fvX π̇(~∇π · v̂) , (120)

as well as those that are bilinear in δ~x and π,

fvX π̇(δ~̇x · v̂) + (fvv − fv/v)(δ~̇x · v̂)(~∇π · v̂) + (fv/v− fX)(δ~̇x · ~∇π) + fv δ~x · ~∇(~∇π · v̂) , (121)

where the subscripts on f denote derivatives with respect to its arguments, evaluated on the
background (constant ~v = v v̂ and X = µ/m). For scattering we also need the δ~x propagator,
which we can get from its quadratic action,

1
2
(fvv P

ij
‖ + fv/v P

ij
⊥ ) δẋiδẋj . (122)

The Feynman propagator thus is

〈δxiδxj〉 =
i

ω2 + iε

( 1

fvv
P ij
‖ +

v

fv
P ij
⊥

)
. (123)

Using these expressions, one can easily calculate emission rates and scattering cross-
sections following procedures identical to those of sects. 3 and 4.
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C Non-relativistic limit and coupling to gravity

In this Appendix we will derive the effective action (4) for a non-relativistic superfluid [6]
starting from its relativistic analog [40] and taking the formal c → ∞ limit. This limit was
also discussed in Appendix D of [11]. Here, however, we will implement it in a slightly different
way, taking into account also the coupling with a gravitational field. At the relativistic level,
this coupling is achieved by placing the superfluid in a curved spacetime. Hence, our starting
point will be the action

S =

∫
dtd3x

√
−g P (Xr), Xr =

√
−gµν∂µφ∂νφ, φ = µrt+ π , (124)

where the subscript ‘r’ stands for ‘relativistic’.
In order to make the non-relativistic limit more transparent, it is helpful to reintroduce

all factors of c explicitly. When c → ∞, we only need to keep track of the perturbation
to the (0, 0) component of the metric around Minkowski, which is related to the Newtonian
potential by δg00 = −2Φ/c2. It is also convenient to define the non-relativistic chemical
potential µ ≡ µr−mc2, where m is the mass of a helium atom. If we keep φ dimensionless as
in (124) and define Xr = c

√
−gµν∂µφ∂νφ so that it has units of energy, then Xr admits the

following well-defined non-relativistic limit:

Xr =
√

(1− 2Φ/c2)(mc2 + µ+ π̇)2 − c2(∇π)2 c→∞−→ mc2 + µ+

(
π̇ − (∇π)2

2m
−mΦ

)
. (125)

Thus, to lowest order in the derivatives the non-relativistic phonon field π and the Newtonian
potential Φ must always appear in the combination shown in parentheses, which can be
thought of as a local modulation of the chemical potential µ [41, 42]. We can also eliminate
m—a microphysics quantity, not directly accessible from hydrodynamical experiments—from
this combination of π and Φ, by rescaling the phonon field as π ≡ mπ̃. The non-relativistic
action then depends only on the combination

δX ≡ ˙̃π − (∇π̃)2

2
− Φ, (126)

which is independent of m and reduces to the result in eq. (4) once the Newtonian potential
is turned off (and tildas are dropped)15. Notice however that m reappears now in how δX
affects the local chemical potential, µ + mδX. This is because m is the proportionality
factor between mass density and number (or charge) density [6], and the normalization of the
chemical potential knows about that of the charge. We could decide to never talk about the
number of particles, and only about the total mass of the system, which, unlike the number,
is directly accessible by macroscopic measurements. In that case the associated chemical
potential would have units of energy per unit mass, like δX, and m would not appear anywhere
in the effective theory. This is probably the best choice of normalizations from an effective
field theory standpoint, but in fact, to make referring to experimental data more transparent,
we will stick to the usual definition of the chemical potential.

15Note that with our conventions Xr and δX have different units: the former has the dimensions of an
energy, while the latter has dimensions of a velocity squared, that is, energy per unit mass. Similarly, π is
dimensionless whereas π̃ has dimensions of an inverse mass.
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The RHS of eq. (125) shows that in order to couple a non-relativis tic superfluid to gravity
it is sufficient to shift the non-relativistic chemical potential: µ→ µ−mΦ. Note in fact that the
determinant of the metric in eq. (124) becomes trivial in the c→∞ limit. For a superfluid at
equlibrium, it is easy to understand the origin of this shift using a thermodynamic argument.
Let’s consider a region of space that contains a macroscopic number N of helium atoms,
and yet that is small enough so that the external gravitational potential Φ is approximately
constant. Each atom in this region acquires a potential energy mΦ. As a result, the total
Gibbs free energy at pressure P̄ becomes G(P̄ ) = G0(P̄ ) +NmΦ, where G0 is the Gibbs free
energy one would have at the same pressure but in the absence of gravity (we are setting the
temperature to zero, which is the case we are interested in). The total chemical potential then
is given by:

µ =
∂G

∂N

∣∣∣∣
P̄

= µ0(P̄ ) +mΦ, (127)

where µ0 is the chemical potential one would have without gravity. Thermodynamic equilib-
rium requires µ to be constant throughout the system [43].

The same result follows immediately from our EFT approach. For any given pressure P̄ ,
static equilibrium requires π = constant and so

P̄ = P (µ−mΦ) , (128)

since P (X) is nothing but the pressure (eq. (5) holds for a curved spacetime as well). Then,
we can invert the relation above to find

µ = P−1(P̄ ) +mΦ , (129)

which is precisely of the form (127), since P−1(P̄ ) is the chemical potential we would have
at pressure P̄ if Φ were zero. In the next Appendix, we will see that in fact the replacement
µ→ µ−mΦ is also the correct prescription to couple point-like particles such as phonons and
rotons to gravity.

D Effective action from the coset construction

We will now give an alternative derivation of the effective action for a point-like object moving
in a superfluid. Our discussion will be entirely based on symmetry considerations and rely on
the coset construction [44, 45] for spontaneously broken space-time symmetries [46, 47]. In
what follows we will assume familiarity with this technique. If necessary, we refer the reader
to Section 2 of [48] for a concise review.

The symmetry group of a non-relativistic (s-wave16) superfluid is simply the Galilei group.
Its generators satisfy the well-known commutation relations [49]

[Ji, Jj] = iεijkJ
k, [Ji, Kj] = iεijkK

k, [Ji, Pj] = iεijkP
k, (130)

[Ki, Pj] = −iδijM, [Ki, H0] = −iPi.
16For p-wave superfluids one needs to consider the spin as well, which, for non-relativistic systems with

negligible spin-orbit couplings, can be treated as an internal symmetry.
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The algebra above contains an additional central charge, M , compared to the Poincaré algebra.
This is just the total mass, which for non-relativistic systems is a conserved quantity. For
systems made of a single particle species, M is simply proportional to the particle number
Q, i.e. M = mQ, with m the mass of the particle.17 A superfluid state spontaneously breaks
some of the Galilei symmetries in a way that can be summarized as follows [5]:

unbroken =


H ≡ H0 − µQ
~P
~J

broken =

{
Q
~K

(131)

Boosts are broken because the superfluid admits a preferred reference frame—the one in which
it is at rest—and so is Q (this is the field theory analog of Bose-Einstein condensation) [5].

On the other hand, the ground state is still homogeneous and isotropic, which is why ~P and ~J
are unbroken, and it is an eigenstate of the combination H0 − µQ—the effective Hamiltonian
at finite chemical potential—which therefore is also unbroken.

Using the coset construction, one can derive the effective action (4) for a superfluid solely
from the Galilei algebra (130) and the symmetry breaking pattern (131). Let’s review very
briefly how this works in this simpler setting before turning our attention to the more involved
point-like particle case. A more pedagogical derivation of what follows can be found in [5].
Our starting point is the coset parametrization

Ω = e−itH+i~x·~P ei~η(t,~x)· ~Keiπ(t,~x)Q, (132)

out of which one can build the Maurer-Cartan form:

Ω−1∂µΩ = i
{
−δ0

µH + (δiµ + δ0
µη

i)Pi + ∂µη
iKi +

(
∂µπ − δiµmηi − δ0

µ

m

2
η2
)
Q
}
, (133)

which can be easily obtained by repeated use of the commutation relations (130). The fields

π and ~η are the Goldstone modes associated with the breaking of Q and ~K respectively, and
their “covariant derivatives” can be extracted [5] from the RHS of (133):

∇µπ = δ0
µ

(
π̇ +

m

2
η2 − ηi∂iπ

)
+ δiµ (∂iπ −mηi) (134)

∇µ~η = ∂µ~η. (135)

It is well known that s-wave superfluids at T = 0 have only one Goldstone mode—the super-
fluid phonon. In fact, the Goldstones ~η can be eliminated from the effective theory in a way
that is consistent with all the symmetries by imposing a so-called inverse Higgs constraint [50].
In our case, this amounts to setting to zero the spatial covariant derivative of π and solving
for ~η:

∇iπ = ∂iπ −mηi ≡ 0 −→ ηi =
∂iπ

m
. (136)

17Note that if we trade M for Q in the algebra, the mass m can always be removed by rescaling appropriately
the generators Ki and Pi. Since our derivation of the action for the Goldstone modes will solely depend on
the symmetry algebra and the breaking pattern, this is another manifestation of the fact that one doesn’t
need to know the mass of the elementary constituents (helium atoms, in our case) to describe their collective
excitations (phonons).
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Then, the only quantity that remains with at most one derivative per field is

∇tπ = π̇ +
m

2
η2 − ηi∂iπ = ∂tπ −

(∇π)2

2m
. (137)

which up to an inconsequantial factor of m is precisely the combination that appears in eq. (4).
In the Newtonian limit, the coupling with gravity is obtained by replacing ∂µ → ∂µ−iδ0

µΦM
in the definition of the Maurer-Cartan form [48, 51]. This replacement has the only effect of
changing the covariant derivative of π to:

∇µπ = δ0
µ

(
π̇ +

m

2
η2 − ηi∂iπ −mΦ

)
+ δiµ (∂iπ −mηi) . (138)

Thus, the inverse Higgs constraint remains the same as in eq. (136), and after expressing ∇tπ
solely in terms of π we recover the combination in parentheses on the RHS of (125).

Let us now turn our attention to the case of a point-like object moving in the superfluid
with some constant velocity ~v0 = v0x̂3, and let us determine how the action can depend on
perturbations of its trajectory. We take this as a starting point, rather than the case of an
object at rest, because it is more general: for instance, phonons can never be at rest. The
object in question will break additional symmetries compared to the ones already broken by
the medium. In fact, the overall system is no longer homogeneous, since we can think of
the object as some sort of impurity, nor isotropic, since the motion of the object defines a
preferred direction. The only symmetries that remain unbroken are therefore

H ′ ≡ H − v0P3, J3 . (139)

All other symmetries are spontaneously broken, and thus the coset parametrization is now
more involved and reads18

Ω(t) = e−itH
′
eiδ~x(t)·~P ei~η(t,~x(t))· ~Keiπ(t,~x(t))Qeiθ

a(t)Ja , (140)

with Ja = (J1, J2).19 Here, δ~x(t) should be thought of as fluctuations in the position of the
object around the background solution ~x0(t) = ~v0t. Similarly, θa(t) should be interpreted
as fluctuations of the direction of the particle’s trajectory. From this perspective, the θ’s
are in some sense redundant, and in fact we will be able eliminate them by imposing more
inverse Higgs constraints. Notice also that bulk fields such as π and ~η must evaluated at the
instantaneous position of the object, that is ~x(t) = ~v0t + δ~x(t). The Maurer-Cartan form
including the coupling with gravity is now

Ω−1
[ d
dt
− iΦ(t, ~x(t))M

]
Ω (141)

18The actions for relativistic and non-relativistic point-like particles in vacuum were derived using the coset
construction in [48, 52] and [53] respectively.

19Notice that our system will in general feature more than one symmetry breaking scale. In fact, Q and
~K (131) are broken by the medium at length scales of the order of the interatomic distance a; ~P and Ja are
instead broken by the object at a length scale of the order of its size R, which for phonons and rotons is
determined by the de Broglie wavelength, 1/p.
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and the relevant covariant derivatives are

∇tx
i = (ẋj + ηj)Rj

i(θa)− v0δ
i
3 (142)

∇tπ = π̇ − m

2
η2 −mΦ + ~̇x · (∇π −m~η). (143)

with Rij =
(
eiθ

aJa
)
ij

. These covariant derivatives have only a time component because the

only unbroken translations are those generated by H ′.
Using the solution to the bulk inverse Higgs constraint (136), we see immediately that

∇tπ reduces to the combination of bulk fields π and Φ that appears on the RHS of eq. (125).
Moreover, as long as v0 6= 0, we can also impose the inverse Higgs constraints

∇tx
a = (ẋj + ηj)Rj

a ≡ 0, (144)

and solve them to eliminate the Goldstones θa. The easiest way to achieve this is to realize
that, thanks to the properties of rotation matrices, we can regard Rj

1, Rj
2 and Rj

3 as three
othonormal vectors. From this viewpoint, the inverse Higgs constraint (144) implies that
(ẋj + ηj) ∝ Rj

3, and requiring that Rj
3Rj3 = 1 we find

∇tx
3 = |~̇x+∇π/m| − v0. (145)

Since the superfluid velocity in these units is ~u = −∇π/m, we thus see that the low-energy
effective action for a point-particle moving in a superfluid is

Sp.p. =

∫
dtf(π̇ − (∇π)2/2m−mΦ, |~̇x− ~u|), (146)

in complete agreement with the more heuristic arguments given in Sec. 2.
We should point out that the quantity (145) admits a well-defined expansion in powers

of the Goldstones δ~x and π only because we are expanding around a non-trivial background
~̇x = ~v0. Conversely, the constraint (144) doesn’t admit a local solution for θa when v0 = 0.
This statement is equivalent to the observation made in Sec. 2 that the variable p̂ cannot be
integrated out for rotons with zero velocity.

To conclude, notice that there is a subtlety similar to the one discussed around eq. (9).
Like in that case, we could add to the point-particle action a term of the form

−
∫
dtMgΦ , (147)

which is in fact the correct coupling to Newtonian gravity for a particle in empty space, Mg

being its gravitational mass. This term is invariant under the Newtonian gauge transforma-
tions Φ → Φ + const only up to total derivatives, which is why it’s not contemplated by the
structure (146). However, from general relativity we know that Mg must be the same as the
Mi appearing in (9)—both terms come from the non-relativistic limit of −Mi

∫
dt
√
gµν ẋµẋν .

And so, following exactly the same manipulations as in (10), the sum of (9) and (147) can be
completely reabsorbed into the structure (146).
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