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Using the semiclassical theory of electron dynamics, we derive a gauge-invariant expression for the
spin toroidization in a periodical crystal. We show that the spin toroidization is comprised of two
contributions: one is due to the configuration of a classical spin array, while the other comes from the
coordinate shift of the electron as spin carrier in response to the inhomogeneous magnetic field. We
then establish a direct and elengant relation between our spin toroidization and the antisymmetric
magnetoelectric polarizability in insulators. Finally, we demonstrate our spin toroidization in a
tight-binding model and show that it is a genuine bulk quantity.

There has been continuous interest in toroidal mo-
ments in crystals1–4, mainly due to their intriguing role in
various magnetoelectric effects5–11. A toroidal moment is
generally associated with a vortex-like structure of mag-
netic moments. Its spontaneous ordering characterizes a
ferrotoroidal state that may exhibit a non-vanishing mag-
netoelectric effect. The density of the toroidal moment,
called toroidization, also constitutes an essential build-
ing block in the free energy expansion in inhomogeneous
fields. However, despite its importance, a microscopic
theory of the toroidization based on quantum mechani-
cal wave functions is still missing.

In crystals the toroidization can arise from two sources,
the orbital and spin moments. Here we will focus only
on the contribution from spins12. By treating the spins
as classical vectors, it has been proposed that the spin
toroidization can be written as3,4

T =
gµB
2h̄V

∑
i

ri × si , (1)

where g is the gyromagnetic factor, µB is the Bohr mag-
neton, ri and si are the position and spin of each lattice
site, and V is the volume of the sample. There is also
a recent attempt to obtain a microscopic theory of the
spin toroidization by treating r and s as operators and
directly evaluating the expectation of Eq. (1) using Wan-
nier functions13. However, the resulting expression is not
gauge-invariant.

In this work, we develop a quantum theory of spin
toroidization in crystals. Using the semiclassical theory
of electron dynamics14,15, we obtain a gauge-invariant ex-
pression for the spin toroidization in terms of bulk Bloch
functions, which is amenable to implementation in first-
principles codes. By considering the molecular insulator
limit, we find that the contributions to the spin toroidiza-
tion consists of two parts with clear physical interpreta-
tions: one is due to the configuration of a classical spin
array, similar to Eq. (1), while the other comes from the
coordinate shift of the electron as spin carrier in response
to the inhomogeneous magnetic field.

Using our theory, we are able to establish a direct and
elegant relation between the spin toroidization and the
antisymmetric magnetoelectric polarizability in the case
of insulators [see Eq. (19)]. Such a relation is dictated by

general thermodynamic principles. Finally, using a tight-
binding toy model, we show that our spin toroidization
is a genuine bulk quantity.

I. GENERAL FORMALISM

In this section, we first introduce the definition of the
toroidization as a response function of the free energy to
the derivative of the magnetic field. Then we use the
semiclassical theory to derive the spin toroidization.

A. Toroidization as a response function

Our starting point is the free energy density F (r) in an
inhomogeneous magnetic field B(r). Suppose that B(r)
is small and varies slowly in space. At a given point r,
we can perform a gradient expansion of F (r) up to first
order with respect to the derivatives of the magnetic field

F (r) = F0(r)−M ·B(r)−Qij∂iBj(r) + · · · , (2)

where F0(r) is the free energy density atB = 0 andM is
the magnetization. Here and hereafter the Einstein sum-
mation convention is implied for repeated indices. The
quantity Qij is the magnetic quadrupole moment den-
sity. The toroidization T is the antisymmetric part of
Qij :

Tk =
1

2
εijkQij , (3)

where εijk is the total antisymmetric tensor.
Based on Eq. (2), we can obtain a linear-response ex-

pression for T (r) by treating B(r) and ∇ × B(r) as
independent variables, arriving at

T (r) = − lim
B(r)→0

∂F (r)

∂(∇×B)

∣∣∣∣
B(r)

. (4)

Here the subscript B(r) in taking the derivative with
respect to ∇ ×B means that the magnetic field at the
point r has to be kept fixed as ∇×B(r) is varied.
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B. Semiclassical theory of the spin toroidization

With the above definition of the toroidization, we now
formulate its microscopic theory. We will focus only on
the spin toroidization. Therefore, we take B(r) as the
Zeeman field, which couples to the spin operator ŝ. Then
the full Hamiltonian can be written as

ĤF = Ĥ(ih̄∂r, r)− gµB
h̄
B(r) · ŝ . (5)

For definiteness we can consider the context to be that
of a spinor implementation of density functional theory
with spin-orbit interactions included. The first term,
Ĥ(ih̄∂r, r), describes a perfect crystal in the absence of
a Zeeman field, while the second term is inhomogeneous
and breaks the translational symmetry, making it diffi-
cult to diagonalize the Hamiltonian (5) analytically. Here
we take a different route by using the semiclassical the-
ory of electron dynamics14,15, which is designed to study
Bloch electrons subject to perturbations varying slowly
in space.

In the spirit of the semiclassical theory, each Bloch
electron responds to the external Zeeman field in the form
of a wave packet, which has a specified center of mass
position rc and momentum kc. To construct the wave
packet, we make a local approximation and assume that
the system can be described by a set of local Hamiltoni-
ans Ĥc[B(rc)] = Ĥ(ih̄∂r, r) − (gµB/h̄)B(rc) · s. Since

Ĥc respects the lattice translational symmetry, its eigen-
state has the form of a Bloch function eik·r|ũn(k,B(rc))〉
with the eigenenergy ε̃(kc,B(rc)), where n is the band
index. In the limit B(rc) → 0, |ũn(k,B(rc))〉 reduces
to |un(k)〉, the periodic part of the Bloch function of

Ĥ, and ε̃n(kc,B(rc)) reduces to εn(kc), the eigenenergy

of the unperturbed Hamiltonian Ĥ. For simplicity, we
hereafter drop the argument of |ũn〉, |un〉, ε̃n and εn.
For illustrative purposes, we consider a single band with
index 0, and the wave packet is thus the superposition of
eik·r|ũ0〉.

The wave-packet dynamics can be properly formulated
as a set of semiclassical equations of motion in the phase
space spanned by rc and kc

14,15. The spatial inho-
mogeneity of B(r) introduces two essential ingredients
for the purpose of evaluating the spin toroidization in
Eq. (4). First, the phase space density of states D is
modified. It has the form16 (see also Sec. VI.B of Ref. 15)

D(rc,kc) = 1 + Tr(Ωk,r) , (6)

where

(Ωk,r)ij = −2 Im〈∂kci ũ0|∂rcj ũ0〉 (7)

is the mixed Berry curvature between the real and mo-
mentum space. This modified density of states has been
applied to derive the polarization in inhomogeneous crys-
tals17. Secondly, the band energy ε̃ is also affected by the
spatial inhomogeneity14

ε′0 = ε̃0 + Im〈∂kci ũ0|(ε̃0 − Ĥc)|∂rci ũ0〉 . (8)

With the above two ingredients we are ready to eval-
uate the free energy density F . For simplicity we set
T = 0. The free energy density is given by F =∫

dkc

(2π)3D(rc,kc)(ε
′
0−µ)Θ(µ− ε′0), where Θ is the Heavi-

side function. At first order with respect to the derivative
of B, the correction to the free energy density is

δF = −
∫ µ dkc

(2π)3
Im〈∂kci ũ0|(ε̃0+Ĥc−2µ)|∂rci ũ0〉 . (9)

Here the upper limit µmeans that the integration is taken
up to ε0 = µ.

The toroidization defined in Eq. (4) can be obtained
from the above free-energy correction. Since |ũ0〉 depends
on rc through B, we make the substitution ∂rci |ũ0〉 =
∂rciB`∂B`

|ũ0〉. We then collect terms involving the an-
tisymmetric part of ∂rciB` and take the derivative as in
Eq. (4). The final expression is

T =
1

2

∫ µ dk

(2π)3
Im〈∂kũ0| × (ε̃0 + Ĥc − 2µ)|∂Bũ0〉

∣∣∣
B→0

.

(10)

Here and hereafter we drop the subscript c of kc. Note
that Eq. (10) can be straightforwardly generalized to the
multiband case by summing over all occupied states [see
Eq. (A10)], but we continue to focus on the single-band
case here.

The structural similarity between Eq. (10) and the or-
bital magnetization formula16,18–20 is striking. In fact,
by making the substitution ∂B → ∂k, Eq. (10) exactly
coincides with the expression of the orbital magnetiza-
tion. This similarity has its root in the nature of spin
toroidization and orbital magnetization: they both mea-
sure the moment of some observable, which is spin for
spin toroidization and velocity for orbital magnetization.

Equation (10) can be cast in a form involving only
unperturbed Bloch states |u0〉 instead of |ũ0〉. Using the
perturbation theory, up to the first order in the Zeeman
field we have

|ũ0〉 = |u0〉 −
gµB
h̄

∑
n 6=0

B · sn0
ε0 − εn

|un〉 . (11)

Then Eq. (10) can be rewritten as

T = −gµB
2

∑
n 6=0

∫ µ dk

(2π)3
(ε0 + εn − 2µ)

Im(v0n × sn0)

(ε0 − εn)2
,

(12)
where v0n = 〈u0|v̂|un〉 and sn0 = 〈un|ŝ|u0〉 are the in-
terband elements of the velocity and spin operators, re-
spectively. Both Eq. (10) and (12) are amenable to im-
plementation in a first-principles calculation. To further
check the validity of our result, we have also carried out a
linear response calculation (see Appendix A for details),
similar to the derivation of the orbital magnetization in
Ref. 20, and obtained the same result.

We comment that in general the spin magnetic
quadrupole moment density can obtained in a similar
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way. The result reads

Qij = −gµB
∑
n 6=0

∫ µ dk

(2π)3
(ε0+εn−2µ)

Im[(vi)0n(sj)n0]

(ε0 − εn)2
.

(13)
One can easily check that T and Qij satisfy Eq. (3).

It is clear that our expression (12) for the spin
toroidization is gauge-invariant since it does not change
if an arbitrary phase factor is applied to |un〉. As a conse-
quence, the spin toroidization does not have any quantum
of uncertainty, and it always vanishes for a system with
either time-reversal or inversion symmetry. This is in
sharp contrast to both the electric polarization21,22 and
the previous theory of the spin toroidization3,13.

It is also worth mentioning that our toroidization can-
not be used to predict a surface magnetization density,
unlike the electric polarization, which has a definitive re-
lation to the surface charge density23. This difference can
be traced to the fact that charge is conserved but spin is
not.

II. INTERPRETATION OF SPIN
TOROIDIZATION

In this section, we explore the physical meaning of the
spin toroidization in the Wannier representation and dis-
cuss the difference between our result and the classical
definition of spin toroidization in Eq. (1). Finally, we
show that the spin toroidization can be directly related
to the spin magnetoelectric polarizability.

A. Molecular Insulator Limit

To shed light on the physical meaning of the spin
toroidization in Eq. (10), we rewrite it for an insulator
using the Wannier function representation. We label the
Wannier function defined from the local Hamiltonian Ĥc

by |w0(R,B)〉, with 0 being the band index and R be-
ing the lattice site. In this representation Eq. (10) be-
comes (see Appendix B for details)

T =
1

Vcell
Re〈w0(B)|r(Ĥc − µ)× ∂B|w0(B)〉

∣∣∣
B→0

− gµB
2h̄Vcell

〈w0(B)|r × ŝ|w0(B)〉
∣∣∣
B→0

− gµB
2h̄Vcell

∑
R

〈w0(B)|r|w0(R,B)〉
∣∣∣
B→0

× 〈w0(R,B)|ŝ|w0(B)〉
∣∣∣
B→0

,
(14)

where |w0(B)〉 = |w0(R,B)〉 with R = 0, and Vcell is the
unit cell volume.

The meaning of Eq. (14) can be clarified further by tak-
ing the molecular insulator limit. Since the spin toroidal
moment arises from a vortex-like arrangement of spins,
there must be multiple atoms in a unit cell, which we call
a molecule. The molecular insulator limit is then taken
by letting the distance between neighboring molecules go
to infinity while the relative structure of each molecule
is unchanged. In this limit, |w0(R,B)〉 is just the en-
ergy eigenstate of the molecule, translated to sit in cell
R. We will further assume that the system respects the
combined time reversal and inversion symmetry such that
〈w0|ŝ|w0〉 vanishes.

In the molecular insulator limit Eq. (14) consists of two
parts (see Appendix C for details). The first part is

T 1 =
gµB

2h̄Vcell
〈w0(B)|r × ŝ|w0(B)〉

∣∣∣
B→0

. (15)

It is clear that this term is due to the configuration of an
array of classical spins, similar to the equation appear-
ing as Eq. (1) in the classical picture. The second part,
coming from the modified density of states, is

T 2 = − 1

2Vcell
(ε0 − µ)(∂B × r̄)

∣∣∣
B→0

, (16)

where ε0 refers to the molecular electronic energy levels
and r̄ = 〈w0(B)|r|w0(B)〉 is the electron position under

the external Zeeman field. Here ε0 − µ is the free energy
for state 0.

The T 2 term can be intuitively understood as fol-
lows. In the spirit of the molecular insulator limit, if
each molecule is simply a cluster of classical spins, un-
der an inhomogeneous magnetic field the spins on each
site can rotate but cannot move. However, the spins
are carried by electrons, and the inhomogeneous Zeeman
field will exert a spin force on the electron. Therefore,
the electron will shift to a new equilibrium position due
to the balance between the spin force and the restoring
force that binds electrons to ions. The corresponding en-
ergy change gives rise to T 2. In a semiclassical picture,
∂B × r̄ counts the change of the number of electronic
states within a volume element located at r.

Equation (16) also provides a strong hint connecting
the toroidization with the magnetoelectric polarizability.
Taking the derivative with respect to µ in Eq. (16) yields
(1/2Vcell)∂B × r̄. Since r̄ is proportional to the electric
polarization, its derivative with respect to the Zeeman
field B is exactly the magnetoelectric polarizability. We
show below that this is a general relation born out from
our theory.
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B. Connection to magnetoelectric polarizability

It is well known that the toroidization and the an-
tisymmetric part of the magnetoelectric polarizability
transform in the same way under symmetry operations4.
However, an explicit relation between these two quan-
tities has not previously been identified. Here we show
that for an insulator, the spin toroidization admits a di-
rect and elegant connection to the spin magnetoelectric
polarizability.

According to the modern theory of polarization21,22,
as we vary the j-th component of the Zeeman field, the
change of the polarization is given by

∆Pi = e

∫
dkdBj
(2π)3

Im〈∂ki ũ0|∂Bj
ũ0〉 . (17)

Therefore, the magnetoelectric polarizability has the
form24

αij =
∂Pi
∂Bj

∣∣∣∣
B→0

= e

∫
dk

(2π)3
Im〈∂ki ũ0|∂Bj

ũ0〉
∣∣∣
B→0

.

(18)
On the other hand, note that for an insulator the Fermi-
surface contribution to T vanishes. If we take the deriva-
tive of Eq. (10) with respect to µ, we find the desired
connection

e
∂Tk
∂µ

= −1

2
εijkαij , (19)

where εijk is the Levi-Civita symbol.
There is a heuristic derivation of the relation (19).

Equation (2) suggests that the differential form of the
free energy is dF = −T · d(∇ × B) − ρdµ, where ρ is
the particle density. We can then obtain via the Maxwell
relation

∂Ti
∂µ

=
∂ρ

∂(∇×B)i
. (20)

For a given point r, we write B = (1/2)h× r such that
∇×B = h and B vanishes exactly at r. This choice en-
sures that ∂iBj only has the antisymmetric component.
On the other hand, the application of an inhomogeneous
Zeeman field B(r) will induce an inhomogeneous polar-
ization P (r), which in turn leads to a charge density
change, i.e.,

eρ = ∇ · P = ∂i(αijBj) =
1

2
εijkαijhk . (21)

Combining Eq. (20) and (21) then yields Eq. (19).
In fact, similar relation exists between the spin mag-

netic quadrupole moment density Qij and each compo-
nent of the spin magnetoelectric polarizability. Using
similar derivations, one can find that

e
∂Qij
∂µ

= −αij . (22)

Ms -Ms

L

O

FIG. 1. Sample with non-zero surface magnetization. Red
arrows show the direction of the surface magnetization on the
left and right surfaces.

This relation is also implied from Eq. (19) based on the
definition (3).

We note that the above argument is thermodynamic
in nature and does not depend on microscopic details.
Therefore, it is valid for any physical systems, and also
for orbital toroidization, where the Zeeman field B is
replaced by a magnetic field.

III. SPIN TOROIDIZATION AS A BULK
QUANTITY

For a response function to reflect the bulk properties of
the sample, it is essential that the response function has
a valid thermodynamics limit, i.e., it has a well-defined
limit as the sample size grows to infinity. This is well
illustrated in the modern theory of electric polarization
and orbital magnetization18–23,25,26.

However, the spin toroidization in Eq. (1) in the clas-
sical picture is not a bulk quantity. To show this, we
consider the bulk sample in Fig. 1, which has uniform
but opposite surface magnetization on the left and right
surfaces. We choose the origin to be the center of the
sample and label the left and right surface magnetiza-
tion, the surface area, and the distance between two
surfaces by Ms, −Ms, S, and L, respectively. Then
from Eq. (1), the contribution from the surface reads
gµB/2[(L/2)SMs/V + (L/2)SMs/V ] = gµBMs/2, which
obviously does not vanish as V → ∞. Moreover, this
contribution can point to any direction as the direction
of the surface magnetization varies.

In comparison, our spin toroidization in Eq. (10) is
indeed a genuine bulk quantity. In the following, we
demonstrate this point by studying a toy model.

A. Toy model

We consider the model Hamiltonian

ĤTB = −∆
∑
i

ni · σαβc†iαciβ +
∑
〈i,j〉

tijc
†
iαcjα , (23)

where ∆ is the local exchange field, ni is the exchange
field direction, α and β label the spin components,
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(a) (b)

FIG. 2. Spin toroidization of a tight-binding model. Panel (a)
is part of a periodic crystal. t1 and t2 is the nearest neigh-
bour hopping strength. The red arrow on each lattice site
indicates the direction of the local exchange field. The lattice
constant is a/2. Panel (b) is the calculated spin toroidization
(in units of gµB/4a) as a function of the chemical potential.
The shaded areas correspond to energy gaps. The parameters
are chosen as follows: t1 = 0.3∆ and t2 = 0.15∆.

and tij is the spin-independent nearest neighbor hop-
ping strength alternating between t1 and t2 as shown
in Fig. 2a.

Since T transforms as a vector, it is useful to first an-
alyze the symmetry of this system. The system has a 4-
fold rotational symmetry about the vertical axis. There-
fore, the toroidization cannot have any in-plane com-
ponent. Moreover, if t1 = t2, the system also respects
the combined symmetry of the mirror operation σh (i.e.,
z → −z) followed by a translation across the diagonal
direction. This requires that the out-of-plane component
of the toroidization vanishes. Both results have been ver-
ified in our numerical calculations. We thus focus on the
case t1 6= t2 for which an out-of-plane toroidization is
expected.

Figure 2b shows the toroidization calculated from
Eq. (10) as a function of the chemical potential. The
system has four bands separated by three global band
gaps, and each band is doubly degenerate. The curve is
symmetric with respect to µ = 0 because of the particle-
hole symmetry of our model. When the chemical po-
tential falls inside the lowest and highest gap region, the
toroidization varies linearly, and we confirm that its slope
coincides with the magnetoelectric polarizability, consis-
tent with our Eq. (19). When the chemical potential
falls inside the middle gap region, the toroidzation is a
nonzero constant while the magnetoelectric polarizability
vanishes, in accordance with the particle-hole symmetry.
Our toy model thus represents an interesting scenario
with a vanishing magnetoelectric polarizability but a fi-
nite spin toroidization when the Fermi energy is in the
middle gap.

N40 60 80 100

T
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l M
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-0.138

-0.134

-0.13

-0.126

odd N
even N
quadratic fitting
quadratic fitting
bulk value

y=3.2x2-0.34x-0.126

y=0.50x2-0.32-0.126
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ro
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FIG. 3. Toroidization in the bulk and in finite samples for
µ = −0.9∆ (inside the band gap). The horizontal axis is the
number of lattice sites N on one edge; the vertical axis is the
toroidization in units of gµB/4a. The black line is the bulk
value. The red and blue symbols are the finite-sample results
for the toroidization, and their quadratic fittings based on
Eq. (25) are displayed as the red and blue curves respectively.
In the two equations, x has the meaning of 1/N . The inset
illustrates the local exchange order in the finite sample, from
which the hoppings can be derived via Fig. 2(a).

B. Irrelevance of the boundary

Now we consider a finite sample with the model Hamil-
tonian in Eq. (23) using open boundary conditions. We
label the n-th eigenstate by En and the corresponding
wave function by |ψn〉. Eq. (12) reduces to

T = −
∑
m,n

Em + En − 2µ

Em − En
(〈ψm|r|ψn〉×〈ψn|σ|ψm〉+c.c.) ,

(24)
where m labels occupied states and n labels unoccupied
states, and T is in units of gµB/4S with S being the area
of the sample.

The finite-sample value of the spin toroidization is cal-
culated based on Eq. (24) and plotted in Fig. 3. The
bulk value is −0.126 in units of gµB/4a and is displayed
as the straight black line in Fig. 3. The red dots and blue
diamonds are the finite-sample results with an even and
odd number of lattice sites along the sample edge respec-
tively. They fall on different curves due to the different
surface terminations as shown in the inset. For large N ,
the finite-sample results should asymptotically satisfy19

T = Tbulk +
a1
N

+
a2
N2

(25)

where Tbulk is the bulk value. The second and third terms
are due to the edge and corner contributions respectively.
We find that the red and blue dots indeed fit Eq. (25) very
well. This clearly demonstrates that our spin toroidiza-
tion in Eq. (10) and (12) is a genuine bulk property.

To further demonstrate the irrelevance of the bound-
ary condition, we rotate the spin direction on the surface
of our finite sample as shown in the inset of Fig. 4. This
type of perturbation obviously contributes to Eq. (1) in
the thermodynamic limit. In Fig. 4, we plot the calcu-
lated spin toroidization based on Eq. (12) for this type of
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FIG. 4. Toroidization for finite samples with surface pertur-
bation. The axes and symbols have the same meaning as in
Fig. 3. The inset shows the configuration of the finite sam-
ple. The layer with blue arrows is the additional perturbing
layer. Here the original sample with red arrows has even N
along each edge. The odd N case can be constructed in the
same way. The hopping strength between the perturbation
layer and the original sample is derived based on the known
hopping strengths in the original sample in such a way that
tij still alternates between t1 and t2 for the whole sample.

finite samples. We find that although the toroidizations
of finite samples are changed by the surface perturbation,
they still follow the asymptotic rule in Eq. (25) very well
and converge to the same bulk value.

IV. SUMMARY

In this work, we develop a quantum theory of spin
toroidization in crystals. Using the semiclassical the-
ory of electron dynamics, we obtain a gauge-invariant
expression for the spin toroidization in terms of bulk
Bloch functions that is amenable to implementation in
first-principles codes. Using our theory, we are able to
establish a direct and elegant relation between the spin
toroidization and the antisymmetric magnetoelectric po-
larizability in the case of insulators, as dictated by gen-
eral thermodynamic principles. Finally, using a tight-
binding toy model, we show that our spin toroidization
is a genuine bulk quantity.
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Appendix A: Spin toroidization in linear response theory

In this section we derive the spin toroidization using linear response theory, similar to the calculation of the orbital
magnetization in Ref. 20. Without loss of generality, we only calculate the z-th component of the spin toroidization.

As given by Eq. (4), the spin toroidization is the response of the free energy density to an external Zeeman field.
Let us consider a Zeeman field of the following form

B = (h/2q)(sin(qx)ŷ − sin(qy)x̂) , (A1)

where h is small. This Zeeman field has a curl

(h/2)(cos(qx) + cos(qy))ẑ , (A2)

which reduces to h in the limit q → 0. Note that the symmetric part of the derivative of the Zeeman field (A1) is
∂xBy + ∂yBx = (h/2)(cos(qx) − cos(qy)), which vanishes in the limit q → 0. As a result, the response of the free
energy density to this Zeeman field in the limit q → 0 is purely due to its curl.

At zero temperature, the free energy density reads F̂ = Ĥ − µN̂ . With the above Zeeman field, the change in F
can be divided into four parts:

δF (r) =
∑
nk

(δfnk)ψ∗nkF̂0ψnk + fnkψ
∗
nkB · ŝψnk + fnk(δψ∗nkF̂0ψnk + ψ∗nkF̂0δψnk) . (A3)

Here ψnk = eik·r|un(k)〉 is the Bloch function of the unperturbed Hamitonian Ĥ with εnk being the corresponding

eigenenergy, fnk is the Fermi function, and F̂0 is the unperturbed part of the free energy density. The spin toroidization
can be obtained from the appropriate Fourier component of δF (r):

Tz = − 2

V h

∫
dx δF (r)(cos(qx) + cos(qy)) . (A4)
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We first calculate the contribution from the y-component of the Zeeman field. The perturbation to the wave function
is

δψnk = −hgµB
4ih̄q

[∑
n′

ei(k+q)·r|n′k + q〉〈n′k + q|ŝy|nk〉
εnk − εn′k+q

− (q → −q)
]
, (A5)

where q = qx̂, and |nk〉 is short for |un(k)〉. Inserting this expression into Eq. (A3). We can see that the first two
terms cancel each other. The last two terms read

Tz =
gµB
4ih̄q

∑
nn′k

(εnk − µ)fnk

(
〈nk|n′k + q〉〈n′k + q|ŝy|nk〉

εnk − εn′k+q
− (q → −q)

)
+ c.c.

=
gµB
4ih̄q

∑
nn′k

[(εnk − µ)fnk − (εn′k+q − µ)fn′k+q]
〈nk|n′k + q〉〈n′k + q|sy|nk〉 − c.c.

εnk − εn′k+q

(A6)

Now we take the limit q → 0 in the above expression. Terms in Eq. (A6) with n 6= n′ reads

Tz1 = −gµB
4h̄

∑
n 6=n′,k

[(εnk − µ)fnk − (εn′k − µ)fn′k]
(Ax)nn′(ŝy)n′n + c.c.

εnk − εn′k
, (A7)

where Ann′ = 〈nk|i∂k|n′k〉 is the interband Berry connection and sn′n = 〈n′k|ŝ|nk〉 is the interband element of the
spin operator. Terms in Eq. (A6) with n = n′ reads

Tz2 =
gµB
4ih̄

∑
nk

fnk(〈∂xnk|sy|nk〉+ 〈nk|∂x|nk〉〈nk|ŝy|nk〉 − c.c.)

− gµB
4ih̄

∑
nk

(εnk − µ)f ′nk(〈∂xnk|ŝy|nk〉 − 〈nk|∂x|nk〉〈nk|ŝy|nk〉 − c.c.)

=
gµB
4h̄

∑
n 6=n′,k

fnk((Ax)nn′(ŝy)n′n + c.c.) . (A8)

Note that to obtain the last equality in the above equation, we have used the fact that at T = 0, f ′nk = δ(εnk − µ).
The total contribution from the y-component of the Zeeman field thus is

Tz = Tz1 + Tz2 = −gµB
4h̄

∑
n6=n′,k

(εn′k − µ)
fnk − fn′k

εnk − εn′k
((Ax)nn′(ŝy)n′n + c.c.) . (A9)

We can also calculate the contribution from the x-component of the Zeeman field. The final result reads

Tz = −gµB
4h̄

∑
n 6=n′,k

(εn′k − µ)
fnk − fn′k

εnk − εn′k
((Ax)nn′(ŝy)n′n − (x↔ y) + c.c.)

= −gµB
2

Im
∑

n 6=n′,k

(εn′k − µ)
fnk − fn′k

(εnk − εn′k)2
(vnn′ × sn′n)z ,

(A10)

where vnn′ = 〈nk|v̂|n′k〉 is the interband element of the velocity operator. This is the multi-band formula for the
spin toroidization. It reduces to Eq. (12) in the main text for a single band.

Appendix B: Wannier representation

In this section we express the spin toroidization in terms of the Wannier functions. Denote by |w0(R,B)〉 the

Wannier function located at the lattice site R from band 0, derived from the local Hamiltonian Ĥc. The periodic part
of the Bloch function |ũ0〉 is given by

|ũ0〉 =
1√
N

∑
R

e−ik·(r−R)|w0(R,B)〉 , (B1)
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where N is the number of unit cells.
We begin with the spin toroidization formula in Eq. (A10), which can be recast as

T = −gµB
4h̄

∑
n6=0

∫
dk

(2π)3
(A0n × sn0 + c.c.)− gµB

2h̄

∑
n 6=0

∫
dk

(2π)3
εn − µ
ε0 − εn

(A0n × sn0 + c.c.) . (B2)

The first term in Eq. (B2) can be expressed in terms of |ũ0〉,∑
n 6=0

A0n × sn0 + c.c. = −i〈∂kũ0| × ŝ|ũ0〉|B→0 + i〈∂kũ0|ũ0〉|B→0 × 〈ũ0|ŝ|ũ0〉|B→0 + c.c. , (B3)

where we have used the identity: |ũ0〉〈ũ0|+
∑
n 6=0 |ũn〉〈ũn| = I. Inserting Eq. (B1) into the above expression yields

T1 =− gµB
4Nh̄

∑
R,R1

∫
dk

(2π)3
eik·(R1−R)〈w0(R,B)|(r −R)× ŝ|w0(R1,B)〉|B→0 + c.c.

+
gµB

4N2h̄

∑
R,R1,R2,R3

∫
dk

(2π)3
eik·(R1−R+R3−R2)〈w0(R,B)|r −R|w0(R1,B)〉|B→0

=− gµB
2h̄Vcell

〈w0(B)|r × ŝ|w0(B)〉|B→0

+
gµB

2h̄Vcell

∑
R1

〈w0(B)|r|w0(R1,B)〉|B→0 × 〈w0(R1,B)|ŝ|w0(B)〉|B→0 .

(B4)

Here |w0(B)〉 = |w0(R,B)〉 with R = 0.

Next we turn to the second term of Eq. (B2). Using −gµB ŝ/h̄ = ∂BĤc, we have,

−gµBsn0/h̄ = 〈ũn|∂BĤc|ũ0〉|B→0 = (ε̃0 − ε̃n)|B→0〈ũn|∂Bũ0〉|B→0 , (B5)

and

−
∑
n6=0

gµB
h̄

εn − µ
ε0 − εn

(A0n × sn0 + c.c.) = −i〈∂kũ0| × (Ĥc − µ)∂B|ũ0〉|B→0 + c.c. . (B6)

The second term in Eq. (B2) then becomes

T2 =
1

2

∫
dk

(2π)3
(−i〈∂kũ0| × (Ĥc − µ)∂B|ũ0〉+ c.c.)|B→0

=
1

Vcell
Re〈w0(B)|r × (Ĥc − µ)∂B|w0(B)〉|B→0 .

Combining Eq. (B4) and Eq. (B7), we obtain the final expression in Eq. (14) fo the spin toroidization in the Wannier
representation.

Appendix C: Molecular insulator limit

Under this limit the first two terms in Eq. (14) becomes:

T1 = − gµB
2h̄Vcell

〈w0(B)|(r − r̄)× (ŝ− s̄)|w0(B)〉|B→0 , (C1)

where r̄ = 〈w0(B)|r|w0(B)〉 is the expectation value of the position, and s̄ = 〈w0(B)|ŝ|w0(B)〉 is the expectation
value of the spin. Since the combined time reversal and space inversion symmetry is respected, we must have s̄ = 0.
Therefore,

T1 = − gµB
2h̄Vcell

〈w0(B)|r × ŝ|w0(B)〉|B→0 . (C2)
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Now we consider the remaining term in Eq. (14). In the molecular insulator limit, its form does not change. Note
that |w0(B)〉 and |wn(B)〉 becomes the molecular eigenfunctions and ε0 and εn become the molecular eigenenergy.
We further manipulate this term as follows:

T2 =
1

Vcell
Re〈w0(B)|r(Ĥc − µ)× ∂B|w0(B)〉|B→0

=
gµB
h̄Vcell

∑
n 6=0

[〈w0(B)|r|wn(B)〉 × 〈wn(B)|ŝ|w0(B)〉]
∣∣
B→0

− 1

2Vcell
(ε0 − µ)(∂B × r̄)

∣∣
B→0

=
gµB
h̄Vcell

〈w0(B)|r × ŝ|w0(B)〉
∣∣
B→0

− 1

2Vcell
(ε0 − µ)(∂B × r̄)

∣∣
B→0

.

(C3)

where r̄ has been defined before, and stands for the position of electron under external magnetic field. Here ε0 − µ is
the free energy for state 0.

Therefore, the total toroidization in the molecular insulator limit reads:

T = T1 + T2 =
gµB

2h̄Vcell
〈w0(B)|r × ŝ|w0(B)〉

∣∣
B→0

− 1

2Vcell
(ε0 − µ)(∂B × r̄)

∣∣
B→0

. (C4)
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