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Abstract

Soft phonon modes describe a collective movement of atoms that transform a higher-symmetry

crystal structure into a lower-symmetry crystal structure. Such structural transformations occur at

finite temperatures, where the phonons (i.e., the low-temperature vibrational modes) and the static,

perfect crystal structures provide an incomplete picture of the dynamics. Here, principal vibrational

modes (PVMs) are introduced as descriptors of the dynamics of a material system with N atoms.

The PVMs represent the independent collective movements of the atoms at a given temperature.

Molecular dynamics (MD) simulations, here in the form of quantum MD (QMD) using density

functional theory calculations, provide both the data describing the atomic motion and the data

used to construct the PVMs. The leading mode, PVM0, represents the 3N -dimensional direction

in which the system moves with greatest amplitude. For structural phase transitions, PVM0 serves

as a generalization of soft phonon modes. At low temperatures, PVM0 reproduces the soft phonon

mode in systems where one phonon dominates the phase transformation. In general, multiple

phonon modes combine to describe a transformation, in which case PVM0 culls these phonon

modes. Moreover, while soft phonon modes arise in the higher-symmetry crystal structure, PVM0

can be equally well calculated on either side of the structural phase transition. Two applications

demonstrate these properties, first, transitions into and out of bcc titanium, and second, the

two crystal structures proposed for β-phase of uranium, the higher-symmetry structure of which

stabilizes with temperature.

1



I. INTRODUCTION

Atoms in a solid move constantly, and understanding their movement is key to under-

standing the solid’s mechanical and thermal behavior. Descriptions of macroscopic behavior

depend on judiciously merging the dynamic behavior at the atomic scale. Connecting the

understanding across length scales requires culling the collective motion of the N atoms,

which is a challenge because N is so large. Hence, we codify our understanding of the N

atoms’ varying positions by extracting meaningful descriptors. For example, in crystalline

solids we refer to the average position of the atoms as the crystal structure.

Starting from the crystal structure, phonons capture the collective movement of the

atoms at individual frequencies. The phonon modes describe the motion of the atoms in

the harmonic approximation, which allows them to be calculated from the forces of a static

crystal with the appropriate atomic displacements1. At low temperatures, the 3N phonons

interact minimally, and meaningful descriptors such as the heat capacity can be evaluated

using statistical mechanics2. A plethora of applications employing density functional theory

calculations has shown this procedure to be successful at describing and predicting many

properties of a vast range of materials3–6.

In some materials, individual phonon modes stand out to signal a structural phase

transformation7. Such a “soft phonon” in a higher-symmetry structure describes the collec-

tive motion of the atoms that take the system to a lower-symmetry structure. As the phase

transition is approached the soft phonon foreshadows the coming change with a marked

lowering of its frequency. The soft modes provide clear understanding of, e.g., why and how

the high-temperature, body-centered cubic (bcc) Ti structure disappears as temperature is

lowered: the soft modes point directly to the low-temperature hexagonal close-packed (hcp)

and omega (ω-Ti) Ti structures8.

Understanding the details of structural phase transitions in Ti and other materials leads

to better control of the transitions. Many materials exhibit technologically useful phases, but

in a temperature range that is not suited for specific applications. Alloying or doping with

other elements can lead to a more favorable temperature range, and significant research goes

into the atomistic understanding of how the added elements best affect the phase transition.

The suitability of phonons as a basis for understanding a material has limits. Materials

are not static, the atoms continuously move, and with increasing temperature the phonons
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interact. Eventually, at high temperatures, the phonons lose their independent nature,

diminishing their usefulness as fundamental building blocks for descriptors. Phonons are low-

temperature collective excitations, collective motion at high temperature needs a different

description. The work presented here shows how such descriptors derive from atomistic

simulations of materials.

Quantum molecular dynamics (QMD) accurately represent the atomic motion, and from

it collective behavior can be extracted. With the data from QMD simulations correlations

can be quantified, and new displacement patterns can be built based on the correlations.

With this approach, the QMD data serves two purposes: it provides both the “raw” infor-

mation of how the atoms interact and the framework in which to look at the information.

Section II outlines the formalism employed here to extract and put to use correlations

from QMD simulations. Rotating the 3N -dimensional basis of the displacements to reflect

the correlations results in a new set of modes that are no longer correlated with each other:

each of the new modes describes an independent collective movement of the atoms that

reflects some principle activity in the material. Here such a mode is referred to as a Principle

Vibrational Mode (PVM). Section III demonstrates applications of the formalism, first to

the structural transformations into and out of the body-centered cubic (bcc) Ti structure,

and second to two proposed structures for the β-phase of uranium.

II. METHOD

Experimental scattering methods provide information about atomic motion in condensed

matter. The measured spectrum is represented by the dynamic structure factor S(Q, ω)9,

first introduced by van Hove10,11. S(Q, ω) relates to the atomic positions by way of temporal

and spatial Fourier transforms: the spatial Fourier transformation of the time-dependent

positions ri(t) of the N atoms defines a wave vector Q-dependent particle density operator,

ρ(Q, t) =
N∑
i=1

e−iQ·ri(t). (1)

The temporal Fourier transformation,

S(Q, ω) =

∫
∞

−∞

e−iω·tF (Q, t)dt, (2)
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transforms the correlation of the particle density, known as the intermediate scattering

function and given by

F (Q, t) =
1

N
〈ρ(Q, t)ρ(−Q, 0)〉. (3)

This formalism serves equally well to extract theoretical spectra from QMD simulations12.

The work presented here employs a formalism that modifies the above to extract de-

scriptors of the collective atomic motion in a QMD simulation. First, the time-dependent

positions ri(t) of the N atoms are tracked in terms of the displacement of the atoms from a

crystal structure’s sites Ri, δri(t) = ri(t) −Ri. Second, the particle density operators are

described in a basis {Bn} that reflects the correlations extracted from the QMD simulation,

ρBn
(t) =

N∑
i=1

Bn · δri(t). (4)

Finding the basis {Bn} relies on analyzing the QMD data.

This analysis of the QMD data is performed in terms of an orthonormal set of 3N basis

vectors for the atomic displacements with respect to a crystal structure, {ej}. These basis

vectors are not the basis {Bn}, but a necessary step in finding the basis {Bn}. Here the

eigenvectors of the phonon modes serve as the {ej}, calculated using density functional

perturbation theory. These basis vectors define the instantaneous amplitude of the phonon

modes,

ρ̃(ej , t) =

N∑
i=1

ej · δri(t), (5)

and the time-dependent correlation of each phonon mode,

F̃ (ej, t) =
1

N
〈ρ̃(ej, t)ρ̃(e

∗

j , 0)〉. (6)

An advantage of using the eigenvectors of the phonon modes as the {ej} arises for the

analysis applied to a system with multiple elements: the eigenvectors of the phonon modes

scale the atomic displacements according to the different masses of the elements.

The correlations between phonon modes are codified in the matrix

Cej ,ek
=

∫
∞

−∞

F̃ (ej, t)F̃ (ek, t)dt. (7)

This definition of correlations between phonon modes is not unique but well suited for the

current application to structural phase transformations. Principle component analysis of C
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leads to the basis in which the descriptors of the atomic motion are decorrelated; specifically,

diagonalization provides the eigenvectors vn of C which define {Bn},

Bn =
∑
j

vn(j) · ej . (8)

Inserting the particle density operator of Eq. 4 into Eqs. 2 and 3 produces the spectra for

PVMn.

By construction, the eigenvector v0 with the largest eigenvalue defines the mode with the

largest root mean squared amplitude. This mode, referred to here as the leading principle

vibrational mode, PVM0, represents the direction in the 3N -dimensional space in which

one collective motion of atoms probes the deepest. This and succeeding modes with large

amplitudes in a material are often critical properties for the material’s application, and the

leading PVMs can serve as theoretical descriptors. Across a structural phase transforma-

tion, the movement of atoms needed to describe the transformation involves a large, finite

displacement and is hence reflected in PVM0 as shown in Section III.

Application of the formalism involves choosing a reference crystal structure, which defines

the crystal structure sites Ri. Across structural phase transformations, both connected

crystal structures serve as reference structures in two independent analyses. Taken together,

they provide complementary insight into the atomic motion described by the QMD data.

The QMD data analyzed here originate in density functional theory calculations using

the VASP package13,14. The QMD calculations simulate a fixed number of atoms in a fixed

simulation cell with constant energy. For comparison with experiment, QMD simulations

with fixed pressure rather than fixed simulation cell would be preferable, but the resulting

changes to cell dimensions and shape remain outside the current implementation of the for-

malism. Similarly, fixed temperature would be preferable over fixed energy, and indeed using

a Nosé thermostat (with Nosé mass corresponding to a frequency 5 THz) delivers results

in general agreement with those presented here. Sections IIIA and IIIB discuss the chosen

simulation cell shapes. The constant energy values are set by preparatory QMD calculations

that scale the velocities to set sequences of temperatures for each system. The electrons are

treated in the generalized gradient approximation of Perdew, Burke, and Ernzerhof15. No

additional specific treatment of the spin-orbit coupling or f -electron correlation effects in

uranium are included16. The electronic energy, treated in the PAW method17, is evaluated

at each atomic time step of 5 fs with Methfessel–Paxton smearing, σ = 0.1 eV, and Fermi-
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FIG. 1. (Color online) Schematic of the structural phase transformation between bcc-Ti and ω-Ti.

A 2 × 2 × 3 supercell is shown from the side (a, c) and from the top (b, d) for the two crystal

structures, respectively. Arrows indicate the directions and relative magnitudes of the atoms’

pathways that transform the solid from one crystal structure to the other. The dashed, red line

represents the hexagonal plane present in ω-Ti.

Dirac smearing, σ = 0.027 eV, for Ti and U, respectively, with a convergence criteria of 10−5

eV. The k-point meshes rely on 2× 2× 2 and 6× 6× 6 grids for Ti and U, respectively.

III. RESULTS

A. Ti bcc to ω Transition

Structural transformations in Ti receive a lot of attention18. On the technological side,

Ti plays a major role in industrial applications requiring light weight, high strength, and

corrosion resistance. On the scientific side, the high-temperature bcc phase of Ti exhibits

soft phonon modes directly linked to low-temperature phases8. DFT calculations of the

bcc Ti phonons show these modes as unstable at zero temperature19. Because of these

instabilities, Ti is frequently invoked as a test system for methods aimed at calculating
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vibrational properties of mechanically unstable high-temperature phases20,21.

The titanium QMD calculations employ simulation cells chosen to represent both bcc

and ω crystal structures. The calculations are performed at a volume of 18.13 Å3/atom

in a hexagonal unit cell with c/a = 0.612. The simulation cells encompass 2 × 2 × 3,

3 × 3 × 4, or 4 × 4 × 6 unit cells containing three atoms each. With Ti atoms placed at

(0, 0, 0), (1
3
, 1
3
, 1
3
), and (2

3
, 2
3
, 2
3
), the unit cells describe a bcc lattice with a lattice constant of

3.31 Å22. Placing the Ti atoms at (0, 0, 0), (1
3
, 1
3
, 1
2
), and (2

3
, 2
3
, 1
2
) represents the ω-Ti lattice

at a slightly negative pressure23. Figure 1 illustrates the two structures and the atoms’

pathways connecting them in the 2× 2× 3 supercell.

The two larger systems in the QMD simulations undergo the expected structural trans-

formations. In the current computational framework, the low-temperature ω-Ti structure

transforms into the bcc structure when the average temperature increases above around

800 K (3×3×4 supercell) or around 600 K (4×4×6 supercell). Conversely, decreasing the

average temperature below around 800 K (3× 3× 4 supercell) or around 600 K (4× 4× 6

supercell) transforms the high-temperature bcc structure into a hcp structure with line de-

fects. The hcp structure is expected at this volume, but the simulation cell does not allow

a complete transformation into perfect hcp.

The 2×2×3 simulation cell retains the ω-Ti structure up to average temperatures around

800 K. For average temperatures above around 900 K, the system transforms but fails to

stabilize a flawless bcc structure. The number of phonons commensurate with the small

supercell is insufficient to support the phonon-phonon interactions needed to stabilize the

bcc crystal structure. Hence, the remainder of this work focuses on the two larger systems.

Figure 2 shows the resulting PVM0 for ω-Ti at low temperature (3 × 3 × 4 supercell).

Evaluated in the bcc basis, PVM0 exhibits near-static behavior (its spectrum peaks sharply

at zero frequency) and describes the atomic displacements needed to take bcc into the ω-

Ti structure. These displacements, projected into the phonon mode basis ej , are those

of one unstable phonon mode, corresponding to the displacements shown in Fig. 1. Five

independent simulations, with average temperatures between 44 K and 51 K, all have PVM0

described by the same unstable phonon mode. Analyzed in the ω-Ti basis, the PVM0 of

the five independent simulations are all dominated by linear combinations of the degenerate

phonon modes with frequency 2.6 THz, with weight between 0.93 and 0.96. The remaining

phonon modes contributing to PVM0 differ between the the simulations, but come from

7



0 1000 2000 3000
Time Steps (5 fs)

0

2

4

6

8

10

12

14

16

In
st

an
ta

n
eo

u
s 

P
V

M
0
 A

m
p

li
tu

d
e

ω -Ti  (T ~ 50 K)

0 2 4 6
Frequency (THz)

0

2000

4000

P
V

M
0
 S

p
ec

tr
u
m

0 2 4 6
Frequency (THz)

0.0

0.5

1.0

P
V

M
0
 S

p
ec

tr
u
m

ω basis

bcc basis

FIG. 2. (Color online) PVM0 for ω-Ti (3×3×4 supercell) at 50 K evaluated in the ω basis (red) and

in the bcc basis (blue). The system on average assumes the ω-Ti structure, and the instantaneous

amplitude of PVM0 averages to zero in the ω basis; the spectrum of PVM0 shows a sharp peak

at 2.4 THz. In the bcc basis, the system has transformed away from the bcc-Ti structure, hence

PVM0 acquires a nearly constant, finite amplitude; consequently the spectrum of PVM0 is sharply

peaked at zero. The offset of the instantaneous PVM0 amplitude evaluated in the bcc basis reflects

the sum of all atomic displacements that connect the atomic positions in the bcc structure with

the average atomic positions in the simulation.

phonon modes with similar frequencies (between 2.0 and 2.8 THz). PVM0 in the ω-Ti

basis exhibits near-harmonic behavior with a sharply peaked spectrum at 2.4 THz for the

3 × 3 × 4 supercell and at 2.0 THz for the 4 × 4 × 6 supercell. This lowering of frequency

is consistent with PVM0 representing the direction in 3N -dimensional space in which one

collective motion of atoms probes the deepest: as the simulation cell is increased, longer

wave length phonon modes become commensurate with the cell, and they generally have

lower frequencies.

At high temperatures, Ti adopts the bcc crystal structure. Compared to low temper-

atures, this reverses the roles of the ω-Ti and bcc structures in the PVM analysis. This

reversal of roles appears in Fig. 3 (3 × 3 × 4 supercell). The amplitude of PVM0 now ex-
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FIG. 3. (Color online) PVM0 for bcc-Ti (3× 3× 4 supercell) at 1500 K evaluated in the bcc basis

(blue) and in the ω basis (red). The system on average acquires the bcc-Ti structure, and PVM0

exhibits strongly non-harmonic behavior that averages to zero in the bcc basis; the spectrum

of PVM0 shows a peak at 1.3 THz, but other low frequencies are present. In the ω basis, the

system has transformed away from the ω-Ti structure, and the average of PVM0 assumes a finite

amplitude; the spectrum of PVM0 is sharply peaked at zero.

hibits a finite average value in the ω basis, albeit with larger fluctuations due to the higher

temperature. The atomic displacement superimposes the displacement patterns defined by

mainly the phonon modes with frequencies 4.2 and 6.1 THz, which have polarizations mainly

in the direction of the transformation (see Fig. 1(c)). Evaluated in the bcc basis, the in-

stantaneous amplitude of PVM0 exhibits large fluctuations centered around zero. At this

temperature, the system contains significant anharmonicity, as evident from the spectrum

of PVM0 – and the fact that the bcc crystal structure appears stable.

Table I lists the main phonon modes whose displacement patterns contribute to the PVM0

for bcc-Ti in five QMD simulations with average temperatures near 1500 K. The atomic

motion described by PVM0 is described dominantly by phonon modes that are unstable at

zero temperature. Which phonon mode dominates varies between simulations.

The formalism performs equally well in a QMD simulation that includes a structural

phase transformation. Figure 4 shows an example in which the 3 × 3 × 4 supercell system
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phonon frequencies (THz): 1.56 −0.41 −0.62 −2.18 −2.91 −3.28 −3.68 −4.32 −5.00

〈T 〉 fmax ffit σ phonon mode weights in PVM0

(K) (THz)

run 1 1460 1.76 1.37 0.71 0.01 0.00 0.03 0.07 0.83 0.00 0.02 0.02 0.01

run 2 1473 1.30 1.01 0.73 0.00 0.01 0.92 0.00 0.01 0.02 0.00 0.02 0.00

run 3 1483 1.30 1.25 0.77 0.09 0.00 0.57 0.02 0.03 0.00 0.26 0.01 0.01

run 4 1517 1.62 1.32 0.44 0.06 0.00 0.75 0.07 0.09 0.00 0.01 0.00 0.00

run 5 1530 1.56 1.38 0.60 0.01 0.00 0.01 0.51 0.41 0.01 0.00 0.02 0.01

TABLE I. Frequencies describing PVM0 for bcc-Ti in QMD simulations with average temperatures

around 1500 K (3×3×4 supercell). The five simulations are ordered by their average temperature,

〈T 〉. The peak in the spectrum of each simulation’s PVM0, fmax, is reported along with a fit of

the spectrum to a Gaussian centered at ffit with variance σ. The phonon modes listed are those

that contribute to the PVM0 of at least one simulation with a weight of at least 0.01, where the

reported weight sums contributions from all degenerate modes.

700

800

900

1000

T
 (

K
)

0

20

40

V
 (

m
eV

/i
o
n
)

0 200 400 600 800 1000
Time Steps (5 fs)

-2

-1

0

P
V

M
0

(a)

(b)

(c)

FIG. 4. (Color online) Temperature, potential energy, and instantaneous amplitude of PVM0 for

Ti in a QMD simulation showing the structural transformation from bcc to hcp with line defects

(3× 3× 4 supercell). Data extracted from the QMD simulation is shown in red; black dashed lines

are the averages for the first and last 200 time steps, respectively.
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goes from the bcc crystal structure to the hcp structure containing line defects. Because the

hcp structure lies lower on the potential energy surface, the potential energy moves from

a higher to a lower average, while the kinetic energy, and hence the temperature, increase

from a lower to a higher average. Evaluated in the bcc basis (applying the formalism to the

full sequence of steps in Fig. 4), PVM0 culls contributions from the displacement patterns of

many phonon modes, the majority of which are unstable at zero temperature. The PVM0

starts with fluctuations around zero while in the bcc structure, and then moves to values

that fluctuate around a finite value once the transformation concludes. The same behavior

appears in the 4×4×6 supercell, though the details differ: for example, the transformation

starts and ends with lower average temperatures, around 650 K and 780 K, respectively,

because the increased number of modes commensurate with the larger cell allows for better

resolution of in particular low-frequency modes, whose entropy contribution lowers the free

energy of the bcc phase.

Figure 5 maps the atomic displacement pattern of PVM0 onto the atomic displacement

patterns of the phonon modes of the bcc structure (3 × 3 × 4 supercell). The figure plots

the weights of the phonon modes in PVM0 on a logarithmic scale because the dominant

contributing phonon mode generally has a much larger weight than the other phonon modes.

In the bcc Ti structure, simulated at 〈T 〉 ≈ 880 K, unstable zero-temperature phonon modes

dominate PVM0. At this temperature, strong anharmonicity introduces correlation between

the atomic motions of these modes, causing them to appear stable in both measurements

(with finite lifetime)8 and calculations20.

The mapping in Fig. 5 corresponds to the simulation in Fig. 4 and one simulation each

with average temperature 700 K and 880 K, respectively. Independent QMD simulations

(3 × 3 × 4 supercell) with average temperatures close to those of the shown simulations

agree with the results reported in the previous paragraphs. Differences arise in which of

the phonon modes represent the atomic motion of the PVM0, but in all cases, those modes

that contribute with a weight larger than 0.01 are unstable phonon modes. Differences

also appear in how long the structures remain stable: the hcp structure with line defects

generally remains stable throughout the simulations (up to 25 ps), while the bcc structure

simulated around 780 K transforms after at most 5 ps and rarely exceeds 15 ps for average

temperatures around 880 K.

As mentioned in Sec. II, PVM0 represents the direction in the 3N -dimensional space
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FIG. 5. (Color online) Weights of the phonon modes in the PVM0 of Ti (3 × 3 × 4 supercell)

referenced to the bcc structure (a-c), and frequencies of the (zero-temperature) phonon modes (d).

The weights are obtained by projecting the atomic displacements in PVM0 onto the displacement

patterns defined by the phonon modes. The phonon modes (d) are indexed from highest to lowest

frequency for the stable modes (blue), followed by the unstable modes (red) from lowest to highest

imaginary frequency (plotted as negative frequencies). The color code is retained in (a-c) as a

visual aid. At 880 K the average atomic positions are on the bcc lattice, at 700 K they are on the

hcp lattice with line defects. Subplot (b) shows the weights for the QMD simulation shown in Fig.

4, where the system transforms from bcc to hcp with line defects.

with the largest amplitude. Figure 5 shows that across the structural phase transition in Ti

unstable phonon modes of the bcc structure contribute significantly to PVM0. These are

the known instabilities of the bcc structure that take it to the lower-symmetry and lower-

temperature structures. However, the phonon modes with relevant contributions to PVM0

of bcc Ti also remain relevant in the low-temperature structure. This connection indicates

that the directions with the largest amplitude for these high- and low-temperature phases of

Ti are intimately linked. As shown below, such a link does not connect the two structures

analyzed for the β phase of U.
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FIG. 6. (Color online) Calculated projections of the energy landscape around the space group 136

(λ = 0) structure of β-U. Displacing the atoms according to the pattern described by the unstable

phonon mode (red) lowers the energy in either direction (with λ = 1 defined as the amplitude that

minimizes the energy). Displacing the atoms according to the pattern described by the differences

in their positions in the space group 136 (λ = 0) structure and the space group 102 (λ = 1)

structure lowers the energy only in the positive direction. Reversing the atomic displacements

raises the energy, and this asymmetry indicates that the path connecting the two structures is

defined by more than a single phonon mode.

B. β-U Crystal Structure

The β-U phase appears in a small temperature range around 1000 K, making experimental

determination of the crystal structure difficult. The structure has 30 atoms in a tetragonal

unit cell, but disagreement persists in the literature on the exact symmetry. Neutron powder

diffraction data points to a structure with higher symmetry, space group No. 13624, which

more recent symmetry arguments support25. Density functional theory calculations show

that a structure with lower symmetry, space group No. 102 has a lower energy26. The

calculations furthermore show an unstable phonon mode for the higher-symmetry structure,

which can lead the structure toward the lower-symmetry structure.

Figure 6 plots the energy calculated along two paths described by atomic displacement
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SG 136 SG 102

FIG. 7. (Color online) Schematic of the atomic pathways connecting the space group No. 136

and space group No. 102 crystal structures of β-U. The primitive cell is shown from the side (a,

c) and from the top (b, d) for the two space groups, respectively. Arrows indicate the directions

and relative magnitudes of the atoms’ pathways that take the crystal structure to the other space

group. The dashed, red line represents the mirror plane present in space group No. 136 but absent

in space group No. 102.

from the higher symmetry structure. The path defined by the unstable phonon mode lowers

the energy and is symmetric around the undistorted crystal structure. The path defined by

the differences in atomic positions between the two structures, illustrated in Fig. 7, lowers the

energy by roughly double the amount and is not symmetric. The calculated energy difference

between the two structures is almost an order of magnitude smaller than the energy scale

of the temperature at which β-U appears; this suggests a strongly anharmonic system in

which the phonons interact to stabilize the higher symmetry structure. The difference in

how much the two paths in Fig. 6 lower the energy, as well as the asymmetry in the energy

of the path defined by the structural differences, suggest multiple phonon modes combine to

describe the path. These points motivate performing QMD simulations on these structures

and applying the PVM analysis.

The β-U QMD calculations employ fixed simulation cells that can represent both proposed

crystal structures. The simulation cells are made close to cubic by doubling the unit cells,

which were optimized for both structures independently. The QMD simulations employ a

k-point mesh of 6× 6× 6. The total energies agree with those of a k-point mesh of 8× 8× 8
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FIG. 8. (Color online) Frequencies of the spectral peak for the PVM0 of β-U at different average

temperatures of the QMD simulations. Dashed lines are to guide the eye. The spectral peaks for

the PVM0 of the lower-symmetry structure (space group No. 102) remain finite up to 〈T 〉 ≈ 400 K,

while the spectral peaks for the PVM0 of the higher-symmetry structure (space group No. 136)

remain finite down to 〈T 〉 ≈ 200 K.

to within 2 ·10−5 eV. In a comparison of the phonons calculated with the two mesh densities,

the stable modes’ phonon frequencies agree to within at worst 2%, and the unstable mode’s

imaginary frequency differs by 0.2%. A less dense mesh appears insufficient: the total energy

agrees to within 0.2 meV/atom for a k-point mesh of 4 × 4 × 4, but the agreement for the

phonons is significantly worse, hence the QMD simulations employ the 6 × 6 × 6 k-point

mesh.

Figure 8 shows the stability of the higher-symmetry structure in a range of temperatures

above and well below 1000 K. The lower-symmetry structure, on the other hand, becomes

unstable for high temperatures. At lower temperatures, the structure with lower symme-

try appears metastable in these QMD simulations, but the stable α-U structure preclude

experimental observation of it.

In the higher-symmetry structure, Figure 8 shows the frequency of the PVM0 spectral

peak varying non-monotonically before the transformation. This variation, however, should

not be attributed to a particular phonon mode: the spectra of PVM0 at different tempera-
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FIG. 9. (Color online) Spectra for the PVM0 of β-U, references to the higher-symmetry structure

(space group No. 136), at average temperatures of the QMD simulations above (red) and below

(blue) the transition. Above 〈T 〉 ≈ 200 K, the spectra for the PVM0 reveal contributions from

many low frequencies. At 100 K, the system has transformed into the lower-symmetry structure,

and the spectrum becomes dominated by the peak at 0 THz.

tures in Fig. 9 show that the variation reflects a change in which vibrational modes dominate

the atomic motion.

Figure 10 provides the same insight by mapping the atomic displacement pattern of

PVM0 onto the atomic displacement patterns of the phonon modes. At 690 K, the domi-

nant contribution is from a stable zero-temperature phonon mode with harmonic frequency

1.48 THz. At 300 K and 210 K, the dominant contribution is from a phonon mode with

harmonic frequency 0.80 THz. Strong anharmonicity introduces correlation between the

atomic motions of these dominant phonon modes and other (stable and unstable) phonon

modes. While the latter contribute to the atomic displacement pattern of PVM0 with much

less weight (Fig. 10), they strongly affect the spectrum of PVM0 (Fig. 9).

Below the transition temperature, the atomic displacement pattern of PVM0 combines

the atomic displacement patterns of mainly stable zero-temperature phonon modes. The

dominant contribution (49%) is from the phonon mode with harmonic frequency 2.48 THz,

followed by the phonon mode with harmonic frequency 1.48 THz (30%). This latter mode
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FIG. 10. (Color online) Weights of the (zero-temperature) phonon modes in the PVM0 of β-U (a-d),

references to the higher-symmetry structure (space group No. 136), at average temperatures of the

QMD simulations above (690 K, 300 K, 210 K) and below (100 K) the transition, and frequencies

of the (zero-temperature) phonon modes (e). The weights are obtained by projecting the atomic

displacements in PVM0 onto the displacement patterns defined by the phonon modes. The phonon

modes are indexed from highest to lowest frequency for the stable modes (blue), followed by the

unstable modes (red) from lowest to highest imaginary frequency (plotted as negative frequencies).

The color code is retained in throughout the finite-temperature results as a visual aid.

is the dominant mode for the PVM0 at 690 K, but in general phonon modes contributing to

PVM0 above the transition temperature do not contribute significantly to PVM0 below the

transition temperature. This is in stark contrast to the structural phase transition in Ti,

where many of the same phonon modes contribute to PVM0 above and below the transition

temperature (Fig. 5).

Also remarkably different from the structural phase transition in Ti, the atomic displace-

ment pattern of PVM0 for β-U below the transition temperature has a almost negligible

contribution from unstable zero-temperature phonon modes. This stems from the small

atomic displacements that take the higher-symmetry structure into the lower-symmetry

structure: both the average 0.15 Å and the maximum 0.29 Å are significantly smaller than

the corresponding values for the structural phase transition in Ti, 0.32 Å and 0.48 Å. The
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fluctuations in the instantaneous PVM0 amplitude for β-U are consequently comparable to

the average PVM0 amplitude, while for Ti the fluctuations are significantly smaller than the

average.

IV. CONCLUSION

The work presented here uses data from QMD simulations as both the source of informa-

tion and as the determining factor in how the information serves to advance understanding.

Correlations present in the data serve to define the principle vibrational modes (PVMs)

with which the data is analyzed. The atomic motion in a material simulation, expressed

originally in the phonon modes, exhibits correlations between the modes. The construction

of the PVMs leads to no correlation between modes.

The leading PVM, PVM0, emerges as a descriptor of the collective motion with the largest

amplitude. Because the extraction of PVM0 does not rely on any symmetries, it can guide

the study of effects of symmetry-breaking changes, e.g., doping or alloying, on technologically

desired or undesired properties directly related to the direction in the 3N -dimensional space

in which one collective motion of atoms probes the deepest. While the examples in the

work presented here consider systems with single elements, experience shows that the PVM

analysis works equally well for compounds and alloys (to be published elsewhere).

Applied to materials with structural phase transitions, PVM0 serves as a generalization

of the soft phonon modes. It describes the complete structural transformation to the new

phase in a single mode, and it can be mapped out from the crystal structure present on

either side of the transformation.

Two materials show how the analysis works in practice. Across the structural transforma-

tions into and out of the body-centered cubic (bcc) Ti structure, PVM0 describes the atomic

motion needed to transform between structures. The analysis furthermore reveals a close

link between the directions with the largest amplitude for the high- and low-temperature

phases of Ti. In the second material, uranium, the literature disagrees on which of two

structures is the correct structure for the β phase observed around 1000 K. The QMD sim-

ulations show that temperature stabilizes the high-symmetry structure, and the amplitude

of PVM0 assumes a finite or zero average when analyzed in reference to the lower-symmetry

or higher-symmetry structure, respectively. For the β phase of U, the analysis reveals no
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close link between the two crystal structures in terms of the 3N -dimensional directions in

which the systems move with greatest amplitude.

Both materials exhibit a structural transformation that can be attributed to phonon

mode that are unstable at zero temperature. The PVM analysis reveals the presence of the

atomic displacement patterns of these phonon modes in the atomic displacement patterns of

PVM0 in simulations above the transition temperature. The phonon modes that contribute

the most to PVM0 in the high-temperature phase remain important in the low-temperature

phase of Ti, but not in U.
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