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We study thermalization in open quantum systems using the Lindblad formalism. A method
that both thermalizes and couples to Lindblad operators only at edges of the system is introduced.
Our method leads to a Gibbs state of the system, satisfies fluctuation-dissipation relations, and
applies both to integrable and non-integrable systems. Possible applications of the method include
the study of systems coupled locally to multiple reservoirs. Our analysis highlights the limits of
applicability of the Lindblad approach to study strongly driven systems.

I. INTRODUCTION

One of the basic problems in many-body physics is
conduction between two baths, which act as heat and
particle reservoirs. The problem has been addressed us-
ing a host of approaches, for both classical and quantum
systems1–8. More recently, much work has been done us-
ing quantum Markov processes based on the Lindblad
approach9,10. These give a host of novel effects, sur-
prisingly even for non-interacting systems. These in-
clude bounds on ballistic transport in the XXZ chain11,
phase transitions in non-interacting chains held far from
equilibrium12, and a resonant structure in the ther-
mopower generated between two edges with different
temperatures13.

Broadly, one can identify two general approaches for
using Lindblad operators to drive quantum systems. In
the first, the reservoir are modeled by Lindblad operators
acting globally on the whole system13–19. The advantages
of this approach are that it can be microscopically jus-
tified from the derivation of the Lindblad equation20,21,
in the limit of a weak coupling between the system and
the reservoir; and that, when the system is coupled to
a single reservoir, the system equilibrates. It is impor-
tant to keep in mind that in this approach fluctuation-
dissipation relations are violated if the coupling to the
reservoir is pushed beyond the weak coupling limit22. In
the second approach, the reservoirs are modeled by Lind-
blad operators acting locally on a few sites at the edges of
the system11,12,16,23–27. This approach has the advantage
that the non-unitary effect of the reservoirs acts only at
the edges, and not in the bulk of the system. However,
it is not clear if the local approach can actually model
an equilibrated reservoir, namely one that would equili-
brate the system when no other reservoirs are present28.
This may be responsible for apparent violations of the
second law of thermodynamics, as discussed in Ref. 29.
It would be useful to have a method that bridges these
two approaches.

In this paper we introduce such a method. Within our
approach the reservoir is coupled to the system on one
edge, thermalizes it and satisfies fluctuation-dissipation
relations. To achieve this, we model the reservoir as a
non-interacting lead together with a bath, which acts

on the lead through Lindblad operators. The lead is,
in turn, coupled to the system at a single site. Under
certain conditions that we specify, both non-interacting
and interacting systems, including non-integrable, ther-
malize. The method provides a first step toward using
the Lindblad approach to study non-equilibrium situa-
tions where the system is coupled to several reservoirs
at different points. It also clarifies when the global ap-
proach can applied. A similar approach was introduced
in Refs. 30–33 to study thermalization in non-interacting
systems.

Our results highlight the limit of applicability of the
Lindblad formalism to study driven system. We show
that it works only in a weak coupling limit. In particular,
this approach does not allow the study of large currents
which do not occur in this limit.

II. THE MODEL

We consider the setup depicted in Fig. 1. A one dimen-
sional quantum system, described by a Hamiltonian HS ,
is coupled to a reservoir through a single link on one of
its edges. The reservoir is composed of a non-interacting
one-dimensional lead, described by a Hamiltonian HL,
and a bath, which is modeled by a dissipative generator
Γ̂. The evolution of the total density matrix ρ of the
system and lead is then given by

∂tρ = −i [HL +HS +Hint, ρ] + Γ̂ρ (2.1)

where Hint is the coupling between the system and the
lead. The dissipative generator is given by

Γ̂ρ =
1

2

∑
ν

γν
(
2ΓνρΓ†ν − ρΓ†νΓν − Γ†νΓνρ

)
, (2.2)

where Γν are quantum jump operators, which act only
on the sites of the lead, and γν are rates with dimensions
of energy. These are chosen such that when Hint = 0, the
lead reaches thermal equilibrium with a Boltzmann mea-
sure with inverse temperature β and chemical potential
µ.
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FIG. 1. Illustration of the model. The reservoir consists of
a bath, modeled by Lindblad operators Γ, acting on a non-
interacting lead. For simplicity, we use periodic boundary
conditions in the lead.

We consider a lead Hamiltonian of the form,

HL = −tL
M∑
j=1

(
b†jbj+1 + b†j+1bj

)
, (2.3)

where bj , b
†
j are annihilation and creation operators for a

spinless fermion on site j of the lead, which has M sites.
For simplicity, we consider periodic boundary conditions
in the lead, such that bM+1 = b1. Then, HL can be
diagonalized in Fourier space, by introducing

bm =
1√
M

∑
j

bje
i2πmj (2.4)

which yields

HL =
∑
m

εLmb
†
mbm (2.5)

where εLm = −2tL cos(2πm).
To ensure that the lead thermalizes whenever Hint = 0,

we impose detailed balance with respect to the lead eigen-
states m. For each m, we introduce two jump opera-
tors: Γm− = bm removes a fermion with rate γm− =
γm(1− fm), while Γm+ = b†m injects a fermion with rate
γm+ = γmfm. Here, fm = fFD

(
εLm
)

and

fFD (ε) ≡ 1

1 + eβ(ε−µ)
(2.6)

is the Fermi-Dirac distribution. Then,

γm+

γm−
=

fm
1− fm

= e−β(ε
L
m−µ), (2.7)

and Eq. (2.2) becomes

Γ̂ρ =
1

2

∑
m

γm
[
fm
(
b†mρbm − bmb†mρ− ρbmb†m

)
+ (1− fm)

(
bmρb

†
m − b†mbmρ− ρb†mbm

)]
. (2.8)

Throughout, unless otherwise stated, we will concentrate
on the case µ = 0.

In what follows, we will consider separately both non-
interacting and interacting system Hamiltonians HS . We
start with a non-interacting system, because its descrip-
tion in terms of one-particle eigenstates allows for a sim-
pler analysis and a more intuitive reasoning. Then, we
extend the study to an interacting system. We would
like to clarify, however, that no fundamentally different
behavior is exhibited between the two system types. In
the non-interacting case,

HS = −tS
N−1∑
j=1

(
c†jcj+1 + c†j+1cj

)
, (2.9)

where cj , c
†
j are annihilation and creation operators for

a spinless fermion on site j of the system, which has N
sites. In this case one can express HS in terms of the
one-particle energy eigenstates,

HS =
∑
n

εSnc
†
ncn, (2.10)

where εSn is the energy of the nth eigenstates. In the in-
teracting case, we extend the tight-binding Hamiltonian
to include Hubbard-like repulsion terms between neigh-
boring sites,

HS = −tS
N−1∑
j=1

(
c†jcj+1 + c†j+1cj

)

+U

N−1∑
j=1

njnj+1 + V

N−2∑
j=1

njnj+2. (2.11)

where nj = c†jcj is the number of fermions in site j. For
finite, non-zero U and V , the system is non-integrable.
Throughout, we set tS = 1.

Finally, we take the coupling between the system and
lead to be:

Hint = −t′
(
b†Mc1 + c†1bM

)
. (2.12)

As we show later, the simple choice of coupling only at
one site is not crucial for the discussion.

While the model defined above stands as a phenomeno-
logical model on its own, it can in principle be derived
from an underlying microscopic description, using stan-
dard approaches24,34,35. Consider three chains of sizes
L, M , and N , with L � M and L � N , and hopping
rate t within each chain. Suppose the L chain is coupled
to the M chain by a single link of strength t′′, and the
M chain is coupled to the N chain by a link of strength
t′, with t′ � t and t′′ � t both weak. The L chain is
held at thermal equilibrium. In the limit t′ � t′′, we
can at first think of the N chain as being decoupled, and
consider the L+M subsystem by itself. Then, following
standard arguments36, the L chain can be modeled as by
a Lindblad equation, in which a reservoir acts globally
on the M chain, thermalizing it with the rates given in
Eq. (2.8). The coupling to the bath γ is of order t′′2ν0,
where ν0 ∼ 1/t is the density of states of the L chain.
Then, we obtain our full model by reinstating the weakly
coupled N chain.
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III. NON-INTERACTING SYSTEM

We note that, in the non-interacting case, the entire
Lindblad equation is quadratic in fermionic operators.
This makes it amenable to analytic approaches, as de-
scribed below.

A. One Site Lead (M = 1)

The first case that we investigate is a non-interacting
system with a one site lead, with total Hamiltonian

H = −t′
(
c†1b+ b†c1

)
−tS

N−1∑
i=1

(
c†i ci+1 + c†i+1ci

)
(3.1)

and dissipative generator,

Γ̂ρ =
1

2
γ
[
f0
(
2b†ρb− bb†ρ− bb†ρ

)
+ (1− f0)

(
2bρb† − b†bρ− b†bρ

)]
, (3.2)

with f0 = 1
1+e−βε0

. This corresponds to a lead Hamilto-

nian, HL = ε0b
†b (this differs from the convention above,

since one cannot define a tight binding model on one
site). As we show in Appendix A, independently of β,
the steady state corresponds to an infinite temperature
state. Namely, the reduced density matrix of the system
(after tracing out the lead) becomes, in the energy basis,

ρS =
∏
n

(
f0c
†
ncn + (1− f0)cnc

†
n

)
. (3.3)

This result holds even for more general tight-binding
models.

It is natural to ask whether this result is an artifact of
the single-site lead, and whether thermal equilibrium is
achieved by considering a more realistic lead composed of
multiple sites. As we will show next, while the situation
does improve when the lead is enlarged, thermalization
is not achieved even in the infinite lead limit.

B. Multiple Site Lead

We proceed by extending the setup above to a lead
with multiple sites. In the non-interacting case, the Lind-
blad equation is quadratic in fermionic operators, and
hence can be solved using a third quantization method37.
This method involves the diagonalization of a 4(N +M)-
dimensional matrix, allowing us to study fairly large leads
and systems numerically. A detailed description of the
third quantization method applied to this class of sys-
tems is given in Ref. 37.

In Fig. 2 we show the occupation gn of one-particle
system eigenstates as a function of energy, for a system
with N = 80 sites. We take t′ = 1, tL = 1.2, β = 10, and

-2 0 2
0

0.5

1

M=1
M=2
M=4
M=80
M=800
Thermal

gn

ε

FIG. 2. Steady-state occupations of the single particle energy
eigenstates, for different lead sizes, as a function of the single
particle state energies. Here: t′ = 1, β = 10, µ = 0, γ = 1,
tL = 1.2 and N = 80. The thermalization error (Eq. (3.4))
saturates to a value of ∆ = 0.14 for M > 50.

constant rates γm ≡ γ = 1. The results are displayed for
different values of the lead size M .

As expected from the previous section, for M = 1 the
occupation of states is independent of their energy. This
ceases to be true for M > 1. However, even for leads
that are much larger than the system size, M � N ,
the one-particle occupations gn are far from a thermal
distribution with inverse temperature β. To quantify the
error, we introduce the measure

∆ ≡
√

1

N

∑
n

(gn − fFD (εSn))
2

(3.4)

where εSn are the system one-particle energies, see Eq.
(2.10). For the parameters considered above, the error
already saturates to the large lead value for M > 50 at
∆ = 0.14. This implies that the average deviation from
the thermal occupation is 14%, even for an infinite lead.

We now turn to investigate the effect of varying the
values of the dissipation rate γ and the system-lead cou-
pling t′. Figure 3 shows the error ∆ as a function of
t′, for different values of γ, and a large lead. One can
see that ∆ increases monotonically with t′, as one may
expect from general statistical physics arguments: large
values of t′ increase the subextensive corrections to the
system’s energy. Note, however, that the error saturates
at small t′ to a γ-dependent value, which is monotoni-
cally increasing with γ. This implies that, even for leads
that are much larger than the system size, the only hope
of achieving thermalization is by taking both t′ and γ to
be small.

At first glance, the requirement of small γ is counter-
intuitive, as one may have expected a strong dissipative
coupling to lead to better equilibration. However, as we
show in the next section, a large γ introduces an uncer-
tainty in the system’s energy, which reduces its ability to
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FIG. 3. Thermalization error as a function of t′, for different
values of γ. Here: β = 10, tL = 1.2, N = 80 and M = 400.

equilibrate at the desired temperature.
As discussed at the end of Sec. II, in microscopic

derivations of the dissipative term, it is natural to con-
sider the limit t′ � γ. Therefore, in what follows we will
take the limit t′ → 0 first. In this limit, we derive closed
form expressions for the steady state density matrix and
study the dependence of ∆ on γ and other parameters.

IV. WEAK LEAD COUPLING (t′ → 0)

A. Degenerate Perturbation Theory –
Non-interacting System

In this section, we will show that in the limit of in-
finitesimal coupling between system and lead, t′ → 0,
the steady-state density matrix is given by

ρ ≡
∏
m

(
fmb

†
mbm + (1− fm) bmb

†
m

)
×
∏
n

(
gnc
†
ncn + (1− gn) cnc

†
n

)
(4.1)

where 0 ≤ gn ≤ 1 are the occupations of the system
eigenstates, given by

gn =

∑
m |t′mn|

2
Qnmfm∑

m |t′mn|
2
Qnm

(4.2)

where Qnm = Υ
(
εLm − εSn

)
and

Υ(∆ε) =
γ

(∆ε)
2

+ γ2/4
. (4.3)

Here we assume, for simplicity, that γm = γ. The hop-
ping amplitudes t′mn are defined through

Hint = −
∑
mn

t′mnb
†
mcn + h.c., (4.4)

that is, t′mn is the coupling between lead and system in
the energy basis of both. Note that the density matrix
in Eq. (4.1) is diagonal in the energy basis, as must
be the case in order for ρ to commute with the system
Hamiltonian in the steady state.

Equation (4.2) can be interpreted as a balance equation
between particles hopping in and out of the system state
n, via particle exchange with the lead:

0 = (1− gn)Rin
n − gnRout

n (4.5)

where the rates Rin
n , Rout

n include all possible hopping
processes:

Rin
n =

∑
m

|t′nm|2Qnm fm

Rout
n =

∑
m

|t′nm|2Qnm (1− fm) (4.6)

The factors 1 − gn (in Eq. (4.5)) and 1 − fm (in
Eq. (4.6)) appear due to Pauli exclusion. In the limit
γ → 0, Qnm → 2πδ

(
εSn − εLm

)
, and these rates reduce

to the standard result expected from Fermi’s Golden
Rule. More generally, for non-zero γm, the dissipative
term broadens the energy-conserving δ-function into a
Lorentzian Qnm.

This imposes constraints on when the equilibrium den-
sity matrix,

ρS =
∏
n

(
fFD

(
εSn
)
c†ncn +

(
1− fFD

(
εSn
))
cnc
†
n

)
,(4.7)

(corresponding to taking gn = fFD(εSn) in Eq. (4.1))
can be obtained. Specifically, in the limit γ → 0, we
require that the lead is infinite and its bandwidth is larger
than or equal to that of the system. To understand these
conditions, note that when γ → 0, the Lorentzian Qmn
selects the energy εSn = εLm. When the lead is infinite and
its bandwidth is large, one is guaranteed to find a state
in the lead that matches each level in the system.

Equation (4.2) is much simpler to use than the third
quantization method, as it only requires a diagonalization
of the system Hamiltonian. It applies to the class of
non-interacting systems described above, and to more
general tight-binding models. It only relies on the weak
coupling between system and lead and not on specifics,
such as the exact number of links. It can be generalized

to systems with anomalous fermion hopping c†jc
†
j′ , which

are relevant for superconducting systems and to quantum
Ising chains.

The full derivation of the above results is given in Ap-
pendix B. Here, we outline its main steps. This deriva-
tion is similar to previous studies of the perturbative
approach to the Lindblad equation (see Refs. 31, 38–
42), with appropriate modifications relevant to our phys-
ical setup. First, we write the Lindblad equation for the
steady state in the form:

0 = Ĥ0ρ+ Γ̂ρ+ V̂ ρ (4.8)



5

with the superoperators Ĥ0 and V̂ defined by,

Ĥ0ρ = −i [HS +HL, ρ] ,

V̂ ρ = −i [Hint, ρ] , (4.9)

and Γ̂ given in Eq. (2.8). We are interested in the steady

state ρ in the limit of weak system-lead coupling V̂ → 0.
Let’s consider first the case V̂ = 0. Then, the den-

sity matrix ρ factorizes into system and lead components.
The lead component is thermal by construction. The sys-
tem component is a steady state, provided it commutes
with HS . This implies that ρ is of the form in Eq. (4.1),
where the parameters gn are at this point arbitrary. For
simplicity, we assumeHS has a non-degenerate spectrum.

In order to obtain the density matrix to leading order
in t′, the coefficients gn have to be determined using de-
generate perturbation theory, within the Hilbert space of
states of the form in Eq. (4.1). The details are given in
Appendix B.

B. Fluctuation-Dissipation Relation

It has been shown that the Lindblad equation does not
in general satisfy fluctuation-dissipation relations22,43,44.
This is true even in cases where the Lindblad operator
acts globally on the whole system and when the steady
state is Gibbs. Fluctuation-dissipation relations hold
only in the weak coupling limit and are violated oth-
erwise. This can be understood by recalling that unitary
dynamics together with Gibbs initial condition for the
density matrix ensure the fluctuation-dissipation rela-
tions. The dynamics of the system are unitary over time
scales shorter than 1/γ, and therefore the fluctuation-
dissipation relations become exact in the weak coupling
limit γ → 0.

In our settings we saw that a small γ (and t′) limit is
required for obtaining a Gibbs density matrix. With the
above in mind this automatically ensures the existence
of fluctuation-dissipation relations.

C. Error Analysis

We have shown that in order to obtain thermalization,
we must take the limit of small t′ and γ, while holding
a large lead M � N . It is interesting to quantify the
error. As argued above, it is natural to consider the limit
t′ � γ. Therefore, we estimate the error as a function
of γ, to leading order in t′ → 0, using the results of
Sec. IV A. Throughout, we work with an infinite lead of
infinite bandwidth.

Using Eq. (4.2), we obtain

g
(
εSn
)

=

´
dεΥ

(
ε− εSn

)
fFD (ε)´

dεΥ(ε− εSn)
. (4.10)

Here, as above, we assume that the system couples to
the lead on a single site, and that the lead has periodic
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FIG. 4. Steady-state occupations of the single particle energy
eigenstates for β = 10, in the limit t′ → 0 and an infinite size
lead.

boundary conditions. Then, |t′mn|2 is independent of m,
and it drops out of the sum in Eq. (4.2). For simplicity,
we have also assumed that the density of states varies
slowly relative to both γ and β−1, which are also taken
to be small relative to the system bandwidth. Then, the
density of states also drops out, and the integrals above
can be taken to extend from −∞ to ∞. In this case, the
denominator becomes

´
dεΥ

(
ε− εSn

)
= 2π.

Equation (4.10) shows that the occupation is smeared
by the Lorentzian resulting from the dissipative terms.
This implies a condition for thermalization, γ � β−1.
Figure 4 shows the occupation function for different val-
ues of γ, at a fixed value β = 10. As can be clearly seen,
only for γβ � 1 does the occupation approximate well
the thermal distribution.

In the opposite limit, when βγ � 1, Eq. (4.10) evalu-
ates to

g
(
εSn
)

=
1

2
− 1

π
tan−1

(
2εSn
γ

)
. (4.11)

Note that this result is independent of β, as one may
expect in this regime. The occupation is controlled by
the Lorentzian, which has broad tails, as shown in Fig.
5. This leads to a slow decay of the occupation, which
behaves as ∼ γ

2πεSn
well above the chemical potential of

the lead, and therefore cannot be described by a Fermi
distribution with an effective temperature. The thermal-
ization error in this regime is dictated by the system size.
As clearly seen in Fig. 6, in the limit γN � 1 it behaves
as ∆2 ∝ γ2, whereas in the opposite limit γN � 1 it be-
haves as ∆2 ∝ γ. To explain this, we note that for finite
systems, the energy level spacing scales as 1

N . There-
fore, the main contributions to the error near the Fermi
surface (εSn = 0) are simply

g
(
εSn
)
γN�1

∼

{
1− γN εSn < 0

γN εSn > 0
(4.12)
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FIG. 5. Steady-state occupations of the single particle energy
eigenstates at zero temperature, in the limit t′ → 0 and for
an infinite lead size.

and clearly ∆2 ∝ γ2N (see Fig. 6 inset). On the other
hand, for infinite systems the summation can be replaced
by an integral,

∆2 = 2 ·
ˆ W

0

dεD (ε)

(
1

2
− 1

π
tan−1

(
2ε

γ

))2

(4.13)

with D (ε) being the density of states and W is a charac-
teristic bandwidth, of order 1. Assuming that the density
of states does not change abruptly, namely D′ (ε)� 1

γ , it

can be approximated to a constant. Then, doing a sim-
ple change of variables and noting that W

γ � 1 leads to

∆2 ∝ γ.
In Fig. 7, we plot the error for finite temperatures, but

still low enough such that β � 1. The error saturates for
large values of β, as well as for large values of γ.

V. GENERALIZATION TO INTERACTING
SYSTEMS

In the interacting case, in order to study many-body
systems, we write the system Hamiltonian (such as (Eq.
2.11)) in terms of the many-body eigenstates:

HS =

2N∑
ν=1

ESν |ψν〉 〈ψν | (5.1)

with |ψν〉 a many-body eigenstate and ESν its correspond-
ing energy. For simplicity, we keep studying particle
number conserving Hamiltonians, such as Eq. (2.11).
In this case, each eigenstate has a well defined particle
number, such that

N̂ |ψν〉 = Nν |ψν〉 (5.2)

with N̂ =
∑N
i=1 c

†
i ci and Nν an integer between 0 and

N .

10-3 10-1 10
10-4

10-2

0
N=10
N=50
N=500
N=10000

10-3 0.1
10-5

1

∆

∆√
N

γ

FIG. 6. Thermalization error at β =∞ as a function of γ for
different values of N , in the limit t′ → 0 and for an infinite
lead size. Inset: the same data, scaled with 1√

N
. Note that

the plot for N = 10000 has been omitted from the inset,
since it is practically an infinite system for the values of γ
considered here.

10-3 10-1 1
10-4

10-2

0

-=10
-=50
-=100
-=500

∆

γ

FIG. 7. Thermalization error as a function of γ for different
values of β, in the limit t′ → 0 and an infinite size lead.
System size is finite and chosen as N = 100.

The coupling Hamitlonian, Eq. (2.12), exchanges one
particle between the system and the lead, and therefore
can be written in terms of energy eigenstates as follows:

Hint =
∑
m,ν,ν′

Tmνν′b
†
m |ψν′〉 〈ψν |+ h.c. (5.3)

with

Tmνν′ = −e
−2πimM
√
M

t′ 〈ψν′ | c1 |ψν〉 . (5.4)

This matrix element connects eigenstates which differ by
one particle, namely Nν = 1 +Nν′ .

As before, we start by studying the case of Hint = 0.
Then, the steady state density matrix factorizes into a



7

system component and a thermal density matrix for the
lead. Assuming that there are no degeneracies, it can
therefore be written as follows:

ρ =

M∏
m=1

(
fmb

†
mbm + (1− fm) bmb

†
m

)
⊗

2N∑
ν=1

Gν |ψν〉 〈ψν | (5.5)

with 0 ≤ Gν ≤ 1 arbitrary and subject to the normaliza-
tion condition

∑
ν Gν = 1. As a side remark, we point

out that degeneracies can arise due to the particle-hole
symmetry in our system at µ = 0. These can be simply
taken into account by a simultaneous diagonalization of
HS and N̂ 45.

To proceed we carry out a degenerate perturbation the-
ory in t′. This fixes the values of Gν . The analysis is very
similar to the non-interacting case, as presented in Ap-
pendix B, and results in the following equation for each
state |ψν〉:

0 =
∑
m,ν′

|Tmνν′ |2Qmνν′ (fmGν′ − (1− fm)Gν) +

∑
m,ν′′

|Tmν′′ν |2Qmν′′ν ((1− fm)Gν′′ − fmGν)(5.6)

where the summation runs over eigenstates such that

Nν′ = Nν − 1

Nν′′ = Nν + 1 (5.7)

In addition,

Qmνν′ = Υ
(
εLm −

(
ESν − ESν′

))
(5.8)

with Υ (∆ε) defined in Eq. (4.3). The steady state values
of Gν are then obtained by solving the 2N coupled linear
equations of Eq. (5.6).

Equation (5.6) genealizes Eq. (4.5) to a many-body
context. It can be rephrased as a global balance equation
for the flow in and out of the state |ψν〉:

0 =
∑
ν′

(Gν′Rν′→ν −GνRν→ν′)

+
∑
ν′′

(Gν′′Rν′′→ν −GνRν→ν′′) (5.9)

with Gν again being the probability for the eigenstate
ν, and where the rates R sum over all possible particle
exchanges with the lead:

Rν′→ν =
∑
m

|Tmνν′ |2Qmνν′fm

Rν→ν′ =
∑
m

|Tmνν′ |2Qmνν′ (1− fm)

Rν′′→ν =
∑
m

|Tmν′′ν |2Qmν′′ν (1− fm)

Rν→ν′′ =
∑
m

|Tmν′′ν |2Qmν′′νfm . (5.10)

Note that the expression for the rates depends on whether
a particle is being added or removed into the lead. Since
Eq. (5.9) is a balance equation for a probability conserv-
ing process, there is always a solution for the probabilities
Gν . If the process is ergodic, then the solution is unique.

As in the non-interacting case, the system ther-
malizes for γ → 0. In this limit, Qmνν′ →
2πδ

(
εLm −

(
ESν − ESν′

))
and we obtain the many-body

equivalent of Fermi’s Golden Rule. Then, for an infi-
nite lead where the bandwidth is infinite, the rates in
Eq. (5.10) satisfy detailed balance:

Rν′→ν
Rν→ν′

= e−β(ESν−ESν′−µ) (5.11)

and similarly for the ratio Rν→ν′′
Rν′′→ν

. Hence, the steady

state probabilities are

Gν = Gthermal
ν ≡ 1

Q
e−(βESν−µNν) (5.12)

where Q is the grand-canonical partition function:

Q ≡
∑
ν

e−(βESν−µNν) (5.13)

Figure 8 shows the steady state value of Gν , as a func-
tion of energy, for two different values of γ. To ensure
non-integrability, we set U = 0.5 and V = 0.25. As ex-
pected, when γ is small, the system is close to a thermal
distribution. Significant deviations from thermalization
are only noticeable on a logarithmic scale, for excited
states whose probability is Gν ≤ 10−5. On the other
hand, when γ is not small, there are significant devia-
tions even for the ground state.

In order to quantify the many-body thermalization er-
ror, we define:

∆ =

√√√√ 1

N

2N∑
ν=1

(Gν −Gthermal
ν )

2
. (5.14)

In Fig (9) we present the thermalization error as a func-
tion of γ. As seen in the figure, strict thermalization is
only achieved for γ → 0, and for small γ the thermal-
ization error ∆ is linear in γ. The results are shown for
several system sizes and are consistent with an error scal-
ing as N1/2 (see inset). This is the same behavior argued
for in the non-interacting case, see Sec. IV C.

VI. DISCUSSION

The paper addresses thermalization of quantum sys-
tem using a Lindblad approach. A new method was de-
vised which allows the Lindblad operators to thermalize
the system without coupling to the whole system. The
method relies on acting on a lead with Lindblad jump
operators and coupling the lead to the system, which is
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FIG. 8. Steady state occupations of the first 30 many-particle
energy eigenstates in the limit t′ → 0 and for an infinite size
lead. Here: β = 10, N = 10, U = 0.5, V = 0.25. Inset: the
same graph, on a linear scale, for the first 4 eigenstates. In
(a), γ = 10−4, while in (b), γ = 0.1.

subjected to Hamiltonian dynamics only. For the method
to be properly applied, the coupling of the system to
the lead and of the Lindblad operators to the lead have
to be weak. In these limits, the method ensures that
there is both thermalization into a Gibbs state and that
fluctuation-dissipation relations are satisfied. The corre-
sponding errors as a function of the coupling were esti-
mated. The study also shows the limitations of applying
the Lindblad approach to strongly driven systems.

This approach can serve as the starting point to study
transport in situations where the system is coupled to
multiple leads. The resulting behavior of the system is
expected to be similar to that obtained by a Landauer
approach for non-interacting systems and wealky inter-
acting systems1,7,46. However, the method can also be
applied to systems of arbitrarily strong interactions, and
gives access to the full density matrix of the system.

10-4 10-2 1

10-4

10-2

1

N=6
N=8
N=10

10-4 1
10-5

1

∆

∆√
N

γ

FIG. 9. Many-body thermalization error (Eq. (5.14)) as a
function of γ for different system sizes and an infinite size
lead (Here: β = 10, U = 0.5, V = 0.25). Inset: the same
data, scaled by 1√

N
.
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Appendix A: Single-Site Coupling

We note that the Lindblad equation, with the unitary
part of the evolution given in Eq. (3.1) and the dissipa-
tive generator in Eq. (3.2), represents a Markov process
which is ergodic. Therefore, its steady state is unique.
This steady state can be found by considering the fol-
lowing Ansatz,

ρ̃ =
(
gLb
†b+ (1− gL) bb†

)
×

N∏
i=1

(
gic
†
i ci + (1− gi) cic†i

)
, (A1)

corresponding to a product density matrix in the site
basis, with the parameters gL and gi to be determined.
Substituting Eq. (A1) into the dissipative generator we
find,

Γ̂ρ̃ = γ
[
f0 (1− gL)

(
b†b− bb†

)
+ (1− f0) gL

(
bb† − b†b

)]
×

N∏
i=1

(
gic
†
i ci + (1− gi) cic†i

)
, (A2)
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which vanishes for gL = f0. Similarly, substituting into
the unitary part of the evolution,

[H, ρ̃] = t′ (gL − g1)
(
c†1b− b†c1

)
×
N−1∏
j=2

(
gjc
†
jcj + (1− gj) cjc†j

)

+

N∑
i=1

(gi − gi+1)
(
c†i+1ci − c

†
i ci+1

)
×

N−1∏
j 6=i,i+1

(
gjc
†
jcj + (1− gj) cjc†j

)
×
(
gLb
†b+ (1− gL) bb†

)
. (A3)

We thus see that for

gL = gj = f0 ∀j (A4)

the unitary evolution −i [H, ρ̃] = 0 also vanishes.
The analysis above shows that within this coupling

protocol, different sites are uncorrelated in the steady
state. In fact, since the occupations are site-independent,
it follows that the density matrix factorizes and is state
independent for any one-particle basis. In particular, the
reduced density matrix of the system (after tracing out
the lead) becomes, in the energy basis,

ρS =
∏
n

(
f0c
†
ncn + (1− f0)cnc

†
n

)
. (A5)

Hence, a state’s occupation is seen to be independent
of its energy, corresponding to an infinite temperature
steady state, regardless of the value of β. From the
derivation above, it is clear that this result holds for more
general tight-binding models.

Appendix B: Perturbation Theory

In this Appendix, we consider general tight binding
models. The setup is similar to Fig. 1:

H = HL +HS +Hint (B1)

Here, it is more convenient to work with the one-particle
eigenstates of the lead and system Hamiltonians. There-
fore,

HL =
∑
m

εLmb
†
mbm

HS =
∑
n

εSnc
†
ncn

Hint =
∑
m,n

t′mnb
†
mcn + h.c. (B2)

where m, n are the eigenstates of the lead, system Hamil-
tonians, respectively, bm, cn are their corresponding anni-
hilation operators and εLm, εSn the corresponding energies.

Right now, we don’t assume specific details about the
Hamiltonians, except that Hint is governed by an overall
scale t′ and vanishes as t′ → 0.

Our goal is to obtain the solution to Eq. (4.8) order
by order in t′. In particular, we show that in the limit
t′ → 0, the results in Sec. IV A hold.

We begin by denoting:

ρ =

∞∑
k=0

ρk (B3)

With ρk ∼ (t′)k. Plugging Eq. (B3) into Eq. (4.8) and
comparing terms of the same order, we can solve for the
density matrix iteratively:(

Ĥ0 + Γ̂
)
ρ0 = 0 (B4)

k ≥ 1 : ρk =
(
Ĥ0 + Γ̂

)−1 (
−V̂
)
ρk−1 (B5)

Here, we focus on computations up to second order in t′.
Higher order terms can be obtained iteratively, but are
outside the scope of this paper.

Eq. (B4) can be satisfied by choosing a factorizable
density matrix as follows:

ρ0 =
∏
m

(
fmb

†
mbm + (1− fm) bmb

†
m

)
×
∏
n

(
gnc
†
ncn + (1− gn) cnc

†
n

)
(B6)

with 0 ≤ gn ≤ 1, at this point arbitrary. Without loss
of generality (see remark at the end of the Appendix),
we assume that HS is non-degenerate. In this case, the
above form of density matrix is the only possible choice
to satisfy Eq. (B4). However, the subspace of solutions
to this equation is largely degenerate. Therefore, to de-
termine ρ0, a degenerate perturbation theory has to be
employed.

Note that here, in contrast to a usual perturbation the-
ory, the Schrodinger equation is replaced by the Lindblad
equation, and the Fock space by the space of the linear
operators which act on Fock states. Also, since we are in-
terested in the steady state, the eigenvalue of Ĥ0 +Γ̂+ V̂
is 0 to all orders in t′.

For convenience, we introduce some notation. Since
the unperturbed operator Ĥ0 +Γ̂ is a sum of one-particle
operators, its eigenstates can be factorized:

ρ{im,in} =
∏
m

ΩLim,m ⊗
∏
n

ΩSin,n, (B7)

where im, in are indices taking the values of 0 − 3, and
ΩLim,m (ΩSin,n) are one-particle lead (system) eigenstates,
respectively, specified in Table I. The corresponding
eigenvalue of ρ{im,in} is(

Ĥ0 + Γ̂
)
ρ{im,in} = ρ{im,in}×(∑

m

ωLim,m +
∑
n

ωSin,n

)
(B8)
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with ωLim,m, ωSin,n the one-particle eigenvalues (also spec-

ified in Table I). Note that ΩS0,n, ΩS3,n are degenerate,
and we emphasize again that the gn’s are arbitray. This
apparently cumbersome choice of ΩS0,n, ΩS3,n will prove to
be useful later.

To formulate the perturbation theory in the space of
linear operators, we define the inner product between two
states ρa and ρb:

〈ρa, ρb〉 ≡ Tr (ρ̃aρb) , (B9)

with ρ̃a being the dual state of ρa. This dual state is
the analog of the ”bra” state with respect to some ”ket”
state. However, it is not necessarily its Hermitian conju-
gate, since we study eigenstates of a non-Hermitian op-
erator. The dual state is computed as follows: The dual
eigenstates ρ̃{im,in} are obtained by factorizing dual one-
particle eigenstates, which are given in Table II. These,
in turn, were obtained by requiring〈

ΩLim,m,Ω
L
jm,m

〉
= δim,jm〈

ΩSin,n,Ω
S
jn,n

〉
= δin,jn (B10)

Employing the above notations, ρ0 can be written simply
as

ρ0 =
∏
m

ΩL0,m
∏
n

ΩS0,n (B11)

We now proceed to find other solutions to Eq. (B4).
These solutions form a subspace, which we name the

TABLE I. Eigenstates of Ĥ0 + Γ̂

Name Expression Eigenvalue

ΩL0,m fmb
†
mbm + (1− fm) bmb

†
m 0

ΩL1,m b†m −iεLm − γ
2

ΩL2,m bm iεLm − γ
2

ΩL3,m b†mbm − bmb†m −γm
ΩS0,n gnc

†
ncn + (1− gn) cnc

†
n 0

ΩS1,n c†n −iεsn
ΩS2,n cn iεsn

ΩS3,n c†ncn − cnc†n 0

TABLE II. Dual Eigenstates of Ĥ0 + Γ̂

Name Expression Eigenvalue

Ω̃L0,m b†mbm + bmb
†
m = Im 0

Ω̃L1,m bm −iεLm − γ
2

Ω̃L2,m b†m iεLm − γ
2

Ω̃L3,m (1− fm) b†mbm − fmbmb†m −γm
Ω̃S0,n c†ncn + cnc

†
n = In 0

Ω̃S1,n cn −iεsn
Ω̃S2,n c†n iεsn

Ω̃S3,n (1− gn) c†ncn − gncnc†n 0

“ground state manifold”, that is spanned by the following
basis vectors:

ρ{i0,n} =
∏
m

ΩL0,m
∏
n

ΩSi0,n,n i0,n = 0 or 3 (B12)

The degenerate perturbation theory requires that ρ1
(Eq. (B5)) has zero overlap with any ρ{i0,n}. By applying

V̂ one obtains the following:(
−V̂
)
ρ0 = i

∑
m,n

t′mnb
†
mcn×∏

µ6=m
ΩL0,µ

∏
ν 6=n

ΩS0,ν (gn − fm) + h.c. (B13)

and, trivially, ρ1 has no overlap with the ground state
manifold. Therefore, we proceed to second order in t′:

V̂
(
Ĥ0 + Γ̂

)−1
V̂ ρ0 =

∏
µ

ΩL0,µ×

∑
m,n

|t′mn|
2
γm (gn − fm)(

γm
2

)2
+ (εLm − εSn)

2
× N∏

ν 6=n
ΩS0,ν

ΩS3,n

+ ρ⊥2 (B14)

with ρ⊥2 being terms outside the ground-state manifold.
The requirement that

〈
ρ2, ρ{i0,n}

〉
= 0 for any ρ{i0,n}

is mostly trivial, except for the set of N independent
quations:∑

m

|t′mn|
2
γm (gn − fm)(

γm
2

)2
+ (εLm − εSn)

2
= 0 ∀ n (B15)

which results in Eq (4.2), as expected. In addition to
the occupations gn, we can obtain different correlation
functions from ρ⊥2 (Eq. (B14)), up to second order:〈

b†mbm′
〉(2)
m 6=m′ =

1

−i
(
εLm′ − εLm

)
− γm+γm′

2

×

∑
n

(t′mn)
?
t′m′n (gn − fm)

i (εLm − εSn)− γm
2

+ c.c.,m↔ m′ (B16)

〈
b†mbm − bmb†m

〉(2)
=

1

−γm

∑
n

|t′mn|
2

(gn − fm)

−i (εLm − εSn)− γm
2

+ c.c. (B17)

〈
c†ncn′

〉(2)
n 6=n′ =

1

−i (εsn′ − εSn)
×

∑
m,n′′

− t
?
mn (t′mn′)

?
(gn − fm)

−i (εLm − εSn)− γm
2

+ c.c., n↔ n′ (B18)
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The lead-system correlations can be obtained as well,
and are needed for computing the current in out of equi-
librium setups:

〈
b†mcn

〉(1)
=
i (t′mn)

?
(gn − fm)

i (εLm − εsn)− γm
2

(B19)

Note that these processes reflect the virtual creation and
annihilation of the particles in the lead and system via

the weak coupling.

As a final remark, we would like to clarify that this
treatment can be generalized to a degenerate HS . For
example, in the simplest case, if the degeneracy results
from known symmetries, HS can be diagonalized simul-
taneously with the additional conserved quantities, and
then these eigenstates are chosen as the constituents of
Eq. (B6).
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38 Z. Lenarčič, F. Lange, and A. Rosch, (2017),

arXiv:1706.05700.
39 F. Benatti, A. Nagy, and H. Narnhofer, J. Phys. A Math.

Theor. 44, 155303 (2011).
40 A. C. Y. Li, F. Petruccione, and J. Koch, Sci. Rep. 4,

4887 (2014).
41 A. C. Y. Li, F. Petruccione, and J. Koch, Phys. Rev. X

6, 021037 (2016).
42 Z. Cai and T. Barthel, Phys. Rev. Lett. 111, 150403

(2013).
43 P. Talkner, Ann. Phys. (N. Y). 167, 390 (1986).
44 G. W. Ford and R. F. O’Connell, Phys. Rev. Lett. 77, 798

(1996).
45 J.-F. Cardoso and A. Souloumiac, SIAM J. Matrix Anal.

Appl. 17, 161 (1996).
46 D. Gruss, K. A. Velizhanin, and M. Zwolak, Sci. Rep. 6,

24514 (2016).


