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Simulations (e.g. Zhou et al., Phys. Rev. B 79, 115201 (2009)) show nonlocal effects of the
ballistic/diffusive crossover. The local temperature has nonlinear spatial variation not contained
in the local Fourier law j(7) = —xVT(7). The heat current j(7) depends not just on the local
temperature gradient ﬁT(F)7 but also on temperatures at points 7’ within phonon mean free paths,
which can be micrometers long. This paper uses the Peierls-Boltzmann transport theory in non-
local form to analyze the spatial variation AT(7). The relaxation-time approximation (RTA) is
used because full solution is very challenging. Improved methods of extrapolation to obtain the
bulk thermal conductivity « are proposed. Callaway invented an approximate method of correcting
RTA for the ¢ (phonon wavevector or crystal momentum) conservation of N (normal as opposed

-

to Umklapp) anharmonic collisions This method is generalized to the non-local case where x(k)

depends on wavevector of the current j(k) and temperature gradient ikAT (k).

I. INTRODUCTION

Figure 1 shows a molecular dynamics (MD) simulation
for insulating wurtzite-structure GaN. It shows the spa-
tial change of temperature AT (x) driven by steady heat
input P(z) in regions near x = nL=+L/2 and equal steady
heat removal near x = nL. This MD study by Zhou et
al.! illustrates nicely the nonlocal relation between tem-
perature gradient V, T and heat current j(x).

Because of the care and accuracy of the simulation,
and also because the system studied was periodic (with
period L which enables Fourier space analysis with dis-
crete wavevectors 2rm/L), it is nicely suited for deeper
analysis. The current paper argues that the spatial
variation of AT (x) is the property most interesting for
study, not the “effective conductivity” or similar con-
structs that may be more easily measurable. In a sep-
arate paper? the concept of “thermal susceptibility” (©
where AT(F) = [dF'O(7 — 7/)P(7")) is introduced. It
has an inverse relation to thermal conductivity, much as
the charge susceptibility has an inverse relation to elec-
trical conductivity.

In small insulators, with size L similar to the long
mean free paths ¢ of small |¢] (long wavelength) acoustic
phonons, heat transport deviates from the local Fourier
law j(7) = —«VT(7). This topic has attracted atten-
tion for more than 25 years® 7. The terminology “ballis-
tic/diffusive crossover” is common. Diffusive heat prop-
agation gives the local Fourier law, but ballistic heat
propagation requires (in linear approximation) a nonlo-
cal kernel j(7) = — [ dF 'k(7,7')VT(7'). The range of
the kernel is |7 — 7’| ~ £. Interesting (and technologi-
cally important) non-local effects happen if 7 is within a
distance ¢ of a heat source or sample boundary.

Advances in measurement® include coherent x-
ray thermal probing of strip-line arrays® ', tran-
sient thermal gratings'?>'®, and time-domain ther-
mal reflectance!®18.  Theory has become increasingly
powerful’® 2! and evolves togther with experiment?> 24,

My tool for analysis of the “data” of Fig. 1 is the
Peierls-Boltzmann equation (PBE?*26). The PBE must
treat explicitly the sources and sinks of heat, since they
are at distances ~ L/4 from the source, and this is not
larger than g for many important phonon modes Q.
My analysis benefits from recent improvements, which
include an explicit heat source term in the PBE'-27 and
a Fourier-transformed (k-space) version of the PBE19:28,
The PBE is not as microscopic as an MD simulation,
which can approximate exact atom-level motions (treated
classically). Boltzmann theory, on the other hand, uses
phonon quasiparticles. The particle (rather than wave)
picture is used, and requires wave-packets. The spatial
resolution of Boltzmann theory is thus limited by the size
of the wave-packet, i.e. not shorter than a phonon wave-
length. Crystalline matter is spatially inhomogeneous at
the atomic level, but spatially homogeneous at length
scales greater than lattice constants. Thus Boltzmann
analysis of crystals gives a non-local thermal conductiv-
ity x(7,7 ') invariant under the simultaneous translation
7 — 7+35 7’ — 7'+ 35 In atomic level theory, the
translations § are the lattice translation vectors. How-
ever, the PBE is insensitive to this distance scale, so §
can be regarded as arbitrary and continuous. Thus k can
be written as k(F—7 '), and can be represented in E—Space

as r(k), rather than as x(k + G,k + G'). An advantage
of the PBE is that it treats phonons as quantum objects.
It is not limited to the high T classical limit where MD
simulation works.

In this paper, @ will always refer to the quantum
numbers (q,s) of a phonon, and k (or k = |k|) will
denote the reciprocal space coordinate (or wavevector)
of a field (like heat current, j). The same symbol
is used for functions (like j(x) or x(x — z’)) in coor-
dinate space and in reciprocal space (e.g. j(k) and
k(k)). The three-dimensional Fourier relations are de-

fined as j(7) = (1/N)Yzj(k)exp(ik - 7) and j(k) =
(1/Qen) [ dij(7) exp(—ik-7), with N the number of unit
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FIG. 1. Heat flow simulation by Zhou et al.! for wurtzite-
structure GaN. A segment of length L = 500¢ = 26004 (along
the c-axis) and cross section A = 15v/3a*> = 26442 con-
taining 60,000 atoms, was periodically repeated in all direc-
tions. The average temperature was T =301.2K. Heat Pd =
0.003eV /psA? (volumetric heating rate 7.7 x 10'®W /m?®) was
added at segments of width d = 12¢ at —L/2 (and equiva-
lently at +L/2) and extracted at L = 0. These regions are
shown by the solid black lines. In the regions of length L/2—d
between heat insertion and removal, a constant heat current
j = 0.0015 eV/psA? = 2.4 x 10"°W/m? flows. The tem-
perature was averaged in 100 discrete segments of width 5c.
The gradient dT'/dz = +0.0265K/A computed at midpoints
+L/4 corresponds to x(L) = —j/(dT/dz) =90.4W /mK. This
number will increase by a significant amount (more than a
factor of 2) for a very long simulation cell. An “effective”
thermal conductivity can be defined by using the mean tem-
peratures Ty and T of the regions of heating and cooling.
Then (Tw —Tc¢)/(L/2) is a mean temperature gradient, giving
Reff = 55W/mK

cells in the crystal and €¢q; the volume of the crystal
primitive cell. This paper concerns nanoscales in one di-
rection, chosen as z (as in Fig. 1). The other directions
are macroscopic. Therefore reciprocal space behavior in-
volves k, = k. = 0, and k, is abbreviated as k.

Fig. 1 is a steady state nonequilibrium molecular dy-
namics (NEMD) simulation for GaN, with steady heat
insertion and removal at a controlled rate, in widely sep-
arated and narrow spatial regions. Therefore the heat
current j(z) = j is steady, and known, in the regions
between heat insertion and removal. Therefore the cur-
vature of T'(z) evident in Fig. 1 is a clear sign of a non-
local connection between j and T'. The system had aver-
age T ~ 300K; classical trajectories were computed from
an empirical interatomic force law. Local temperatures
T(x;) =< KE >; /3Nkp were computed by time aver-
aging the kinetic energy KE of all N; atoms in slabs
(labeled i, of width 264 = 5¢) containing N; = 600
atoms. The aim of the simulation was to make the to-
tal length L large enough to achieve the diffusive limit,
so that & could be found by computing AT/Ax in cen-
tral slabs. However, GaN at 300K has many phonons
with mean free paths exceeding the sample size L, so
the fully diffusive limit was not reached. Extrapolation

was attempted by the model x(L) ~ k(c0) — k'/L. The
current paper provides better extrapolation models. The
extrapolated value was well below the experimental 230
W/mK??:39, Interestingly, theory! now shows that iso-
topically pure GaN (as assumed in the simulation) should
have £(300K)=400 W/mK. It is not clear whether finite
size or an inadequate model potential V(R) is the main
culprit limiting the realism of the simulation. However,
for the purpose of this paper, material-specific realism
is irrelevant. The model is useful for studying nonlocal-
ity, because of the care and accuracy of the simulation,
independent of possible problems with the potential.

The curvature of T'(x) seen in the figure was regarded
as a nuisance or an artifact of the finite size. The alter-
native view advocated here is that Fig. 1 simulates an
idealized experiment, not yet achievable. This “exper-
iment” reveals details of nonlocality, and probes nicely
the ballistic to diffusive crossover.

This simulation is simple to analyze for two reasons.
(1) Periodicity f(z + L) = f(z) is maintained for all
fields. (2) Regions of heat input and extraction are
“transparent” to propagating phonon modes. A thermo-
stat occasionally perturbs atom trajectories in discrete
regions, but does not alter the lattice periodicity that
gives homogeneously propagating phonon modes. The
response function x(xz — z’) has periodicity L in z — 2/,
and wavevectors in k(k) are quasi-discrete (k = 2wn/L)
and Bloch-periodic (k = k + 27 /a). If instead a simula-
tion had a hard wall or other disruption of homogeneity,
the Boltzmann equation would not separate when writ-
ten in k-space, and numerical solution to find T'(x) would
be challenging. Most actual nanoscale heat transport in-
volves spatial inhomogeneity. However, exceptions such
as “transient thermal grating” (TTG) experiments®?,
and the idealized experiments analyzed by Hua and
Minnich?3, can be analyzed by the method used here.

Accurate solutions of the full PBE for bulk thermal
conductivity have been available for several years3* 36,
Several recent papers'®37 43 find solutions of the PBE
containing nonlocal effects.

The outline of this paper is: Section II discusses the
discrete Fourier transform used to convert Fig. 1 to Fig.
2. Section III discusses the nonlocal PBE, and solves it
using the relaxation-time approximation (RTA). Section
IV gives numerical answers using a Debye model. Section
V gives the nonlocal generalization of Callaway’s approx-
imation for Normal (N) and Umklapp (U) collisions. Sec-
tion VI shows how best to extrapolate simulation data to
the bulk limit. In Appendix A, boundary-condition influ-
ences on nanoscale non-locality are discussed. Appendix
B gives detailed analytic formulas for various versions of
the Debye model, and Appendix C gives details of the
Callaway version of the theory.
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FIG. 2. The dots are nonlocal k(k) constructed for GaN at
300K, by Fourier transforming the T'(z) results shown in Fig.
1. The curves are Debye-model RTA theoretical fits, discussed
in Sec. IV. The same two adjustable parameters (ko =80
W/mK and fmi, = 83A) are used in both curves. If the
phonon scattering rate 1/7q o< w? (i.e. p = 2) is used, the
bulk limit x(k — 0) is 3ko = 240W/mK. If exponent p = 3 is
chosen, k(k) diverges as |log(k)| as k& — 0. Almost identical
curves obtained with mixed scattering rates and Callaway ex-
trapolation give k(k — 0) &~ 500W/mK. These are discussed
in Sec. VL.

II. FOURIER TRANSFORMS

1 is Fourier transformed
following Ref. 28. The resulting values of x(k) are
shown in Fig. 2. Because the simulation of Fig. 1
has M=100 discrete segments, the wavevector k£ must
have only M = 100 possible values k, = 27n/L for
—M/2+1 <n < M/2, where L/M = w = 5c¢ is the width
of the separate segments where T is averaged. But there
are only M /4 independent real numbers in the computed
AT(x), since AT(—z) converges to the same value as
AT(z), and AT(L/4+ x) converges to the same value as
—AT(L/4 —z) (barring small non-linear effects). There-
fore there are only M /4 = 25 real numbers in the Fourier
representation, which can be taken as the values of k(k,,)
for positive odd integers n. Only the smallest 12 k,,’s
are shown in Fig. 2. Higher k,’s are increasingly noisy.
Partly this is caused by noise in the original calculations,
and partly by additional noise in the digitization (original
numerical information was not available.)

The information in Fig.

III. BOLTZMANN k(k)

GaN is a good thermal conductor; its phonons have
long mean free paths. Thus it is a good “phonon gas”

and should be accurately treated by the Boltzmann equa-
tion. The fundamental object of Boltzmann theory is the
distribution function Ng, which gives the average occu-
pation at (7, t) in coordinate space, or (k,w) in reciprocal
space, of phonon mode @. Its evolution is given by the
equation,

ONg (dNg dNg dNg
Zle_ (e ~eQ =LY
6t ( dt >drift N ( dt )scatt - ( dt ext ( )

The result shown in Fig. 1 has reached steady state in a
time-independent thermal driving, so ONg/0t = 0. The
driving is one-dimensional, so the resulting current den-
sity is

i) = o 2@: huwquas No(x) (@)

where vip is the group velocity of mode @ and Qg =
NQcen is the sample volume. An identical equation ap-
plies to the reciprocal space relation between j(k) and
No(k).

The scattering term in a non-metal includes de-
fect scattering which couples Ng to Ng/, and anhar-
monic scattering which couples Ng to (Ng+¢g/, N—g/).
A local equilibrium Bose-Einstein distribution ng =
[exp(hwg/kpT(x)) — 1]71 is the only distribution that
is stationary ([dNg/dt]scats = 0) under collisions. For
weak driving, the scattering term can be linearized to

the form
dN,
<Q> — Y Spqtq
dt scatt Q'

Dqr(x) = Nor () = ng (T(x)), 3)

where the linearized scattering operator Sg g/ is non-
negative?®. It can be made real-symmetric by multiply-
ing by ng/(ng: + 1). Its eigenvalues are all greater than
0 except for one zero eigenvalue related to conservation
of phonon energy. The rate of change of energy density
caused by collisions is

dUu 1
dt scatt QS C%):’

Since this must hold for any possible deviation ®¢ from
equilibrium, then fwg must be a null left eigenvector of
the scattering matrix,

Y hwoSoqr = 0. ()
Q

This relation (which will be invoked later) and other as-
pects are discussed elsewhere?. The diagonal elements
S, are the “single-mode relaxation rates” 1/7g.

The “drift” term in Eq.(1) has the form

dNQ . =3 N an—» -
_— = — . N = — - —= T @
( dt )M ve Ve =~ {dTV i Q(]G)



The rate of energy change caused by drift is

1 N,
(5735 (32)
dt ) quige Qg Q dt ) quige
1 — =4 = 2
—Q—SZMQUQ-V%:—V-;. (7)
Q

The external driving term deserves discussion:

dNg B
dt ext a

The need for such a term was only recently
recognized!®27:3944 " and was incorrectly omitted in an
earlier paper?®. The specific form on the right-hand side
of Eq. 8 is not unique, but depends on the geometry
being modeled. This version, used in ref. 27, is appro-
priate for the Zhou et al. simulation': the thermostat
is designed to increase occupancies Ng of modes at the
same rate that a uniform rate of temperature increase
T = P/C would cause an equilibrated system to increase
ng(T'(t)). P(x) is the volume rate of heating at spatial
point x, and C'is the volumetric heat capacity. Then the
total volumetric energy input is

Energy conservation as given by Eqgs. 1, 4, 7, and 9 is

P(x) dng
C dr - ®)

ou -

Since we consider steady state situations with time-
independent driving, U /0t = 0.
The full linearized PBE now takes the form

. an =3 = P dTLQ
- | —==VT P Py = —=—==. (11
UQ {dTV +V Q]+%;5Q,Q =g 1
Here the fields T = Ty + AT'(7), g, and P are all in co-
ordinate (7) space. The equation simplifies in reciprocal
space. For the one-dimensional version, this is

. dn
ikvoe [CH?AT(k) + <I>Q(k)} + " Sa.o®q (k)

Q/
_ P(k) dng
=~ g (12

where V,T(x) — ikAT (k). Solution requires inversion
of a non-Hermitean Q)-space matrix S +ikv,1. For many
purposes it is sufficient to make the “single-mode relax-
ation time approximation” (RTA), Sg.q — dg,0'/70-
This permits a simple solution,

an [ikazAT( )

oy = -1 P(R)/C]

1/79 + tkvgy

(13)

We now want to eliminate the field P(k). This can be
done?*® using local energy conservation, Eq. (10) as ad-
vocated in Refs. 19, 27, and 39. The form used in these
papers is

> hwg(Ng = ng)/mq =0, (14)
Q

which is the RTA version of Eq. 4. This equation is not
satisfied in RTA for arbitrary ®¢, but it is sensible to
require the chosen steady state distribution to satisfy it.
Equivalently, one can use P(k) = ik - j(k).

From Eqgs. 2 and 3, the current can be written as

o) = - 3 hsguosPalk) (15)
Q

since the equilibrium distribution ng carries no current.
Then the current satisfies

Z(k)ja(k) = —r1(k)VT'(k) (16)

where k71 comes from the first term on the right of Eq.
13,

hesqud, (dng /dT)
1/TQ + ik”UQm

k1 (k) = (17)

1
The function k; is the nonlocal thermal conductivity that
comes from incorrectly omitting the external driving, Eq.
8. It is the phonon analog of the Reuter-Sondheimer
theory*® of the anomalous skin effect contained in the
electrical conductivity o (k,w) in the de (w = 0) limit.

The subscript 1 in Eq. 17 indicates omission of a
“renormalization” factor 1/Z(k) (or equivalently, setting

Z to 1). Z(k) contains the effects of the driving term,
and has the form
ikUQI
=1- _ 18
Z C 1/71q +ikvgs’ (18)

and Cg is hwg(dng/dT) /g, the contribution to the
heat capacity C from mode Q. Since ZQ Co/C =1,
the renormalization factor can be written as

1/7q

Z C 1/1qg +ikvg, Z C 1—|—k2£2

(19)
where g, = vQ.Tg. Then the thermal conductivity in
PBE theory with RTA is

k(k) = k1(k)/Z(k). (20)

This equation is different in appearance but is equivalent
to those in Refs. 19 and 27.



IV. DEBYE x(k)

In the bulk limit, if 7" is not too low, the RTA is known
to reproduce quite well the true solution, if 1/7¢ is the
actual complicated single mode phonon relaxation rate.
For qualitative understanding, simpler models are desir-
able. In the Debye model there are three acoustic phonon
branches, all having the form wg = vl|g], all with the
same velocity v. As a supplement to the Debye model,
take the relaxation rates 1/7¢g to have simple power laws
in phonon wavevector |q], (1/7p)(¢/qp)?. Here ¢p is the
Debye wavevector, and 1/7p is a maximum scattering
rate, which depends on T, being linear in T" at higher T
The scale of k(T') in the Debye model is

k’B UQTD
chll

which depends on T because of 7p.
In Debye approximation, Eqgs.(17,19) become, in the
classical (kpT > fwp) limit,

ngv2 /QD dQQ2 /1
2chll 0 QSD -1
1/7q

B 3 Qp dQQ2 1
ZD%V’?A Q%t/luvmﬁdmu (23)

where p is cosf, and 6 is the angle between the veloc-
ity (parallel to ¢) and the direction of the temperature

Ry = (21)

AR ()

k =
K1 (k) 1/7q + kv

gradient (parallel to k= kZ). A factor of 3 appears in
Eq.(22), to account for the three acoustic branches.
There is no Complete consensus about what the power
p should be. Herring®” advocated p = 2, and has re-
ceived experimental confirmation*®. However, subse-
quent studies?® 51 differ somewhat. Often, for “N” (Nor-
mal, > ¢ conserved) scattering, p = 2, while for “U”
(Umklapp, >~ 7 altered by a reciprocal lattice vector Cj),
= 3. For general p, Egs.(22,23) become

=5 e o e

3 [t ! 2P
Zpp(k) == d dp———— 25
pl) =5 [ [ an I (29)

where x = ¢/qp and y = kvtp = kfmin. Algebraic for-
mulas for these integrals are given in Appendix B. When
T > Op is not obeyed, Eqgs.(24,25) each need a quan-
tum factor (x7yr/sinh(zvyr)) inside the z-integral, where
Yr = waD/2kBT.

The answers simplify at large wavevector kfp;, >> 1,

"lep

9Ko
(34 p)(klmin)?
3
(3 + p)2klimin
6/{0
ﬂkfmin

ﬁle(k) —
ZDp —

IQDPEFLle/ZDp—) (26)

However, Boltzmann theory for the statistical evolution
of Ng(7) is hard to justify on atomic distance scales, or
at wavevectors k as large as a reciprocal lattice vector
G = 27/a.’? The secure small kfy;, = y part of the
formulas for k1p, (Eq. 24) is

(p=0) kipo(k) ~ ro(l—3y*/5+...)

3 6 1
(p=1) kKipi(k) ~ §/<;0 <1 - gyzlogg +>

3T
(p=2) kipa(k) ~ 3ko <1—7 g+>

(p = 3) l€1D3(k‘) ~ KQ (10g; +.. ) (27)

Notice that the small k parts for p > 1 have non-analytic
k-dependences, and the p = 3 formula diverges logarith-
mically. Similarly, the small k results for Zp, (Eq. 25)
are

~1—y*/3+..)

T R

3mV2

iy3/2+
10

(p=0) Zpo(k
(p=1) Zpi(k

(0=2) Zpa(k)~1-
(0=3) Zps(k) ~1—my/d+... (28)

Full results from Egs.(24,25) are in Fig. 3. The full
theories kp, = Kipp/Zpp agree with the unrenormal-
ized results k1p, at small k. Notice that at large k, in
agreement with Eq. 26, the full theories converge to an
answer independent of exponent p. This relates to the
fact that large k corresponds to small distances where
results should not depend on mean free paths, which are
all longer than the distance scale. However, the unrenor-
malized curves fall off faster with k and shift depending
on p.

)
)

V. CALLAWAY k(k)

Callaway®3%* devised an improved version of the relax-

ation time approximation. Because of anharmonic terms
in the interatomic potential, a phonon () with wavevector
¢ can decay into two phonons of wavevector ¢; + ¢ pro-
vided 7= ¢} +q2 +G. The N processes have the rec1procal
lattice Vector G = 0, and the U processes have G £ 0.
Peierls?® pointed out that N processes cannot fully relax
the heat current. This is particularly important at lower
T, because U processes require higher energy phonons
and are thus suppressed at lower T'.

Callaway’s model for the rate of change of the phonon
distribution Ny is

(G2) --fasre I
dt collision QU TQN

The distribution n}, is the one which maximizes entropy
subject to conservation of both energy and wavevector.
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FIG. 3. Power law Debye models for x(k)/ko at high T.
These are derived from the models 1/7¢ x QP « wP? and
p = 0,1,2,3. The four cases each have one curve at small
kfmin, which splits into two curves at large kfmin. The upper
branches are numerical solutions of the full high 7" Boltzmann
theory in the RTA /Debye model, Eq. 20. The lower branches
are k1(k), Eq. 17, for the same models, omitting the renor-
malization Z. The p = 2 and 3 full versions are shown on a
linear scale in Fig. 2.

It is a modified Bose-Einstein distribution
. 1
n =
Q exp(hwo/kT + Apqy) — 17

(30)

where A, is a Lagrange multiplier fixed by the
condition®? ZQ QaNgy = Gatot = ZQ gz ®o. The natural
extension of Debye-type relaxation laws in the Callaway
scheme is

1/7‘@ = 1/7’QU + 1/TQN = (1/TD)(TU.%‘3 —‘r?“NiUQ)
V/mqu = 1/mv(¢/ap)* = (1/7p)rua’

1/7on =1/7n(q/ap)? = (1/7p)rna® (31)

where ry and ry are the relative rates of U and N scat-
tering, with ry + ry = 1. The coefficients ry and ry
depend strongly on T' at low T, but are T-independent
at higher T' (where 1/7p o« T)).

Zhou et al.’' computed relaxation rates for GaAs in
the classical limit. The results in Fig. 2 of their paper
indicate that ry ~ 0.9 and ry ~ 0.1. One could expect
similar values for GaN. The Boltzmann equation (12) can
be written in Callaway form and solved. The Callaway
result (with both rn and ry non-zero) cures the logarith-
mic divergence (x  log L) obtained when purely p = 3
Umklapp scattering is used, and gives a finite x(k — 0)
limit. Appendix C contains the derivation of the Call-
away correction to the nonlocal theory for (k). Unfor-
tunately, the data shown in Fig. 2 do not extend to low
enough k to enable a choice to be made about actual re-
laxation rates and how they are distributed between N
and U processes.
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FIG. 4. The k(k) data from Fig. 2 are plotted here on a
logarithmic scale, showing an approximate x l/ko'75 fit.
This diverges strongly as k — 0. The accuracy of this fit is
probably accidental, because there is no theory to justify it.

VI. EXTRAPOLATING « TO L — 0

Zhou et al.l attempt extrapolation of their finite size
(L) simulations to L — oo, and notice difficulties. The
present results require alternate extrapolations. One way
is to choose a model relaxation time and use the result-
ing Debye RTA theory to fit the x(k) curves in Fig. 2.
Three things should be stressed. First, the theoretical
curves do not give a particularly good fit to the higher k
part of (k). This is not surprising. Debye approxima-
tion describes small (Q phonon properties, but does not
recognize the small group velocities and corresponding
small mean free paths of optical modes. These modes
do carry heat, and are not suppressed at larger k. Sec-
ond, a surprisingly nice fit with no theory at all can be
made by plotting log (k) versus logk. This is shown in
Fig. 4. The result, that (k) is roughly proportional to
k=075 should not be taken seriously, even though it is
as good a fit as any obtained from Debye RTA theory. A
k=07 divergence implies a scaling kpux o< L% which
has never been detected experimentally, and is almost
certainly unphysical. Nevertheless, it is an intriguing ob-
servation which might motivate further investigation of
behavior of k(k) in vibrational heat conductors. The
third thing to be stressed is that fitting the (k) data
is an imperfect enterprise. The numerical T'(z) data of
Zhou et al. shown in Fig. 1 were not originally intended
for this purpose. The k-points for which numbers can be
found are too sparse for confident fits, and are affected
by noise of computation and digitization.

Nevertheless, theory makes relevant points. The fits
shown in Fig. 2 provide understanding of the unexpect-
edly fast increase of k(k) as k decreases. They also pro-
vide two kinds of guidance for extrapolation. First there
is direct use of theory and numerics for x(k). The two



heat input 2 '
(@ heat current 5 1f (b)

heat input

(€ heat current

FIG. 5. Choice (a) is standard and used in Fig. 1. The others
are suggested alternative heating profiles The sine curve (b)
is the simplest. The asymmetrical block heating (c) allows all
Fourier components to be extracted. Two sines (curve (d))
allows k = 27/L and 47 /L to be extracted simultaneously.

curves in Fig. 2, when extended to k = 0, yield

(p=2) #(0) = 3Ko ~ 240 W/mK
(p=3) K(0) =00 X Ky ~ 0 (32)

If a mix of 90% U-scattering with p = 3 and 10% N-
scattering with p = 2 is used, a good fit can be obtained
with a larger £, (= 390A instead of 83;1). In that case
the extrapolated x(0) is ~440 W/mK without the Call-
away correction, and ~510 W/mK with the correction.
These numbers are close to the estimate of Lindsay et
al.3! for isotopically pure GaN. Evidently extrapolation
to L — oo is even more uncertain than imagined by Zhou
et al..

The other version of extrapolation indicated by this
analysis is, following Zhou et al., to plot (L) obtained
from the temperature slope at mid-point, against various
functions of L. Zhou et al. used k(o0) — k’/L. Formulas
derived here show that x(co) — x//v/L has more theo-
retical justification and better correspondence with the
computed (k).

Finally, Fig. 5 suggests alternate ways of performing
NEMD simulations. A more rapid reduction of noise will
happen if instead of insertion of heat into separate iso-
lated regions (panel a), the heat is inserted sinusoidally
(panel b). This has been tested®® with some success for
a simple model. But this gives only a single k-point for
k(k), while a mesh of small-k points contains much addi-
tional insight. The heating pattern could use more than
one sinusoidal period, as in Fig. 5d. Finally, it is frus-
trating that the analysis done here yields only k, with
odd integer n; if n = 2,4,6 were available to supplement
n = 1,3,5, then theoretical fits could be judged with
more confidence. The even integers were excluded by the
mirror symmetry of the heat input. For example, the
mirror in panel (a) is around z = 0, and in panel (b),
around x = L/4. Arrangements like those shown in pan-
els (¢) and (d) provide the desired symmetry breaking.
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VIII. APPENDIX A: BOUNDARY EFFECTS IN

SIMULATIONS

The characteristic sigmoid shape seen in the Zhou et
al.! simulations of Fig. 1 is not always as prominent in
other simulations. Comparison of various simulations in-
dicates that the detailed expression of non-locality differs
depending on boundary conditions. For slab problems,
either “transparent” or “opaque” boundary conditions
are used. With transparent boundaries, the unperturbed
simulation cell is repeated periodically in all three di-
rections. Heat is added and removed somewhere in the
cell interior. With opaque boundaries, periodicity of the
simulation cell in the direction of heat flow is irrelevant.
Homogeneity is broken, and atoms near the boundary
have to respond, not to a periodic image, but to the
actual heated boundary. Analysis of such situations®
(which can be experiment or simulation) requires a model
of how the boundary emits and reflects vibrations. The
temperature distributions near the boundary can there-
fore vary. This paper deals only with the simpler trans-
parent version. Other examples (besides Zhou et al.)
of simulations with transparent boundaries are Aubry et
al.®”, Goel et al.>®, and Gordiz and Henry®®. Examples of
opaque boundaries are Landry and McGaughey®®, Jiang
et al.5', Cao and Qu®?, and Feng et al.%3.

IX. APPENDIX B: ANALYTIC INTEGRATIONS

For integer p, the integrations in Eqs.(24,25) can be
done analytically:

<

-1
M:g 1+2 1,M — 42 log 1+i
Ko 10 Y Yy 2

rip2(k) 9 1_ tan—" (y)
Ko Ty? Yy

g o () e (5 )
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(35)
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39
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These equations are plotted versus y = kfy;, in Fig. 3.

X. APPENDIX C: NONLOCAL CALLAWAY
MODEL

In the full PBE, both “Normal” (N) and “Umklapp”
(U) scattering events are contained in the linearized scat-
tering operator Sg /. The total crystal momentum
ZQ dNg is automatically conserved under N-scattering
alone. That is, if only N terms of Sg g are kept,
ZQ ¢Ng is conserved. At low T', where U-scattering is
suppressed relative to N, it is important to recognize the
different effects of these two types of events. Callaway
therefore introduced a modified version of the relaxation
time approximation,

dN, No — Ng —n¢
( Q) L _No—ng Nezng
dt scatt TQU

TQN
where
o 1 ~n _dng kBT2§ -
Q7 explhwo/ksT +G-A) —1 ¢ dT hwg ©
(12)

and A is a Lagrange multiplier, adjusted so that the dis-
tribution ng, contains all the crystal momentum. That

means
> iNg = dng (43)

Q Q

or, since the equilibrium distribution ng has no net crys-
tal momentum,

) dng ksT? . -
Mg =-Y =2 g7 X (44)
— T g

The total single-mode scattering rate 1/7¢ = Sqq is
I/TQ:1/TQU+1/TQN. (45)

Because of the last term of Eq. 42, the Boltzmann equa-
tion has an additional term, and the RTA solution, Eq.
13 takes the form

dng [T - VT(k) + 20oq - K — £
Qolk) =——=

1/7‘Q + ZE . l_fQ
(46)
Now it is necessary to have two additional equations,
because the two extra fields P(k) and A(k) need to be
eliminated. These equations are energy conservation (Eq.

14) for eliminating P and the definition of A, Egs. 43
and 44, to determine the Lagrange multiplier. The
Callaway use of Eq. 14 to eliminate P/C is a minor
extension of the ordinary RTA result, Eq. 20, containing
the same renormalization factor Z, in Eq. 19. To avoid
3 x 3 matrix equations, orthorhombic or higher symmetry
is now assumed, and one-dimensional transport along an
orthorhombic axis denoted x. This permits ¢ - A to be
simplified to g, A. The current density is
2

Jo = —%%T SR > dng _vos/ToN _ .\ (47)

X OsZ ) dT l/TQ+ZkUQm

Here k1 is the same as before, Eq. 17, with both N and
U processes included in the scattering 1/7¢ as in Eq.
45. The second term in Eq. 47 is an additional current
that comes from the fact that the scattering caused by N
processes has been overestimated in the first term. The
new formula for the distribution function is

kpT?
hngQN qu (48)
l/TQ + 1kvga .

1 an UQHCVT +

P = ——
Q Z dT

Now use Eq. 44 to eliminate the Lagrange multiplier
A. After some algebra, the result for the Callaway heat
conductivity ko (k) can be written

k K1 1 ZQ HQJC% ZQ’ Hqad,
rok) =7 295y~ dng ¢ [, Umox }
Q dT hwg 1/‘I'Q~‘rik:’uQJc
(49)
where
HQx _ an VQux (50)

dT 1/7q +ikvgs

The second term of Eq. 49 is the Callaway correction to
the nonlocal RTA thermal conductivity (when the ther-
mal variation is one-dimensional, and the symmetry or-
thorhombic or higher.) In the local limit & — 0 and
Z — 1, this answer agrees exactly with Eq. 15 of Ref.
54.

When a Debye model is used, Eq. 49 becomes

kon(k) = kicp(k)

o ZCD(]C) — TNYCD(k) (51)



where k1 and Z are close analogs of Egs. 24 and 25,

[
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52
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3 [t ! 22X
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Y. d 54
epl / x/ Xc + Y (54)

where y = kvrp and X is the dimensionless Callaway-
Debye scattering rate, 7p /7. For example, as in Eq. 31,
Xc — ryz? + rya® with 2 = ¢/qp and 7y and ry the
relative fractions of N (p = 2) and U (p = 3) scattering.

As a reality check, consider the bulk limit & — 0. If all
scattering is N-type (rpy = 0), and 1/7gn o (q/qp)?, the
numerator of Eq. 51 is 3kg and Z = 1. But ryYeop(k =
0) — 1, so the denominator is 0. The Callaway correction
gives the result that x diverges. This confirms that N-
scattering is correctly recognized as non-resistive in the
Callaway proceedure, even though it gives a finite answer
(unless p > 3) in the usual RTA.
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