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Ground-state epitaxial phase diagrams are calculated by density functional theory (DFT) for
SrTiO3, CaTiO3, and SrHfO3 perovskite-based compounds, accounting for effects of antiferrodis-
tortive and A-site displacement modes. Biaxial strain states corresponding to epitaxial growth of
(001)-oriented films are considered, with misfit strains ranging between -4% and 4%. Ground-state
structures are determined using a computational procedure in which input structures for DFT op-
timizations are identified as local minima in expansions of the total energy with respect to strain
and soft-mode degrees of freedom. Comparison to results of previous DFT studies demonstrates
the effectiveness of the computational approach in predicting ground-state phases. The calculated
results show that antiferrodistortive octahedral rotations and associated A-site displacement modes
act to suppress polarization and reduce epitaxial strain energy. A projection of calculated atomic
displacements in the ground-state epitaxial structures onto soft-mode eigenvectors shows that three
ferroelectric and six antiferrodistortive displacement modes are dominant at all misfit strains con-
sidered, with the relative contributions from each varying systematically with strain. Additional
A-site displacement modes contribute to the atomic displacements in CaTiO3 and SrHfO3, which
serve to optimize the coordination of the undersized A-site cation.

I. INTRODUCTION

Ferroelectric thin films based on perovskite-structured
oxide compounds are widely researched for a variety of
microelectronic device applications.1 Thin-film forms of
these ferroelectric materials are of interest due to their
reduced dimensionality, as well as the novel properties
that arise from epitaxial constraints.2 In particular, epi-
taxial strain has been shown to have a strong effect on the
polarization and domain behavior of ferroelectrics,3 and
it thus provides a means of tuning properties for device
applications.

To exploit such epitaxial effects, predictive first-
principles computational models based on density-
functional theory (DFT) have been developed and ap-
plied to predict the structure and polarization of oxide
ferroelectrics as a function of biaxial strain. In such mod-
eling efforts, a few different approaches have been em-
ployed. In early studies,4,5 expansions of the total en-
ergy with respect to the amplitudes of unstable phonon
modes and strain were determined and used to com-
pute stable structures and associated energetics and po-
larizations as a function of misfit strain. Although ef-
fective for prototypical perovskites like BaTiO3, a lim-
itation in the approach was the consideration of only
zone-centered soft-phonon modes, and the associated ne-
glect of octahedral rotations, which have been shown
to suppress polarization in many perovskites.6 In more
recent studies that have considered a broader range of
compositions,7,8,10–13 direct DFT relaxations of candi-
date perovskite-based structures were undertaken as a
function of biaxial strain. In some of these studies, can-
didate structures were limited to those that could be
derived only from distortions and zone-center displace-

ments in the primitive five-atom unit cell, again ne-
glecting structural distortions associated with octahedral
rotations. In other first-principles computational stud-
ies, more complex structures have been considered, de-
rived from experimental measurements.14,15 These lat-
ter studies have accounted for important effects of non-
zone-centered displacement modes, such as antiferrodis-
tortive (AFD) octahedral rotations or A-site displace-
ment modes, but they have been limited to the relatively
few compositions where experimentally measured crys-
tallographic data for strained thin films are available.

In the present work, a methodology is presented ex-
tending previous efforts to account for non-zone-centered
modes in the calculation of ground-state structures and
associated polarizations in epitaxially-strained perovskite
thin films. The approach makes use of direct DFT opti-
mizations of candidate structures corresponding to local
minima in expansions of the energy with respect to strain
and the amplitudes of the nine most unstable phonon
modes of reference high-symmetry perovskite structures.
The expansions are carried out at several strain states,
and the full set of structures corresponding to the min-
ima identified in the energy expansions are used as input
to DFT energy minimizations as a function of biaxial
strain. From the lowest-energy structures identified, epi-
taxial phase diagrams and polarization plots similar to
those presented in Ref. [8] are constructed, but account-
ing for more complex polymorphs that feature non-zone-
centered displacement modes.

This approach is employed in the present work in a
DFT-based study of the ground-state phase diagrams of
epitaxially-strained SrTiO3, CaTiO3, and SrHfO3 com-
pounds. While SrTiO3 and CaTiO3 are more commonly
studied perovskite oxides and thus serve as good ref-
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erence compounds for comparisons to other methods,
SrHfO3 is a lesser-studied system in the context of thin
films. SrHfO3 was chosen due to its similarity to CaTiO3

with respect to ratios of ionic radii, thus facilitating an
analysis of the effect of composition on thin-film prop-
erties, but also because of its promising polar response
properties. In Ref. [9], a metastable P4mm phase of
SrHfO3 was selected out of a first-principles screening of
nearly a thousand piezoelectric tensors due to its large
piezoelectric response, having a maximal longitudinal
modulus of ||eij ||max ≈ 10 C/m2. It is thus worthwhile
to determine in the present work whether this P4mm
SrHfO3 phase can be epitaxially stabilized by measuring
its degree of metastability, and also to see if this system
retains a large polarization under epitaxy.

Ground-state structures and associated energetics
and polarization properties are calculated for SrTiO3,
CaTiO3, and SrHfO3 as a function of epitaxial strain
state, corresponding to biaxial tension and compression
in the (001) plane. In the remainder of this paper, the
computational approach is described in detail in Section
II, and results obtained are presented in Section III. In-
sights derived from these results, as they relate to the
role of non-zone-centered phonons on the stability and
polarization properties of epitaxially-strained perovskite
thin films are discussed in Section IV, and the main con-
clusions are summarized in Section V.

II. METHOD

In the present computational approach, epitaxial thin
films are modeled as bulk compounds subjected to biaxial
strain in the (001) plane, neglecting explicit surface and
interface effects. In discussing crystallographic structures
and strain states, we employ throughout a coordinate
system in which the x and y directions are along [100]
and [010] directions of a reference tetragonally-distorted
perovskite unit cell, and z is the direction normal to
the plane of biaxial strain. In what follows, a descrip-
tion is given for the nature of the energy expansions
used to identify candidate structures for DFT optimiza-
tions (Section II A), the way in which resulting optimized
structures are used to construct epitaxial ground-state
phase diagrams (Section II B), and the associated details
of the DFT calculations (Section II C).

A. Total energy expansions

For each composition, the lattice constant of an ideal
cubic perovskite structure (space group Pm3̄m) is cal-
culated. Tensile strains are then applied to the x and y
directions by a misfit strain η̄, considering values of -2,
-1, 0, 1, and 2%. For each biaxial strain state, the out-
of-plane (c-axis) lattice constant is relaxed, and 40-atom
(2 × 2 × 2) supercells are then constructed from these

structures to serve as reference states for subsequent ex-
pansions of the total energy.

The total energy expansions consider both homoge-
neous strain and atomic displacement degrees of freedom.
Regarding strain, the mechanical boundary conditions
for a coherently strained epitaxial thin film are defined
as:

εxx = εyy = η̄, εxy = 0;σzz = σyz = σxz = 0, (1)

where ε and σ are the strain and stress tensors, re-
spectively, and η̄ is the misfit strain, calculated as η̄ =
a/a0−1, where a0 is the lattice constant of the reference
cubic perovskite (with zero misfit strain), and a corre-
sponds to the lattice constant of a cubic substrate. At
fixed misfit strain, εzz, εxz, and εyz constitute the three
strain degrees of freedom. For the following total en-
ergy expansions, the two out-of-plane shear strains εxz
and εyz are assumed to be relatively unimportant in dic-
tating candidate energy minima in the potential-energy
landscape, and only εzz is considered explicitly.

Regarding atomic positional degrees of freedom, the
most basic approach is to include all x-, y-, and z-
displacements of each atom in the reference structure.
However, this leads to (40× 3)− 3 = 117 additional de-
grees of freedom and a prohibitive number of coefficients
that must be evaluated. A more efficient technique is
to choose a set of displacement variables that still forms
a complete basis but can be prioritized by relative im-
portance for the energy landscape. This is accomplished
most simply by considering unstable and soft modes of
the force-constant matrix.4

The force-constant matrix, Dτ,τ ′

α,β , is defined as:

Dτ,τ ′

α,β =
∂2E

∂υτα∂υ
τ ′
β

∣∣∣∣∣
0

. (2)

In this work, Dτ,τ ′

α,β is always a 120× 120 matrix, with ~υ
denoting the 120-component atomic displacement vector
in Cartesian coordinates, τ and τ ′ denoting atom indices
(1 through 40), and α and β denoting Cartesian indices
(x, y, or z). For each composition, a force-constant ma-
trix is calculated at each of the five biaxially strained
reference structures defined above.

For each force-constant matrix, the eigenvectors and
eigenvalues are determined by the eigenequation:

∑
βτ ′

Dτ,τ ′

α,β ξ
τ ′

β (j) = λ(j)ξτα(j). (3)

Here, j is a mode index running from 1 to 120, λ(j) is
the jth real-valued eigenvalue, and ξ(j) is the jth 120-
component real-valued eigen-displacement vector.

The eigenvectors ξ(j) form a complete orthonormal ba-
sis capable of describing any pattern of displacement hav-
ing wavelengths commensurate with the supercell dimen-
sions. This basis is more convenient than Cartesian coor-
dinates under the assumption that the ξ(j) corresponding
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to lower λ(j) eigenvalues dominate in the lowest-energy
structures. Because the eigenvalues λ(j) track the cur-
vature of the energy with respect to that displacement
mode, very positive curvatures will tend to prohibit the
appearance of these displacement modes in low energy
structures.

The vector corresponding to the displacements within
the 40-atom supercell can be written in terms of these
eigenvectors ξ(j) as:

~υ =
∑
j

ujξ(j). (4)

Here, uj is the jth eigenmode coordinate, a real-valued
scalar whose absolute value, the eigenmode amplitude,
represents the degree to which the jth eigenmode dis-
placement pattern, ξ(j), contributes to the atomic dis-
placements. For any arbitrary structure considered in
this study, the eigenmode coordinate is determined by a
projection of the Cartesian displacement vector onto the
eigenbasis:

uj =
∑
τα

ξτα(j)υτα. (5)

An expansion of the total energy about the reference
state is separated into four terms:5

E(εzz, uj ; η̄) = E0+Eelas(εzz)+Edisp(uj)+Eint(εzz, uj).
(6)

The misfit strain, η̄, is a parameter that defines the refer-
ence state in the expansion and is not an expansion vari-
able. Thus, E0 is the energy of the tetragonally relaxed
reference structure, and εzz is the out-of-plane strain rel-
ative to this reference.

As σzz, σyz, σxz, and atomic forces in the reference
structures are zero, no first-order terms persist in the
expansions. The pure elastic contributions to the total
energy are thus described as:

Eelas(εzz) = B2ε
2
zz +B3ε

3
zz +B4ε

4
zz. (7)

For pure displacement terms, second-order cross terms
(uiuj) also cannot persist due to the choice of eigenba-
sis, and third-order terms vanish due to centrosymmetry
of the chosen reference structures under arbitrary homo-
geneous strain, ensuring that E(εzz, υ

τ
α) = E(εzz,−υτα).

The resulting fourth-order expansion for the pure dis-
placement energy contribution is:

Edisp(uj) =
∑
j

1

2
λju

2
j + Cju

4
j , (8)

where j is chosen in this work to include the nine most
unstable (or soft) modes. For the interaction terms de-
scribing strain-displacement couplings, all second-order

terms (εzzuj) vanish due to centrosymmetry, and the
lowest-order term in the expansion, which is the only
one retained in the current work, has the form:

Eint(εzz, uj) =
∑
j

Ajεzzu
2
j . (9)

It is noted that there is a unique expansion for each
composition at each misfit strain, resulting in 3× 5 = 15
sets of expansion coefficients. There are many options for
deciding the number of terms to keep in the above expan-
sions. Although (40 × 3) − 3 = 117 different eigenmode
degrees of freedom exist, only up to nine are explicitly
included in this work. By considering up to the nine soft-
est eigenmodes, it is ensured that the three ferroelectric
(FE) modes and the six octahedral rotational modes can
always be considered if they are the most unstable. As
these modes are commonly observed among perovskite
oxides, they are essential in capturing common complex
ground-state structures.16 Further, although the above
expansions can be taken to arbitrary order, this work
truncates Eelas and Edisp at fourth order, truncates Eint

at third order, and does not include cross-coupling dis-
placement mode terms (i.e., u2iu

2
j -type terms). These

truncations result in the smallest number of terms that
still give rise to an expression that is guaranteed to have
a bounded minimum. Higher-order terms could be in-
cluded and would improve the accuracy, but the expan-
sions in the present workflow are used only to find can-
didate metastable structures for subsequent input into
DFT geometry optimizations, and thus the truncation
to low order still provides sufficient accuracy for the pur-
poses of this work. Further, the present workflow’s use of
a distinct energy expansion at each misfit strain greatly
helps to reduce the role that higher-order terms play in
dictating the local minima of the potential energy land-
scape.

Validation of the assumptions underlying this ap-
proach are undertaken through comparisons to previous
work (see Section IV B), and for the compounds consid-
ered, the approach is found to be effective in identifying
ground-state structures. For other systems requiring a
more refined approximation to the energy landscape, the
present approach can be extended straightforwardly by
including more degrees of freedom and/or including ad-
ditional higher-order terms.

The expansion coefficients defined in this section are
determined through fitting to results of DFT calculations
that consider different finite displacements and distor-
tions of the reference structures.13 Details are discussed
in Section I of the Supplemental Material,17 which gives
an example for the case of SrTiO3. These expansion coef-
ficients correspond to a small subset of those required in
the effective Hamiltonian approach presented in Ref. [18],
and a significant number of additional fitted parameters
would be necessary to study the phase transition behav-
iors of SrTiO3, CaTiO3, and SrHfO3.
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B. Construction of epitaxial phase diagrams

For each of the three compositions, and at each of five
misfit strains, a set of candidate structures is generated
by analytically solving for all minima of the total en-
ergy expansion defined in Section II A. These candidate
structures are subsequently used as the starting config-
uration for a DFT calculation in which the structure is
relaxed, keeping the in-plane strains fixed at the relevant
value of η̄. After all of the candidate structures have
been relaxed, the DFT energies are compared to iden-
tify the most energetically stable (i.e., the lowest energy)
state. The result is a set of five low-energy structures,
one for each value of the misfit strain (η̄ = -2, -1, 0, 1
and 2 %). For each of these five structures, an energy
versus misfit strain curve is generated by re-relaxing the
structures, with the in-plane strain fixed at several values
of η̄ on a finer grid spanning values between -4 to 4 %.
Prior to these structural relaxations, the atom positions
are given small random displacements in order to reduce
the symmetry to P1, guaranteeing the final structures
are stable with respect to distortions of the forty-atom
cells. It is emphasized that out-of-plane shear strain de-
grees of freedom are not constrained during these struc-
tural optimizations, and the resulting lattice need not be
tetragonal. The lowest energy phase at each misfit strain
comprises the set of ground-state structures based on the
40-atom supercells, and from these structures the zero-
temperature phase diagram versus misfit strain is thus
produced.

C. Calculation methods

All ab initio DFT calculations made use of the Vienna
ab initio simulation package (vasp)19–22 version 5.4.1. A
conjugate-gradient algorithm was used for all structural
relaxations. As the standard vasp software package does
not allow for arbitrary mechanical boundary conditions,
the relaxations under fixed in-plane strain made use of a
custom modified version of the software in which certain
components of the stress tensor are constrained to zero.

Calculations used the Ceperley-Alder form of the lo-
cal density approximation (LDA) exchange-correlation
functional, as parameterized by Perdew and Zunger,23

with the electron-ion interaction described by the projec-
tor augmented wave method.24,25 Force-constant matri-
ces were calculated by Density Functional Perturbation
Theory (DFPT)26 at the zone center for each of the ref-
erence 2× 2× 2 supercells. For all calculations required
to compute expansion coefficients, and for the subsequent
relaxations of candidate structures, use was made of a 600
eV plane-wave cutoff energy, 3 × 3 × 3 Monkhorst-Pack
sampling of the Brillouin zone,27 and Gaussian smearing
of 0.01 eV.

More refined computational parameters were used in
the final relaxations and polarization calculations in the
construction of the ground-state phase diagrams. In

these more refined calculations, an 800 eV plane-wave
cutoff energy and a 4×4×4 Monkhorst-Pack sampling of
the Brillouin zone were used. All relaxations of the struc-
tures were continued until the forces and out-of-plane
stresses converged to magnitudes within 0.001 eV/Å and
0.005 eV/f.u., respectively, where eV/f.u. is per five-
atom formula unit. The resulting level of convergence in
energy differences is to within 0.1 meV/f.u.

The Berry phase approach, as described in the modern
theory of polarization,28 was used to calculate the electric
polarization vector at each misfit strain. All calculations
assume a fixed (vanishing) external electric field corre-
sponding to thin-films surrounded by perfectly charge-
compensating electrodes, as discussed in Refs. [30 and
31]. Further, use of the LDA in the present work leads
to well-known systematic errors in the calculated lattice
constants, amounting to an underestimation of their val-
ues on the order of a percent.2,5 Further discussion of
the effect of the exchange correlation functional is given
in the Supplemental Material17, in which the phase dia-
gram for CaTiO3 is recalculated using the SCAN meta-
GGA functional.29 A comparison between the LDA and
SCAN results suggests that the predicted phases and
their order with respect to misfit strain are equivalent,
with the phase boundaries of SCAN shifted to epitax-
ial lattice constants that are approximately 1% larger in
magnitude compared to LDA.

III. RESULTS

A. Properties of bulk systems

The ground-state structures of bulk, unstrained
SrTiO3, CaTiO3, and SrHfO3 were calculated for use as
energetic references, and their properties are listed in Ta-
ble I. Included in this table is the Goldschmidt tolerance
factor33 t, which is defined as:

t =
RA−O√
2RB−O

, (10)

where RA−O and RB−O are the ideal A-O and B -O per-
ovskite structure bond lengths.

SrTiO3 adopts the tetragonal I4/mcm structure, ob-
tained by condensing an out-of-phase rotational insta-
bility (R+

4 in the irreducible representation notation of
Ref. [32]) about the direction of elongation. CaTiO3

and SrHfO3 adopt the orthorhombic Pnma structure, ob-
tained by condensing equal amplitudes of the R+

4 mode
about two axes and a unique amplitude of an in-phase ro-
tational instability (M+

3 ) about a third axis. Additional
A-site displacement modes further contribute to these
latter two structures, and these modes are discussed in
more detail in the context of epitaxial structures in Sec-
tion IV D. None of the three bulk structures exhibits a
macroscopic polarization.
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TABLE I. Bulk properties of the three compositions considered, including calculated cubic lattice constants, Goldschmidt
tolerance factors,33 and spacegroups and Glazer systems16 of the bulk ground-state phase.

Formula a0 (Å) Tolerance Factor t Spacegroup Glazer System

SrTiO3 3.86 1.001 I4/mcm a00a
0
0c
−
0

CaTiO3 3.81 0.946 Pnma a−0 a
−
0 c

+
0

SrHfO3 4.07 0.949 Pnma a−0 a
−
0 c

+
0

B. Eigenmode properties and expansion coefficients

Table II gives the properties of the nine most unstable
or softest stable displacement eigenmodes at five mis-
fit strains for SrTiO3, CaTiO3, and SrHfO3. Properties
listed include the Glazer system (detailed in Ref. [16]),

eigenvalue, and mode polarization vector, ~Z, which is
defined as the dot product of the Born effective charge
tensor34 of the reference structure with the associated
eigenvector:

~Zi =
∑
τα

ξτα(i)Z∗τα . (11)

This vector represents the macroscopic polarization that
develops per small increase in the ith eigenmode coordi-
nate. For plots of the eigenvalues of many of the eigen-
modes listed in Table II, see the bottom panels of Fig. 1.
Table SI of the Supplemental Material17 lists the expan-
sion coefficients defined in Section II A for five values of
the misfit strain for SrTiO3, CaTiO3, and SrHfO3.

C. Epitaxial phase diagrams

Figure 1 plots the energies, polarization components,
eigenmode amplitudes of the epitaxial ground-state
structures, and the force-constant matrix eigenvalues of
the tetragonal reference structures versus misfit strain
for SrTiO3, CaTiO3, and SrHfO3. The top panel of each
plot corresponds to the energy and polarization of the
ground-state structure as a function of misfit strain. The
reference energy for each compound is that of the cor-
responding bulk, fully relaxed structure listed in Table
I. The energy values plotted in Fig. 1 can thus be inter-
preted as the elastic energy of the epitaxially constrained
phase, and the more positive this energy is, the higher the
driving force for strain relaxation, e.g., through forma-
tion of misfit dislocations. Misfit strains corresponding to
phase transitions are indicated by dashed vertical lines,
and the spacegroups of the epitaxial phases in each misfit
strain regime are indicated in the top panels. The hori-
zontal scale given at the top of each figure indicates the
cubic substrate lattice constant, a, required to produce
the given degree of misfit strain, with a = a0(η̄ + 1).

The eigenmode amplitudes shown in the middle pan-
els are determined by Eq. 5. These measure the degree
to which the three FE eigenmodes at Γ (Fig. 2a) and

six rotational displacement eigenmodes at the M (Fig.
2b) and R (Fig. 2c) boundary points of the Brillouin
zone of the cubic perovskite compound have condensed
in the ground-state epitaxial structures. The eigenval-
ues corresponding to these nine modes are plotted in the
bottom panels and are determined from diagonalization
of the force-constant matrices of the tetragonal reference
structures.

Figure 1a plots the ground-state epitaxial properties
for SrTiO3. Under strong biaxial compression, a polar
I4cm phase is predicted having two displacement modes
activated, an out-of-plane octahedral rotation R+

4 mode
(orange diamonds in the middle and bottom panels) and
an out-of-plane zone-centered FE mode (blue diamonds).
These are also the two most unstable modes of the ref-
erence tetragonal structures in the compressive regime,
as indicated in the bottom panel. As the strain becomes
less compressive, both modes gradually diminish until
the FE mode entirely vanishes, giving way to the para-
electric I4/mcm phase beginning at -1% misfit strain.
In this region, only the R+

4 mode persists, and its am-
plitude continues to diminish until 0.25% misfit strain,
at which point the polar Ima2 phase sets in through a
first-order transition. The Ima2 phase consists of four
active displacement modes, including two in-plane octa-
hedral rotation R+

4 modes (gray squares and purple tri-
angles) and two in-plane zone-centered FE modes (red
squares and green triangles). These are also the four
most unstable modes of the reference tetragonal struc-
tures in the tensile strain regime, as shown in the bottom
panel. With increasing tensile strain, the two in-plane oc-
tahedral rotation R+

4 modes in the Ima2 phase tend to
remain approximately constant in their eigenmode am-
plitudes, while the in-plane FE modes gradually increase
in eigenmode amplitude. The elastic energy curve for
SrTiO3 is symmetric with respect to misfit strain, hav-
ing a minimum at 0% misfit strain and approximately
150 meV/f.u. of elastic energy at the extremes of com-
pressive and tensile misfit strain considered.

Figure 1b plots the ground-state epitaxial properties
for CaTiO3. Compared to SrTiO3, the predicted phases
of CaTiO3 involve a more complicated interplay of a
larger number of displacement modes. From -4% to -
2.5% misfit strain, the polar Pm phase is predicted as
a ground-state structure, for which the atomic displace-
ments involve a combination of an out-of-plane FE, in-
plane R+

4 rotation, in-plane M+
3 rotation, and out-of-

plane R+
4 rotation mode. As the magnitude of biax-



6

TABLE II. Properties of the nine softest eigen-displacement modes at various misfit strains for SrTiO3, CaTiO3, and SrHfO3.
Properties listed include the tilt system of each eigenmode, as denoted by the modified Glazer notation, the eigenvalue, λi

(eV/Å2), of the ith displacement mode, and the mode polarization vector, ~Zi (C/m2), as defined in Eq. 11 of Section III B.
A ‘*’ denotes a trivial translational eigenmode which must have an eigenvalue of zero and vanishing polarization vector, while
‘N/A’ denotes a displacement mode that cannot be described by the Glazer notation.

SrTiO3 Eigenmode Index

Misfit Strain 1 2 3 4 5 6 7 8 9

Glazer a00a
0
0c

0
+ a00a

0
0c
−
0 a00a

0
0c

+
0 a−0 b

0
0b

0
0 a00b

−
0 a

0
0 a+0 b

0
0b

0
0

-2% λi -2.06 -1.1 -0.69 -0.46 -0.46 * * * 0.07
~Zi (0 0 0.9) 0 0 0 0 0

Glazer a00a
0
0c

0
+ a00a

0
0c
−
0 a−0 b

0
0b

0
0 a00b

−
0 a

0
0 a00a

0
0c

+
0 a+0 b

0
0b

0
0 a00b

+
0 a

0
0

-1% λi -0.81 -0.76 -0.49 -0.49 -0.33 -0.01 -0.01 * *
~Zi (0 0 0.9) 0 0 0 0 0 0

Glazer a−0 b
0
0b

0
0 a00b

−
0 a

0
0 a00a

0
0c
−
0 a+0 b

0
0b

0
0 a00b

+
0 a

0
0 a00a

0
0c

+
0

0% λi -0.49 -0.49 -0.48 -0.05 -0.05 -0.04 * * *
~Zi 0 0 0 0 0 0

Glazer a0+b
0
0b

0
0 a00b

0
+a

0
0 a−0 b

0
0b

0
0 a00b

−
0 a

0
0 a00a

0
0c
−
0 a+0 b

0
0b

0
0 a00b

+
0 a

0
0

1% λi -1.18 -1.18 -0.52 -0.52 -0.27 -0.12 -0.12 * *
~Zi (0.9 0 0) (0 0.9 0) 0 0 0 0 0

Glazer a0+b
0
0b

0
0 a00b

0
+a

0
0 N/A N/A a−0 b

0
0b

0
0 a00b

−
0 a

0
0 a+0 b

0
0b

0
0 a00b

+
0 a

0
0 a00a

0
0c
−
0

2% λi -2.81 -2.81 -1.4 -1.4 -0.52 -0.52 -0.14 -0.14 -0.11
~Zi (0.9 0 0) (0 0.9 0) 0 0 0 0 0 0 0

CaTiO3
1 2 3 4 5 6 7 8 9

Glazer a00a
0
0c
−
0 a00a

0
0c

0
+ a00a

0
0c

+
0 a−0 b

0
0b

0
0 a00b

−
0 a

0
0 a+0 b

0
0b

0
0 a00b

+
0 a

0
0 a0+b

0
0b

0
0 a00b

0
+a

0
0
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ial compressive strain is reduced, the two in-plane ro-
tational modes slightly increase in amplitude, while the
two out-of-plane modes diminish. At -2.5% misfit strain,
the amplitude of the out-of-plane FE mode vanishes, and
the non-polar P21/m parent phase becomes stable in a
smooth second-order transition. This phase persists from
-2.5% to 0% misfit strain, over which the in-plane rota-
tion modes continue to slowly increase in amplitude while
the out-of-plane rotation mode continues to diminish. At
zero misfit strain, the three octahedral modes are discon-
tinuously replaced by two in-plane FE, one out-of-plane
M+

3 rotation, and two in-plane R+
4 rotation modes in

a first-order transition to the polar Pmn21 phase. This
phase persists to the extreme of tensile strain considered,
with the in-plane FE modes gradually growing and the
octahedral modes remaining roughly constant in ampli-
tude. The elastic energy curve of CaTiO3 has its mini-
mum shifted to -1% misfit strain. This shift is possible
because the energy curve is referenced to the fully re-
laxed bulk CaTiO3 structure, while the misfit strain is
referenced to the equilibrium lattice constant of a bulk
cubic structure. The energy curve reflects this with 100
meV/f.u. of elastic energy at -4% misfit strain and 250
meV/f.u. at 4% misfit strain.

Figure 1c plots the calculated properties for SrHfO3.
Like CaTiO3, this system exhibits a complicated inter-
play of many displacement modes. Under large compres-
sive strain, a paraelectric I4/mcm phase is predicted,
having only an out-of-plane R+

4 rotation mode active.
At -3% misfit strain, there is a first-order transition to
a paraelectric P21/m phase. Continuing to -1% misfit
strain, there is another first-order phase transition to
a paraelectric Pnma phase that is like the bulk Pnma
phase, but with a tetragonal lattice instead of orthorhom-
bic. An orthorhombic rather than tetragonal space group
is adopted in this case due to symmetry-lowering atomic
displacements in the epitaxial ground-state structure.
This Pnma phase remains stable to the extreme of tensile
strain considered, with the in-plane R+

4 rotation mode
amplitudes remaining nearly constant, and the out-of-
plane M+

3 mode amplitude diminishing. The elastic en-
ergy curve for SrHfO3 is asymmetric, having a -1% shift
in the minimum, 100 meV/f.u. elastic energy at -4%
misfit strain, and over 300 meV/f.u. elastic energy at 4%
misfit strain.

IV. DISCUSSION

A. Comparison to previous calculations

In order to validate the accuracy of the present compu-
tational approach, results are compared in this section to
previous DFT calculations that include some form of in-
put from experimental observations or phenomenological
theory. As discussed below, the present work correctly
leads to the identification of stable phases reported previ-
ously for epitaxially strained SrTiO3 and CaTiO3. Quan-

titative discrepancies with these previous computational
investigations, that do not relate to the efficacy of the
present structure optimization approach, are found and
attributed to differences in the numerical parameters in
the underlying DFT calculations.

Lin et al.15 use DFT to calculate the epitaxial phase
diagram of SrTiO3 by considering all phases predicted
by phenomenological Landau theory.36 The general po-
larization behavior and stable phases at the extremes of
misfit strain compare very well to that of the present
work. Specifically, the results from both studies feature
the stability of an I4cm phase with enhanced out-of-
plane polarization under compression and an Ima2 phase
with enhanced in-plane polarization under tension. Near
0% misfit strain, the two works differ in their predicted
phases. While the present work predicts a paraelectric
I4/mcm phase near 0% misfit strain, Ref. [15] predicts
a total of three phases in this same region of strains,
including, in addition to the I4/mcm phase, two other
polar phases with Ima2 and Fmm2 symmetries. These
differences arise due to the near energetic degeneracy of
the competing phases, such that differences in the pa-
rameters underlying the DFT calculations can influence
conclusions about relative stability. To ensure this is the
case, rather than being due to the underlying structural
optimization procedure of the present workflow, the en-
ergy of the Ima2 and Fmm2 phases were computed us-
ing the computational parameters given in Section II C,
featuring a plane wave cutoff nearly twice as large as
that employed in Ref. [15]. Consistent with the results
shown in Fig. 1, with the DFT parameters employed in
the present work, it was verified that the lowest energy
structure was the one with I4/mcm symmetry, with the
Ima2 and Fmm2 polymorphs being higher in energy and
therefore metastable.

For CaTiO3, Eklund et al.14 computed epitaxial phase
diagrams using DFT by considering the relative stability
of a number of candidate phases derived from the exper-
imentally observed bulk phase. There is good agreement
between the present results and the work in Ref. [14] in
terms of the stable phases predicted, with both studies
determining the P21/m phase to be stable under moder-
ate compression and the Pmn21 phase to be stable un-
der tension. The strain corresponding to the transition
between these two phases is quantitatively different in
the two studies, however: Eklund et al. find a value of
η̄ = 0% while in the present work this value is approxi-
mately 2%. As above, these quantitative differences are
likely a consequence of the different DFT parameters em-
ployed in the two studies.

B. The role of non-zone-center displacement modes

In previous work by the authors,7 epitaxial phase di-
agrams were calculated using a similar approach as de-
scribed here, but disallowing relaxations associated with
non-zone-center displacement modes. In other words, the
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FIG. 1. Plots of ground-state epitaxial structure energies, polarization components, eigenmode amplitudes, and tetragonal
reference structure eigenvalues versus misfit strain for a) SrTiO3, b) CaTiO3, and c) SrHfO3. Absolute values of polarization
components are taken for visualization purposes. The in-plane lattice constant of the epitaxial structure at each misfit strain is
indicated by the top axis. The lower legend corresponds to the eigenmodes shown in Fig. 2 realized down the x, y, or z axes.

FIG. 2. The three most dominant unstable eigenmodes for epitaxial SrTiO3, CaTiO3, and SrHfO3. a) The zone-centered FE
mode, often transforming like the irrep Γ−4 , b) the in-phase AFD octahedral rotation, transforming like the irrep M+

3 , and c)
the out-of-phase AFD octahedral rotation, transforming like the irrep R+

4 . All three can be independently realized down each
of the three unit-cell axes. This figure was created using vesta.35
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work in Ref. [7] considered only phases that could be
derived from the perovskite structure through homoge-
neous strains and zone-centered FE displacement modes.
A comparison of the results obtained in Ref. [7] with
those obtained in the present work is therefore of inter-
est, as it highlights the role of non-zone-centered distor-
tions, such as octahedral rotations, in determining the
structural, energetic, and polarization dependences on
epitaxial strain. Such information is of interest because
non-zone-centered distortions may be frozen out in very
thin films if they increase the interfacial energy, while
they may be present in thicker films if they reduce strain
energy.

For SrTiO3, the effect of non-zone-centered distortions
is to widen the range of stability of the paraelectric phase
by nearly 0.5% misfit strain. Specifically, octahedral ro-
tations reduce the strain energy by 147 meV/f.u. at -4%
misfit strain, and by 86 meV/f.u. at 4% misfit strain.
This implies that rotational modes reduce elastic energy
and should allow for larger critical thicknesses for epi-
taxial growth. Under compressive epitaxial strain, the
out-of-plane polarization is nearly halved when the out-
of-plane rotation is allowed, implying an unfavorable cou-
pling with the out-of-plane FE mode. In contrast, under
tensile misfit strain, the presence of the two in-plane R+

4

octahedral rotation modes does not significantly change
the polarization compared to the results obtained from
disallowing non-zone-center distortions.

For SrHfO3, much larger effects of non-zone-center
modes are found. The elastic energy is reduced by 343
meV/f.u. at -4% misfit strain and 109 meV/f.u. at 4%
misfit strain when the non-zone-centered modes are al-
lowed. Also, in the calculations where non-zone-center
distortions are disallowed, large polarizations are com-
puted, up to 0.56 C/m2, and a direct transition from
a P4mm phase with purely out-of-plane polarization to
a Pmm2 phase with purely in-plane polarization is pre-
dicted around 0% misfit strain. The presence of non-
zone-centered distortions in SrHfO3 strongly suppresses
these two phenomena, giving way to a paraelectric film
over the entire range of epitaxial strain between -4% and
4%.

C. Predominant displacement modes

The atomic displacements calculated in the present
work for the epitaxial ground-state structures of SrTiO3,
CaTiO3, and SrHfO3 can be predominantly decomposed
into a small set of displacement eigenmodes. Figure 2
shows the displacement patterns of the most dominant
unstable eigenmodes, including a zone-centered FE dis-
tortion wherein the B -cations shift against the other sub-
lattices (Fig. 2a, irreducible representation Γ−4 ), and two
types of AFD octahedral rotations wherein the oxygen
octahedra rotate either out of phase (Fig. 2b, R+

4 ) or
in phase (Fig. 2c, M+

3 ) along an axis. Note that the
irreducible representation of the FE mode can vary with

composition and misfit strain and need not be Γ−4 , al-
though this is the most common, whereas the octahedral
rotation modes are uniquely determined by symmetry.
Each of these three displacement patterns can be inde-
pendently realized along each of the three orthogonal unit
cell axes, leading to nine dominating displacement eigen-
modes. Linear combinations of these nine eigenmodes
account for 95.8% of the total atomic displacement pre-
dicted in the ground-state epitaxial phases of SrTiO3,
70.1% of the total displacement in CaTiO3 and 77.2% in
SrHfO3.

Even in cases where other displacement modes are
more unstable in the reference tetragonal structures,
combinations of the nine modes described in the pre-
vious paragraph still dominate in their contribution to
the atomic displacements of the relaxed epitaxial ground-
state structures. Table II gives the sets of nine eigen-
modes with the most unstable eigenvalues for each of the
reference tetragonal structures at various misfit strains.
In some cases, denoted by an ‘N/A’ in the Glazer sys-
tem entry in Table II, these sets include modes other
than the nine dominant modes described in the previous
paragraph. However, even when these other modes are
more unstable, the nine modes described in the previ-
ous paragraph still dominate in contributions to calcu-
lated displacement patterns in the relaxed ground-state
structures. This tendency implies that the displacement
modes illustrated in IV C have a more optimal balance of
strong instability and favorable coupling with each other
than other subsets of displacement modes.

For example, when η̄ ≥ 2% for SrTiO3, two symmetry-
equivalent in-plane AFD modes have more negative
eigenvalues in the reference tetragonal structures than
all six of the R+

4 and M+
3 rotational modes. Yet, these

two in-plane AFD modes do not contribute significantly
to the calculated displacements in the relaxed ground-
state structures of SrTiO3 for strains ranging between
2% to 4%, while three of the six R+

4 and M+
3 rota-

tional modes make large contributions to these displace-
ments. Likewise, under large biaxial compressive or ten-
sile strains, SrHfO3 also has other unstable eigenmodes
in the tetragonal reference structures that ultimately do
not contribute significantly to the atomic displacements
in the relaxed ground-state structures.

D. Role of A-site bonding

Although the nine dominant displacement modes il-
lustrated in Fig. 2 largely describe the atomic displace-
ments calculated for SrTiO3, the ground-state epitax-
ial structures of CaTiO3 and SrHfO3 also have non-
negligible atomic displacement contributions from a few
additional stable or weakly unstable displacement eigen-
modes. Of these, the most relevant is an antipolar A-
site mode transforming like the irreducible representation
X+

5 , shown in Fig. 3a. As described in detail in Ref. [6],
the X+

5 mode is energetically favorable when both the
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R+
4 and M+

3 rotational modes are present. Thus, most
epitaxial ground-state structures for CaTiO3 and SrHfO3

predicted in this work show a significant antipolar shift in
the A-sublattice with some dependence on misfit strain.
Although these modes contribute less than 30% of the to-
tal atomic displacement in the relaxed structures, their
impact on energy is still significant.

In order to determine the energetic influence of these
eigenmodes having predominantly A-site displacements,
the energies of the ground-state structures for CaTiO3

and SrHfO3 are re-calculated for modified structures in
which only the contributions to the displacements as-
sociated with the nine dominant eigenmodes illustrated
in Fig. 2 are kept, all other amplitudes being set to
zero. The primary effect of this constraint is to disallow
the structure to shift the A-site sublattices. Figure 3b
shows the resulting energy curves versus misfit strain for
CaTiO3 and SrHfO3. For CaTiO3, removing all but the
nine dominant modes from the structures increases the
energy by up to 250 meV/f.u., with the most pronounced
effects at the extremes of misfit strain. For SrHfO3, the
energetic influence is smaller, but still significant, with a
maximum increase in energy of 80 meV/f.u at η̄ = −2%.
At η̄ = −4%, contributions of modes other than the dom-
inant nine vanish in SrHfO3.

The reason these A-site displacement modes are impor-
tant in CaTiO3 and SrHfO3, but not in SrTiO3, can be
explained by simple geometrical considerations. The rel-
ative ratios of the A- and B -cation radii, as characterized
by the Goldschmidt tolerance factor (t),33 are very dif-
ferent in these two cases. While SrTiO3 (t = 1.001) has a
tolerance factor that is close to unity, implying the A and
B cations have radii nearly perfectly suited to the ideal
perovskite structure, CaTiO3 (t = 0.946) and SrHfO3

(t = 0.949) have A cations that are relatively too small.
As a result, the A-site coordination environment is unfa-
vorable in the latter two systems, which explains why the
eigenvalues of the CaTiO3 and SrHfO3 tetragonal refer-
ence structures are consistently 2-3 eV/Å2 lower in value
than those of SrTiO3 for both the FE and AFD rotational
eigenmodes (see bottom panels of Fig. 1). Both FE
and AFD eigenmodes can optimize the A-site bonding,
although octahedral rotations tend to do so more effec-
tively and, thus, contribute more significantly to atomic
displacements in the ground-state structures of CaTiO3

and SrHfO3.6 These rotations alone, however, are not
enough to satisfy the A-site bonding preferences, which
is why additional displacement modes, such as the an-
tipolar A-site X+

5 eigenmode shown in Fig. 3a, also
condense in the structure. These modes further serve
to minimize A-O repulsion and optimize the undersized
A-site’s coordination.6 This can be visualized in the dis-
placement pattern of the X+

5 mode, which brings the
A-cations closer the square oxygen interstice, while also
drawing some of the equatorial oxygen atoms toward the
A-cations. Figure 3b illustrates that these A-site bond-
optimizing modes can be important in lowering strain
energy, and that the degree to which these modes are

FIG. 3. a) Antipolar A-site displacement mode (irreducible
representation X+

5 ). This mode can be independently real-
ized down each of the three unit-cell axes. b) Metastability
relative to the ground-state structures of CaTiO3 and SrHfO3

resulting from the eigenmode amplitudes of all modes other
than the nine mentioned in Section IV C being set to zero.
Part a) of this figure was created using vesta.35

needed to optimize the A-site bonding are highly sen-
sitive to both the misfit strain and composition of the
system.

E. Behavioral trends

Irrespective of differences in cation bonding preferences
between SrTiO3, CaTiO3, and SrHfO3, the results of this
work demonstrate many shared features among the be-
havior of the three compositions under epitaxy. In all
three systems, application of misfit strain consistently
destabilizes the B -site coordination environment, lead-
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ing to growing FE eigenmode instabilities under both
compression and tension. Increasing biaxial compressive
strains lead to the out-of-plane FE displacement mode
becoming more unstable, while increasing biaxial tensile
strains always leads to the two in-plane FE modes becom-
ing more unstable. The bottom panels in Fig. 1 indicate
for all three systems that the FE modes of the tetragonal
reference structures couple much more strongly to misfit
strain than any of the octahedral rotation modes. The
next strongest couplings occur in the two out-of-plane
rotation modes, which are both strongly destabilized by
increasing compressive strains, while the in-plane rota-
tion modes have the weakest coupling to misfit strain.

V. SUMMARY AND CONCLUSIONS

Presented in this work is a computational framework
for the calculation of ground-state epitaxial phase di-
agrams of ferroelectric perovskite oxides. This frame-
work employs expansions of the total energy at various
misfit strains with respect to soft-mode displacements
and homogeneous deformations, in order to locate candi-
date ground-state structures, which are then further opti-
mized through DFT calculations. Competing phases are
predicted entirely from first-principles, with no assump-
tions made regarding which set of displacement modes to
consider and no requirement of input information from
experimental measurements. This method also considers
the important effects of AFD and A-site displacement
modes in ground-state epitaxial phases. The approach
outlined in this work for identifying ground-state phases
under epitaxial strain can be used in future work to treat
a larger range of perovskite systems in order to explore
compositional trends more broadly. This approach is
demonstrated in the present work in an application to
three perovskite oxides, SrTiO3, CaTiO3, and SrHfO3,
over a range of epitaxial strains applied parallel to the
(001) plane. The main conclusions can be summarized
as follows.

Compared to calculations in which relaxations asso-
ciated with non-zone-centered displacement modes are
disallowed, the present results show that inclusion of
non-zone-centered displacement modes significantly af-
fects the dependence of energy and polarization on mis-

fit strain. Namely, AFD octahedral rotations and asso-
ciated A-site displacement modes tend to strongly sup-
press polarization and also reduce the epitaxial strain en-
ergy. This information has important consequences for
the stability of competing phases as a function of film
thickness. Non-zone-centered distortions can be frozen
out in very thin films if they increase interfacial energy
with the underlying substrate lattice, while these distor-
tions are likely to appear in thicker films because they
reduce strain energy. In this way, competing phases with
very different polar properties have the potential to be
accessed as a function of film thickness.

A set of nine displacement modes, three zone-centered
FE distortions often transforming like Γ−4 , and six AFD
octahedral rotations, three transforming like R+

4 and
three like M+

3 , comprise the largest contributors to the
atomic displacements found in the calculated ground-
state structures across all of the compositions and misfit
strains considered. Combinations of these modes domi-
nate atomic displacements in stable epitaxial phases even
when other modes show more unstable eigenvalues in the
high-symmetry reference structures. While the atomic
displacements of SrTiO3 can almost entirely be decom-
posed into contributions from these nine dominant dis-
placement modes, those obtained for CaTiO3 and SrHfO3

also contain significant contributions from additional pre-
dominantly A-site displacement modes. This difference
between SrTiO3 and the other two compounds is driven
by A-site bonding preference. The main effect of these
additional modes is an antipolar A-site shift that sig-
nificantly lowers strain energies of the epitaxial phases
by optimizing the coordination geometry of the A-site
cation.
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