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Abstract9

In an Electron Back-Scatter Diffraction pattern (EBSP), the angular distribution of back-10

scattered electrons (BSEs) depends on their energy. Monte Carlo modeling of their depth and11

energy distributions suggests that the highest energy BSEs are more likely to hit the bottom of12

the detector than the top. In this paper, we examine experimental EBSPs to validate the modeled13

angular BSE distribution. To that end, the Kikuchi bandlet method is employed to measure the14

width of Kikuchi bands in both modeled and measured EBSPs. The results show that in an EBSP15

obtained with a 15 keV primary probe, the width of a Kikuchi band varies by about 0.4◦ from the16

bottom of the EBSD detector to its top. The same is true for a simulated pattern that is composed17

of BSEs with 5 keV to 15 keV energies, which validates the Monte Carlo simulations.18

PACS numbers: \pacs{68.37.Hk, 68.49.Jk, 61.05.J-}19
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FIG. 1. Electron Back-Scattering geometry in a Scanning Electron Microscope. α is the scattering

angle and PC the pattern center.

When a coherent monochromatic electron beam, generated in a scanning electron mi-20

croscope (SEM), enters a crystalline solid at a relatively shallow angle with respect to the21

sample surface (about 20◦), the beam electrons interact with the crystal lattice and scatter in22

every direction (fig. 1). Both elastic and inelastic scattering events occur, and the electrons23

typically lose energy and change their trajectories multiple times inside the solid. Some24

of the electrons that back-scatter and leave the sample with very large scattering angles25

(> 170◦) reach a detector mounted around the microscope’s objective lens. Since back-26

scattered electrons (BSEs) are generated through Rutherford scattering from the atomic27

nuclei, BSE images obtained with this detector contain elemental information (Z-contrast).28

On the other hand, BSEs that leave the sample with scattering angles in the range [20◦, 120◦]29

are intercepted by an Electron Back-Scatter Diffraction (EBSD) detector and generate an30

electron back-scatter pattern (EBSP).31

An EBSP consists of a smooth intensity background upon which a pattern of Kikuchi32

bands is superimposed. Each Kikuchi band (or K-band) represents a set of parallel lattice33

planes in a unit cell. If all the BSEs that comprise an EBSP had the same energy, then34

the edges of a K-band would correspond to the intersection of the Kossel cones of that35

energy on either side of the lattice plane with the detector plane. The opening angle of36

this right cone will be close to the Bragg angle. This means that on the Kikuchi sphere37

every K-band would have a constant width—except near low-index poles where dynamical38

scattering effects become important and the intensity profile is not simply the superposition39
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of the individual K-band profiles.40

Assuming the width of a Kikuchi band is constant is the basis of a few methods that41

are aimed at improving the accuracy of the retrieved diffraction geometry1–3. Knowing the42

geometry of diffraction with a high accuracy is essential for extracting the stored elastic43

deformation4,5 from an EBSP6.44

Physics-based modeling of EBSPs was first introduced by Winkelmann et al. 7. EBSPs45

were originally modeled by making two simplifying assumptions: first, the BSEs that com-46

prise the EBSP have a single energy equal to the energy of the primary probe; and second,47

these single-energy BSEs are angularly (spatially) uniformly distributed. EBSPs modeled48

using this approach very closely resemble the observed patterns. In these EBSPs, away from49

low-index poles, a K-band’s width is constant, a fact that has been shown by Ram et al. 850

and will be verified here.51

In reality, however, BSEs that make up an EBSP do not have the same energy; they have52

a range of energies. The exit direction of a BSE depends on its energy. In this paper we53

examine the energy dependence of the angular distribution of BSEs and show how it causes54

the width of a K-band to vary significantly and systematically over a measured EBSP.55

The energy and spatial distributions of the BSEs can be modeled using Monte Carlo56

(MC) methods9. Each incident electron starts with the same energy, and travels into the57

solid. After a randomly chosen distance scaled by the mean free path length, the electron58

undergoes a Rutherford scattering event and changes its direction based on a random sam-59

pling of the angular part of the differential scattering cross section. In the simplest MC60

approach, the electron loses energy at a constant rate (Bethe’s continuous slowing down61

approximation10). More realistic approaches incorporating discrete losses due to collective62

excitations and core-shell scattering events can be incorporated into the MC model, but63

the authors’ experience shows that the final results are not very different from those of the64

simplified approach, except perhaps at the lowest energy losses due to collective excitations65

(e.g., plasmons). When an electron leaves the sample, two pieces of information are retained:66

the direction cosines of the trajectory after the last scattering event, and the electron’s exit67

energy. A detailed discussion of the MC approach for EBSD pattern simulation can be found68

in Callahan and De Graef 11.69

In fig. 2, the result of the Monte Carlo simulation of BSE formation is displayed for a70

Silicon sample. The energy of the primary probe is Ep = 15 keV. The specimen plane and71
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FIG. 2. Monte Carlo simulation of BSE formation.—BSE counts as a function of location on an

EBSP for BSEs with: (a) 15 keV and (b) 5 keV energy. (c) Average BSE energy. (d) Contour

plot of the average BSE energy in 0.3 keV steps. The primary probe energy is Ep =15 keV. (c) is

composed of BSEs with 5 keV to 15 keV energies. The primary probe makes a 12◦ angle with the

detector plane and a 70◦ angle with the specimen plane.

the camera plane make a 32◦ angle and the pattern center is marked by a cross. BSEs72

located at a vertical line that divides the pattern in two equal halves have scattering angles73

ranging from 20◦ to 110◦.74

Figure 2(a) and (b) show the modeled BSE counts for respectively 15 keV and 5 keV75

BSEs. They show that the angular distribution of BSEs is energy dependent. Most of the76

BSEs with larger energies reach the bottom of the detector (fig. 2(a)) while most of the77

BSEs with smaller energies arrive at the top of the detector (fig. 2(b)).78

In fig. 2(c), the intensity of each pixel is equal to the arithmetic mean of the energies of all79

BSEs that reach that pixel. Included BSEs have 5 keV to 15 keV energies and the smallest80

difference in any two BSE energies is 0.2 keV. The contourplot of the mean energy is shown81

in fig. 2(d). Evidently, the model predicts that the mean BSE energy is about 3 keV larger82

at the bottom of the EBSP than at the top.83

One way to examine the energy dependence of the angular distribution of BSEs is energy-84

filtering of the measured EBSP, such that only BSEs with a narrow energy range reach the85

EBSD detector. Energy-filtering can be achieved through adding an electrostatic energy86
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filter to a phosphor-CCD EBSD detector12–14. It can also be carried out digitally by using87

a direct CMOS EBSD detector15.88

There is a second approach to examining the energy dependence of the angular distribu-89

tion of BSEs. This approach does not need energy-filtering, and examines the width of the90

Kikuchi bands over the EBSP. In this paper, we employ this second approach.91

Figure 3(a) shows a measured EBSP generated by a 15 keV electron beam. In fig. 3(b) and92

(c), two forward-modeled EBSPs with the same diffraction geometry as (a) are displayed.93

The EBSP in (b) is created by BSEs with 5 keV to 15 keV energies. To model the EBSP in94

(c), only BSEs with an energy larger than 14.8 keV were allowed to reach the detector.95

The {220} Kikuchi band marked on fig. 3(c) is extracted from all three EBSPs using the96

Kikuchi bandlet method8. The basis of the Kikuchi bandlet method is a high-level adaptive97

geometrical dictionary that is built in the Fourier domain. More on high-level geometrical98

dictionaries can be found in16 for example. The Kikuchi bandlet method can deconvolute a99

K-band of interest from all other K-bands that do not satisfy two conditions simultaneously:100

(1) being parallel to the K-band of interest (2) spatially overlapping the K-band of interest.101

The extracted K-bands are shown in fig. 3(d), (f), and (h). Intensity profiles of each102

extracted K-band are obtained along the blue paths in (c). In each EBSP, path 1 is at the103

bottom and path 19 is at the top of the EBSP. These paths are the intersections of great104

circles that have their centers at the projection center (on the specimen surface) of the EBSP105

and are perpendicular to the {220} lattice plane. The closest two paths on the EBSP are 4◦106

apart. For a detailed description of the retrieval of the intensity profiles,8 can be consulted.107

Intensity profiles for EBSPs displayed in fig. 3(a-c) are plotted in fig. 3(e), (g) and (i).108

Profiles are plotted for EBSPs with two primary probe energies: Ep =15 keV in blue and109

Ep =20 keV in red. The Ep = 20 keV EBSPs are not shown.110

Examining the K-band intensity profiles of the two modeled EBSPs (fig. 3(g) and (i))111

shows that each profile is approximately symmetric with respect to its center. Comparing112

the corresponding intensity profiles (e.g. profile 11 in (g) and profile 11 in (i)) of the two113

modeled EBSPs shows that the profiles are similar in their shape.114

The intensity profiles of the measured EBSPs are different from the corresponding mod-115

eled ones, however. For example, compare profile 11 in (e) and profile 11 in (g) and (i).116

They are asymmetrical, not as smooth, and their variation along the K-band (compare pro-117

file 5 and profile 15 in fig. 3(e)) is more pronounced. The asymmetry or the excess-deficiency118
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FIG. 3. (a) A measured EBSP generated by a 15 keV primary probe. A modeled EBSP generated

by BSEs with: (b) 5 keV to 15 keV energies and (c) 15 keV energy. The Kikuchi band within the

hyperbolae in (c) is extracted from all three EBSPs. The Kikuchi bands in EBSPs (a), (b) and (c)

are displayed in (d), (f) and (h), respectively. The intensity profiles of these bands are plotted in

(e), (g) and (i), respectively. The paths over which the intensity profiles are obtained are plotted

in blue in (c). Profiles for 20 keV EBSPs are also plotted in red in (e), (g) and (i). The contrast

difference between the raw (unfiltered) experimental pattern in (a) and the simulated patterns (b)

and (c) is due to different intensity scaling: the simulated patterns had a gamma-correction applied

to their intensity histogram to emphasize the detailed band structure.

effect is the result of a yet another anisotropy in the distribution of the inelastically scattered119

electrons. This anisotropy is short-range and is localized to the width of one Kikuchi band.120

It causes one side of a K-band to be brighter than the other side. There is a qualitative121

model for the excess-deficiency effect that relates it to the angular deviation of the scattered122

direction from the forward scattering direction (primary probe direction)17.123
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FIG. 4. A Kikuchi band width’s variation from the bottom to the top of the EBSD detector.—

2θmin: angular distance between the two deepest troughs on either side of an intensity profile of

the {220} K-band. The data points in (a), (b) and (c) respectively correspond to the profiles in

fig. 3(e), (g) and (i). The solid lines in all three graphs show the Bragg angle 2θB of the {220}

K-band. They must be read using the blue vertical axis at the right hand side of the graph. 2θB

in (a) and (b) are identical. They are obtained using the mean BSE energy of fig. 2(c). 2θB in (c)

is constant.
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We define the width of a K-band as the angular distance (2θmin) between the two deepest124

troughs of an intensity profile. By comparing the K-band width of the intensity profiles125

it becomes evident that in all three cases (measured and modeled), the K-band width in126

the 20 keV EBSP (red profiles) is smaller than the K-band width in the 15 keV EBSP (blue127

profiles). In other words, the K-band width has decreased when the beam energy has128

increased. In the same manner, the decrease in the mean BSE energy from the bottom of129

the EBSP to its top, predicted in (fig. 2(d)), must cause the intensity profiles to be wider130

at the top of the EBSP.131

To examine this hypothesis, we analyzed the intensity profiles of the {220} K-band more132

closely. In fig. 4(a), the K-band width for the profiles of fig. 3(e) are plotted. The black data133

points show the width of the K-band in the measured EBSP with Ep = 15 keV, whereas the134

red data points correspond to the same K-band in the measured EBSP with Ep = 20 keV.135

It can be clearly seen that in both cases the K-band width increases from the bottom of the136

EBSP to its top.137

In the modeled EBSP where the lower BSE energy cut-off is 5 keV and the higher BSE138

energy cut-off is the primary probe energy Ep, the graph in fig. 4(b) shows that the variation139

of the width of the K-band from the bottom of the EBSP to its top is similar to that of the140

measured EBSP: the K-band width increases. In the single-energy modeled EBSP where141

E = Ep, in contrast, the K-band width remains constant (fig. 4(b)) along the K-band.142

The Bragg angle θB can also be obtained for each intensity profile in fig. 3. To that end,143

we assigned one BSE energy to each profile. This energy is the weighted average over the144

modeled mean BSE energies (fig. 2(c)) on the path of that profile. To obtain the Bragg145

angle, the modeled mean BSE energy (fig. 2(c)) is used to solve λ = 2d sin θB; d is the146

interplanar spacing between two {220} planes in Silicon, and λ is the relativistic wavelength147

of the BSEs.148

For example, when Ep = 15 keV, and the included BSE energy range is 5 keV to 15 keV,149

on profile 11, the modeled mean BSE energy range is 10.92 keV to 11.00 keV, which results150

in 1.7352◦ ≤ θB ≤ 1.7419◦. To obtain the Bragg angle on path 11, we approximate the151

mean BSE energy with 10.96 keV. This results in θB,11 = 1.7385◦. 2θB values for 150 paths152

(including the 20 paths of fig. 3) are plotted in fig. 4; in each graph, the solid black and red153

curves show 2θB for respectively Ep = 15kV and Ep = 20kV .154

In fig. 4(a) and (b), 2θB is obtained as explained above using the modeled mean BSE155
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energy in fig. 2(c). In fig. 4(c), 2θB is constant because the modeled EBSP is made of only156

BSEs with a constant energy equal to the energy of the primary probe.157

Recall that in a Kikuchi band the Bragg angle does not coincide with the loci of the158

trough of the intensity profile. In fig. 4, we have shifted the 2θB curves upwards with respect159

to the 2θmin scale to facilitate the comparison of the variation of 2θB and 2θmin. The 2θB160

curves must be read using the vertical axis on the right hand side of the graph.161

It can be seen in fig. 4(b) that in the modeled EBSP with BSE energies ranging from 5 keV162

to Ep, the 2θmin data points are located on the vertically shifted 2θB curves. In the measured163

EBSP (fig. 4(a)), there is a deviation from the shifted 2θB, which is due to the asymmetry164

of the intensity profiles in a measured EBSP. This asymmetry does not exist in the BSE165

formation model. Nevertheless, 2θmin closely follows the trend of the modeled 2θB curves.166

In the EBSP measured with a 15 keV primary probe, the K-band width increases by about167

0.4◦ from the bottom of the EBSP to its top (fig. 4(a)), which is in very good agreement168

with the K-band width in the modeled EBSP (fig. 4(b)). We have no clear explanation for169

the larger deviation of 2θmin from the shifted 2θB curve in profile 17-19 of the measured170

20 keV EBSP in fig. 4(a).171

In summary, we have shown that the energy-dependence of the angular (spatial) distribu-172

tion of the generated BSEs causes the width of a Kikuchi band to expand from the bottom173

of an EBSP to its top. In an EBSP generated with a 15 keV primary probe, the K-band174

width varies by 0.4◦ degrees over the height of the EBSP. The K-band width variation is 0.3◦175

degrees in an EBSP measured with a 20 keV primary probe. We also showed that Callahan176

and De Graef 11 ’s BSE formation model closely predicts this K-band width variation through177

modeling the energy-dependence of the angular (spatial) distribution of BSEs.178

This relatively large K-band width variation over an EBSP has significant ramifications179

for EBSD geometry refinement methods as well as for those deformation retrieval methods180

that use modeled EBSPs. Any geometry refinement method that assumes Kikuchi band181

edges are hyperbolae or the Kikuchi band width is constant1–3 must use measured EBSPs182

that are energy-filtered, or must explicitly take the energy variation into account. The de-183

formation retrieval methods that obtain the deformation tensor by comparing the measured184

EBSP with modeled EBSPs1,18–21 must use the modeled EBSPs that include the full BSE185

energy spread11; on the other hand, if they use single-energy modeled EBSPs, then they186

must use single-energy (energy-filtered) experimental EBSPs for the comparison.187
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