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Abstract 

Using Landau-Ginzburg-Devonshire (LGD) theory for BiFeO3 dense fine-grained ceramics with quasi-spherical 

grains and nanosized inter-grain spaces enriched by elastic defects, we calculated a surprisingly strong size-

induced increase of the antiferromagnetic transition temperature caused by the joint action of rotomagnetic and 

magnetostrictive coupling. Notably, all parameters included in the LGD functional have been extracted from 

experiments, not assumed. Complementary we performed experiments for dense BiFeO3 ceramics, which 

revealed that the shift of antiferromagnetic transition to TN ~690 K instead of TN~645 K for a single crystal. To 

explain theoretically the result, we consider the possibility to control antiferromagnetic state of multiferroic 

BiFeO3 via biquadratic antiferrodistortive rotomagnetic, rotoelectric, magnetoelectric, and magnetostrictive 

couplings. According to our calculations the highest is the rotostriction contribution, while the magnetostrictive 

and electrostriction contributions appear smaller. 
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I. INTRODUCTION  

Multiferroics, defined as materials with more than one ferroic long-range orders, are ideal 

systems for fundamental studies of couplings among the order parameters of different nature, e.g. 

ferroelectric (FE) polarization, structural antiferrodistortion (AFD), ferromagnetic (FM) and 

antiferromagnetic (AFM) order parameters [1, 2, 3, 4, 5, 6, 7, 8].  

The AFD, FE, FM, and AFM degrees of freedom in multiferroics are interlinked via different 

types of biquadratic couplings leading to versatile phase diagrams and domain structure evolution [1-

8]. The biquadratic couplings are universal for all AFD multiferroics [9]. Among them of particular 

interest are the "rotoelectric" Houchmandazeh-Laizerowicz-Salje coupling, that is the biquadratic 

coupling between the AFD order parameter and polarization [10, 11, 12], and the "direct" rotomagnetic 

coupling that is the biquadratic coupling between the AFD and AFM (or FM) orders [13]. 

Among the couplings, the rotomagnetic coupling impact is the most poorly studied both 

experimentally and theoretically, except experiments of Bussmann-Holder et al. [14, 15] revealed a 

magnetic field impact on AFD tilts in EuTiO3. The goal of the present work is to study theoretically 

the impact of rotomagnetic and rotoelectric couplings on the AFM order of multiferroic bismuth ferrite 

BiFeO3 (BFO). 

BFO is the unique multiferroic [16, 17] with a strong ferroelectric polarization and 

antiferromagnetism at room temperature, as well as conduction and magnetotransport on domain walls 

[18, 19, 20, 21]. The pronounced multiferroic properties and unusual domain structure evolution 

maintain in BFO thin films and heterostructures [22, 23, 24, 25, 26, 27]. Bulk BFO exhibits AFD order 

at temperatures below 1200 K; it is FE with a large spontaneous polarization below 1100 K and is 

AFM below Neel temperature TN ≈ 650 K [8, 28]. Recently, a complete phase diagram of BFO 

including the AFM, FE, and AFD phases was calculated within Landau-Ginzburg-Devonshire (LGD) 

theory [29], however the role of the rotomagnetic and rotoelectric couplings was omitted.  

This work uses LGD-theory to establish the rotomagnetic coupling influence on the AFM 

transition temperature of BFO ceramics with quasi-spherical micron sized grains (treated as a core) 

and nanosized inter-grain spaces (treated as a shell). Notably, all parameters included in the LGD 

functional have been extracted from experiments only, and not supposed.. We also present 

experimental results for dense BFO ceramics, which reveal a shift of the AFM transition to TN ~ 690 K 

instead of TN ~ 645 K for a single crystal, and perform theoretical estimates of possible contributions 

to the shift. According to the estimates the highest contribution is due to the rotomagnetic coupling, the 

magnetoelectric and rotoelectric ones are smaller and much smaller, respectively. 

The paper is organized as follows. The impact of the rotomagnetic and other couplings on the 

AFM transition of BFO is presented in Section II. Experimental results are analyzed in Section III. 
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Section IV is devoted to discussion of agreement between theory and experiment. Section V presents 

conclusions. 

 

II. THEORETICAL DESCRIPTION 

The rotomagnetic coupling is described by the term ( ) lkji
L
ijklji

M
ijkl LLMM ΦΦξ+ξ , where Mi is 

ferromagentic order parameter and Li is the antiferromagentic order parameter, M
ijklξ  and L

ijklξ  are 

rotomagnetic tensor components. The rotoelectric coupling is described by the term lkjiijkl PP ΦΦξ , 

where ξijkl is the rotoelectric coupling coefficient, iP  is the spontaneous polarization, iΦ  are the 

spontaneous oxygen octahedra tilt angles [9]. The biquadratic magnetoelectric coupling is the coupling 

between polarization and magnetization, that is described by the term lkjiijkl MMPPη , where ηijkl is 

the biquadratic magnetoelectric coupling coefficient and Mi is the spontaneous magnetization.  

Thermodynamic potential of LGD-type that describes AFM, FE and AFD properties of BFO, 

including the rotomagnetic, rotoelectric and magnetoelectric biquadratic couplings includes the AFD, 

FE, AFM contributions and the coupling ( BQCGΔ ) among them [29], as well as elastic energy ( ELSGΔ ) 

including electrostrictive, magnetostrictive, and rotostrictive contributions existing in a strained media:  

ELSBQCAFMFEAFD GGGGGG Δ+Δ+Δ+Δ+Δ=Δ                                      (1) 

Below we are mainly interested in R3c phase that has nonzero 321 Φ=Φ=Φ=Φ  and 

321 PPPP ===  and the G-type (cycloidal) dimensionless AFM order parameter L, existing below 

Neel temperature. The AFD energy in the R3c phase is a six-order expansion on the oxygen tilt iΦ  

and its gradients,  

l
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Here iΦ  are components of pseudovectors, determining out-of-phase static rotations of oxygen 

octahedral groups (eigenvectors of AFD modes of lattice vibrations), and Einstein summation 

convention is employed.  

The FE energy, FEGΔ , is a six-order expansion on the polarization vector iP  and its gradients,  
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The AFM energy, AFMGΔ , is a fourth-order expansion in terms of the AFM order parameter 

vector iL , because this phase transition in BiFeO3 is known to be the second order one, its gradient 

and gradient-related Lifshitz invariant [30, 31, 32]. 
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In accordance with the classical LGD theory, we assume that the coefficients )(Φ
ia  and )(P

ka  are 

temperature dependent according to Barrett law [33], ( ) ( )( )ΦΦΦΦ
ΦΦ −α= TTTTTa qqqTi cothcoth)()(  and 

( )( )CqPqP
P

T
P

k TTTTa −α= coth)()( , where ΦT  and CT  are corresponding virtual Curie temperatures, ΦqT  

and qPT  are characteristic temperatures [34]. As it was shown recently [35] similar Barrett-type 

expressions can be used for the AFM coefficient )(TaL
i  of pure bismuth ferrite 

( ) ( )( )NLLL
L

T
L
i TTTTTTa cothcoth)( )( −α=  with the Neel temperature 645=NT  K and characteristic 

temperature 550=LT  K [29]. The expression 111 )(~ aTaL L , being valid in the isotropic 

approximation, describes quantitatively both the temperature dependence of the AFM order parameter 

measured experimentally in BiFeO3 by neutron scattering by Fischer et al. [28] and anomalous AFM 

contribution to the specific heat behaviour near the Neel temperature measured experimentally [36, 37, 

38]. The gradient terms in the form of Lifshitz invariant, ⎟
⎟
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LLPh )( , in Eq.(4) are of the 

so-called “flexo-type” (for classification see Table I in Ref.[39]) and are proportional to the third 

power of the order parameters LPL ∇~ . Their inclusion can induce an incommensurate spin 

modulation below the AFM transition, namely the cycloid spin order with a period about (62-64) nm 

[2, 8]. 

The AFD-FE-AFM coupling energy BQCGΔ  is a biquadratic form of the order parameters iL , 

iP  and iΦ  (see Suppl. Mat in Ref. [29]): 

2222
jiijjiijlkjiijklBQC LPLPPG λ+Φκ+ΦΦζ=Δ .                    (5) 

For a given symmetry the coupling energy in Eq. (5) includes unknown tensorial coefficients 44ζ , 11ζ , 

12ζ  in Voight notations for the AFD-FE biquadratic couplings. Below, due to the lack of experimental 

data, the FE-AFM and AFD-AFM rotomagnetic and biquadratic magnetoelectric coupling constants 

are assumed to be isotropic, ijij λδ=λ  and ijij κδ=κ .  



 5

The elastic energy in the R3c phase is 

( )lkijijkllkijijkllkijijklklijijklELS LLZRPPQsG σ+ΦΦσ+σ+σσ−=Δ .                  (6) 

Here ijkls  are elastic compliance tensor components, ijklQ  are electrostriction tensor components, ijklR  

are rotostriction tensor components, and ijklZ  are magnetostriction tensor components. All coefficients 

in the thermodynamic potential (1)-(6) were extracted from experimental data in Ref.[29], except for 

rotostriction, electrostriction and magnetostriction ones, which were determined in this work from 

independent experimental data. Details are listed in Appendix A in Ref.[40]. So that all parameters 

included in the parts (1)-(6) of LGD functional are extracted from experiments, but did not change 

within "a reasonable range". 

 Let us apply the thermodynamic approach based on the free energy (1)-(6) to a fine-grained 

BFO ceramics, for which the grain size R varies from several tens nanometers to several microns, and 

the grains are separated by a stressed inter-grain shell of thickness =0R (5 – 50) nm [see Fig.1(a)]. 

The stresses can originate from different sources, such as surface tension itself, as well as from 

chemical pressure in the regions enriched by e.g. oxygen vacancies and/or other defects such as Fe 

clusters. Below we will show that the contributions of both these sources into the total stress are 

additive, and, therefore, hardly separable in many cases. This statement will be approved below 

mathematically. 

For the case of densely packed spherical grains of radius R, which equatorial cross-section is 

shown in Fig.1(b), the ratio of the grains volume to the inter-grain space can be elementary calculated 

as 91.016 ≈−
π

. The ratio Sη  of the core volume to the total "shell + inter-grain" volume is smaller 

than 0.91, namely 
( ) ( )

( ) ( ) ( )
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S . Hence the significant part of the 

ceramics with densely packed identical spherical grains should be regarded affected by the surface, as 

well as by the chemical pressure created by elastic defects accumulated in the grain shells and inter-

grain spaces. In reality the grains are non-spherical, different in size and so packed much more densely 

reducing the part of the inter-grain space dramatically.  

 We regard the static dielectric and magnetic response of the grain boundaries being lossless. 

Dielectric losses at the grain boundaries can lead to the regions with strongly increased dynamic 

dielectric susceptibility (Maxwell-Wagner relaxation), however such an increase contributes to the real 

part of dielectric susceptibility and does not affect on its imaginary part in the static limit (i.e. at zero 

frequency of applied fields). Consideration of the shell regions with higher or smaller magnetic 

susceptibility may change the situation in the dynamic case (at some finite frequency of ac magnetic 
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field used in some experiments, sensitive to dissipative processes). However we have no reasons to 

include magnetic losses to describe dc magnetic measurements we performed in section IV. 

 

(a) (b)

 

R

R0shell 

Grain 
core

 

FIGURE 1. (a) Schematics of the spherical grain with radius R covered by the shell of thickness R0, where the 

stresses are accumulated. (b) Cross-section of the densely packed 8 spherical grains of radius R placed inside 

the cube with edge 4R.  

 

Therefore, for the case of the strained fine-grained ceramics Eq.(1) becomes affected by 

electrostrictive, rotostrictive and magnetostrictive couplings according to Eqs. (5)-(6). A formal 

expression for the shift of the AFM transition temperature related with the stresses near the grain 

boundaries can be obtained from the expression ( ) 0)( =Ta L
j . At that the approximate formulae, 

( ) 22)()(
iijiijklkljjN

L
T

L
j PZTTaa λ+Φκ+σ−−≈ , is valid in the vicinity of Neel temperature. The 

expression is formal because the surface and gradient effects [42, 43, 46, 47] can contribute to the 

average values and their mean square deviation in a complex and a priory nontrivial way. The concrete 

form of the expression for )(L
ja  depends on the physical-chemical state of the grain core and surface.  

Let us limit our consideration by the most common intrinsic surface stresses [41, 42, 43,] 

coupled with Vegard strains (chemical pressure) [8, 44, 45] acting on both polarization P, tilt Φ, and 

AFM order parameter L via the electrostriction, rotostriction and magnetostriction couplings, 

respectively. Also we regard that the depolarizing field acting on ferroelectric polarization inside the 

grain is negligibly small due to the screening charges. Within these assumptions the radial component 

of the chemical pressure (denoted as ( )rW
rrσ ) and intrinsic surface stress (denoted as ( )rrr

μσ ) inside the 
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core and shell regions acquires the form derived in Appendix D [40] and Refs.[42, 43, 46, 47, 48, 49, 

50], namely: 

( )
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Here r is the distance from the grain centre. The components of intrinsic surface stress tensor are 

regarded diagonal, i.e. klkl μδ=μ  and μ is about (1 – 10)N/m. Poisson ratio is 1112 ssv −=  for cubic 

m3m symmetry in the parent phase. ( ) 21211 ccG −=  is the shear modulus.  

The Vegard strain tensor m
klW  of m-th type defects is regarded diagonal, kl

mm
kl WW δ= . For 

perovskites ABO3 the Vegard strain tensor is often related with vacancies and its absolute value can be 

estimated as W ∝ (5 – 30) Å3 for different vacancies [45]. Note that the Vegard tensor is usually 

diagonal for oxygen vacancies in perovskites, but not isotropic [45]. Notably, "compositional" Vegard 

strains m
m

klkl NWu δ=δ  can reach percents for vacancies concentration variation 2710~mNδ m-3 the 

near the surface. The value corresponds to approximately one defect per 10 unit cells for the typical 

cell concentrations in perovskites ~1.5×1028 m-3. Despite the concentration is much higher than the 

defect concentration in a bulk [51], such values are typical for vacancies segregation near the surface 

due to the strong lowering of their formation energy at the surface [52, 53]. 

Let us average the total stress ( ) ( ) ( )rrr rr
W
rrrr

μσ+σ=σ  in Eqs.(7) over the grain volume 

3

3
4 RV π=  under the condition RR <<0 . Using calculations listed in Appendix D [40] the averaging 

yields 

( )
R
R

Rrr
0η≈σ ,                       m

m NW
v
vG

R
δ

−
+−μ−=η

1
13

0

.          (8) 

As one can see from the explicit form of the "total stress" parameter η, its first term (~μ) originates 

from the intrinsic surface stress, and the second term (~ m
m NW δ ) originates from the excess chemical 

pressure. Thus Eq.(8) proves that both the chemical pressure and surface tension contributes into the 

total stress additively, and, therefore are hardly separable in many cases.  

Assuming that the coupling between the AFM and AFD, AFM and FE order parameters is 

weak, the decoupling approximation is valid with high accuracy, and so the renormalized AFM 
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transition temperature for a quasi-spherical grain of radius R covered by a thin shell of thickness 0R  

acquires the form derived in Appendix B [40]: 

( ) ( ) ( )
R
R

ZZ
a

QQ
a

RRTT
PL

T
NAFM

0
1112)(

11

1112
)(

11

1112
)( 2221 η

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−

+λ
+

+κ
α

−≈
Φ

.                   (9) 

The shift of TN in Eq.(9) contains three contributions, namely rotomagnetic [proportional to 

( )11122 RR +κ ], rotoelectric [proportional to ( )11122 QQ +λ ] and magnetostrictive [proportional to 

( )11122 ZZ + ] couplings with the total stress ( )
R
R

Rrr
0~ ησ . Estimation of the contributions for the 

parameters from Table I gives for the coefficients of the rotomagnetic, rotoelectric and 

magnetostrictive contributions following values 

( )
J

Km
a

RR
L

T

3
8

)(
11

1112
)( 1053.1

21 −
Φ ×−≅
+κ

α
, 

( )
J

Km
a

QQ
PL

T

3
9

)(
11

1112
)( 1019.2

21 −×≅
+λ

α
, 

J
KmZZ

L
T

3
8

)(
1112 102.12 −×−≅

α
+ .                                     (10) 

The rotomagnetic and rotoelectric coupling contributions to the shift of TN given by Eq.(9) are 

different in sign because the sum 11122 RR + = −2.18 ×1018 m−2 is negative, and sum 1211 2QQ + =0.0235 

m4/C2 appears positive for BFO (see Table I). According to the estimates (10) the largest is the 

rotomagnetic contribution, the magnetostrictive one is a bit smaller, and the rotoelectric contribution is 

about an order of magnitude smaller.  

 

Table I. LG potential for BiFeO3  

Parameter SI units Value for BiFeO3  Reference 

)(
11

Φa  J/m7  − 4.53×1049+4.5×1048× ( )T300coth  [29] 

)(
11

Pa  m5J/(C4)  −1.35×109 [29] 

)(
111

Φa  J/m9 16.72×1070−3.4×1070× ( )T400coth  [29] 

)(
111

Pa  m9J/(C6) 11.2×109 [29] 

κ J/(A2m3) 7.4×1017  [29] 

λ  J m3 /(A2C2) 3.8×10-4 [29] 

LTα  J/(A2m K) 3.02×10-6  see Appendix C 

TN K 645 Neel temperature 



 9

Lβ  J m/A4 1.03×10-14  see Appendix C 

ijQ  m4/C2 
1211 2QQ + =0.0235  see Appendix A 

ijR  m−2 11122 RR + = −2.18 ×1018   see Appendix A 

ijZ  m2/A2 
1211 2ZZ + =3.65 10-14 see Appendix C 

ijc  Pa 
11c =3.02×1011 ; 12c =1.62×1011; 

44c =0.68×1011

        [54] 

 

Notably, the gradient terms in the form of Lifshitz invariant in Eq.(4) do not contribute to the 

AFM transition shift given by Eq.(9), since these terms are proportional to the third power of the order 

parameters LPL ∇~ , while only the second powers can contribute significantly to the transition 

temperature of small nanoparticles with radius less than (10 – 25) nm. The Lifshitz invariant inclusion 

induces the incommensurate modulation below AFM transition [30-32], which we do not consider in 

this work. 

A physical analysis of the different contributions in Eq.(9) leads to a more comprehensive 

semi-microscopic explanation why NT  can be shifted in fine-grained ceramics. Actually elastic defects 

located in the thin shell regions create long-range elastic strain fields, which spread out to the core far 

beyond the grain shells, in contrast to the stress field that exist only in the shell in accordance with 

Eq.(7b). The strains leading to the bonds length changes, distortions and antiferrodistortive rotations 

via the rotostrictive, rotoelectrostric and magnetostrictive coupling mechanisms induce to the changes 

of the antiferromagnetic exchange integral between electron spins (evidently via the changes of the 

corresponding electron wave functions overlap). Allowing for the specific signs of the coupling 

strength (priory due to the negative rotostrictive coupling in BFO) the elastic fields lead to the increase 

of NT . Meanwhile the decrease of NT  in other antiferrodistotive-antiferromagnets, or for other shape 

and/or geometry of the nano-inclusions is not excluded. 

We show the dependence of the AFM transition temperature AFMT  on the grain radius R in 

Fig. 2(a). The rotoelectric, magnetostrictive and rotomagnetic contributions to AFMT  are shown in 

Fig. 2(b). 

From Fig.2(b) the size-induced increase of the AFM temperature is caused by the rotomagnetic 

and magnetostrictive couplings. The rotoelectric coupling leads to the decrease AFM transition, and 

the corresponding shift is several times smaller than the increase caused by the rotomagnetic coupling 

accordingly to the estimates (10).  
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FIGURE 2. (a) Dependences of the AFM transition temperature AFMT  vs. the grain radius R calculated from 

Eq.(8) for several shell thicknesses =0R 50 nm (curves 1), =0R 25 nm (curves 2), =0R 10 nm (curves 3), and 

=0R 5 nm (curves 4). Total Vegard coefficient ∑=
m

mWW  is equal to −20 Å3 for solid curves and +20 Å3 for 

dashed curves. (b) Separate contributions (rotomagnetic, magnetostriction and rotoelectric) to the AFMT . Surface 

tension coefficient μ  =5 N/m and total defect concentration in the shell 2710=δ∑
m

mN m-3. Other parameters 

are taken from Table 1.  

 

 Color map of the AFM transition temperature AFMT  in coordinates "grain radius R – shell 

thickness R0" was calculated from Eq.(8) and is shown in Figs.3 (a, b, c) for the positive, zero and 

negative Vegard coefficient W, respectively. From the figures one can see that the positive and zero W 

decrease the transition temperature [see Figs.3 (a, b)], and only the negative W can increases it [see 

Fig.3 (c)]. The increase is significant for relatively small grains with radius less than 200 nm and thick 

shells with thickness more than 10 nm. 
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FIGURE 3. Color map of the AFM transition temperature AFMT  in coordinates "grain radius R – shell thickness 

R0" calculated from Eq.(9) for the same parameters as in Fig.2 and Table 1. 

 

 

III. EXPERIMENTAL RESULTS 

A polycrystalline BFO sample prepared by a two-stage solid-state reaction technique [55] was 

characterized by a single phase rhombohedral structure described by R3c space group [56]. The XRD 

data affirmed a chemical homogeneity of the compound with an accuracy of about 3%, which is 

conditioned by the precision of a conventional X-ray diffractometer [Fig. 4(c)]. The synthesis 

conditions used to prepare the sample, viz. quite high final sintering temperature of 880°C applied for 

a short time period (10 min) allowed getting the high purity compound with a typical grain size of 

about 1-5 μm coexisting with an intergranular texture. The compound is characterized by an increased 

amount of the intergranular texture, which volume fraction is about 1% as confirmed by the SEM 

measurements. This amount is significantly larger that the values attributed to similar compounds 

prepared by conventional solid state reaction technique. It assumed that the structure of the 

intergranular texture is highly defective because of a numerous dislocations, inhomogeneous stress 

distribution and local variations of the chemical composition. 

 Temperature dependences of magnetization were measured in zero field cooled (ZFC) and field 

cooled (FC cooling) modes in the temperature range of 300 – 1000 K under magnetic field of 1kOe 

with a slow scan rate (2 seconds per measuring point, accuracy ~ 0.1 K). Small value of the remnant 

magnetization [Figs. 4(a,b)] is associated with the weak ferromagnetic state that becomes pronounced 

due to disruption of the spatially modulated magnetic structure occurred in the vicinity of numerous 

structural defects specific for the compound. Temperature dependent magnetization measurements 

allow observing the significantly shifted antiferromagnetic transition temperature (TN ~ 690K) as 

compared to the widely noted value of 640 K specific for BFO single crystals [57, 58] [see Fig.4(b)]. 

SEM images of the dense ceramics for different magnifications are shown in Fig.4(d)-(f)]. 
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FIGURE 4. (a,b) Temperature dependences of magnetization measured in the BFO ceramics under ZFC (lower 

curve) and FC condition (magnetic field of 1 kOe, upper curve). Plot (b) is the part of the plot (a) in the vicinity 

of the AFM transition temperature. Error bars are shown by red lines. XRD data shown in the inset (c) testify 

the phase purity of the studied BFO ceramics (tiny amount of the Fe2O3 impurity phase is marked by asterisk 

symbol). (d)-(f) SEM images of the dense BFO ceramics for different magnifications. 

 

It should be noted that the AFM transition temperature is shifted towards high temperatures for 

both FC and ZFC curves, and the difference in the magnetic anomalies observed at both magnetization 

dependences is about 10 K and cannot be caused by some drawbacks in the measuring procedure. The 

FC and ZFC curves do not merge above TN because the magnetization data testify a presence of a 

magnetic impurity (viz. γ-Fe2O3 phase with a volume fraction of less than 1% as confirmed by the 

XRD measurements). The phase forms notable “background” into the magnetization curves lasting up 

to a temperature above 900 K, and one should note similar behavior of the temperature dependences of 

magnetization observed for single-crystal and ceramic BiFeO3 [57, 59]. Assuming a negligibly small 
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amount of the mentioned magnetic impurity one should not consider any significant effect on the 

magnetic transition temperature of the compound. The increased value of the magnetic transition 

temperature can be explained by a joint action of the rotomagnetic and magnetostriction coupling, 

which are usually very small in a homogeneous bulk BFO crystal and lead to the temperature shift of 

about 0.5 – 5 K. These couplings can be much more pronounced in ceramics due to the internal 

intergranular stresses. In this sense relevant phenomenology allows some insight to the intrinsic stress 

and strain gradients. 

 

IV. DISCUSSION 

To relate the above theoretical estimates with the experimental results shown in Fig.4(a, b) we 

assume that several types of defects (oxygen vacancies and Fe clusters) are accumulated in the shells 

and their influence is synergetic. For the case the total defect concentration can reach relatively high 

values in the shell, 2710=δ∑
m

mN m-3. In order to compare the above theory with the experimental 

results shown in Fig.4(b) the observable physical quantities (e.g. magnetization M) should be averaged 

over the grain radius R and shell thicknesses R0 with a definite normalized distribution function 

( )0, RRf . Since ( )AFMTTM −~2 , the averaged AFM transition temperature is given by expression: 

( ) ( )000 ,,
max
0

min
0

max

min

RRTRRfdRdRT AFM

R

R

R

R
AFM ∫∫= .                                         (11) 

For instance, assuming that the shell thickness 0R  is constant, and the distribution of grain radius is 

quasi-homogeneous between minR  and maxR , i.e. 
( )

∫ −
=

max

min minmax

0,R

R

AFM
AFM RR

RRdRT
T , one obtains from 

Eqs.(9)-(11) that 
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Where 
2

minmax RR
R

+
= , 

2
minmax RR

R
−

=Δ , and minRRR −=Δ . In Fig. 5 the dependence of the 

averaged AFM transition temperature AFMT  on maxR  is shown for ≈0R 45 nm, ≈minR 50 nm and 

=W −20 Å3. The values 0R  and minR  where taken for illustration, they are within reasonable ranges 

505 0 ≤≤ R nm [47] and 50050 min << R  nm, which are typical for sub-micro and nanograined 

ceramics and satisfy the necessary condition min0 RR ≤ . According to Fig. 5 the increase of AFMT  

above 45 K is possible for the ceramic with the average grain radius below 150 nm. However 

according the Fig. 5 for the ceramics with the average grain size about 5 µm the Neel temperature 



 14

should be about 650 K that is close to the single crystal value 645 K. The discrepancy between the 

calculated and measured Neel temperature cannot originate from the dielectric or magnetic losses, 

which are not considered in the proposed static model. Actually the dynamics losses can only decrease 

the theoretical predictions of AFM temperature and so increase the discrepancy between the theory and 

experiment. 
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FIGURE 5. The dependence of the averaged transition temperature AFMT  on the average grain radius R  

calculated from Eq.(10) for minimal grain radius ≈minR 50 nm, shell thickness ≈0R 45 nm, and Vegard 

coefficient =W  −20 Å3. Other parameters are the same parameters as in Fig.2 and Table 1. 

 

Hence the proposed theoretical model can explain experimental data shown in Fig.4(a) only 

qualitatively, because it gives the increase of AFMT  above 45 K for fine-grained ceramics with 

significant amount of grains with radius smaller than 250 nm. The one order of magnitude discrepancy 

between the average grain sizes required from the theoretical model (less than 500 nm) and experiment 

(about 5 µm) to reach the increase of AFMT  above 45 K evidently speaks in favor of strongly 

underestimated impact of the rotomagnetic coupling by the model parameters or unexpectedly high 

contribution of the small grains into the average magnetization (non-uniform distribution function of 

the grain sizes).   

 

V. SUMMARY 

Using Landau-Ginzburg-Devonshire theory for BiFeO3 dense ceramics with quasi-spherical micron 

sized grain cores and nanosized inter-grain spaces we calculated a surprisingly strong size-induced 

increase of the AFM transition temperature caused by the joint action of the rotomagnetic and 
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magnetostriction coupling with elastic stresses accumulated in the inter-grain spaces. The rotoelectric 

coupling leads to the decreasing AFM transition temperature, and the corresponding shift is several 

times smaller than the increase caused by the rotomagnetic coupling.  

Also we performed experiments for dense BiFeO3 ceramics, which revealed the AFM transition 

at TN ~690 K instead of TN~645 K for a single crystal. To explain qualitatively the result we consider 

the possibility to control AFM properties of multiferroic BiFeO3 via the biquadratic antiferrodistortive 

rotomagnetic, rotoelectric and magnetostrictive couplings. To reach quantitative agreement between 

the theoretical model and experimental data one could also consider low symmetry phases [60, 61] 

with possibly higher impact of the rotomagnetic coupling and other LG parameters. 
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