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We describe a method to tune, in-situ, between transverse and longitudinal light-matter cou-
pling in a hybrid circuit-QED device composed of an electron spin degree of freedom coupled to
a microwave transmission line cavity. Our approach relies on periodic modulation of the coupling
itself, such that in a certain frame the interaction is both amplified and either transverse, or, by
modulating at two frequencies, longitudinal. The former realizes an effective simulation of certain
aspects of the ultra-strong coupling regime, while the latter allows one to implement a longitudinal
readout scheme even when the intrinsic Hamiltonian is transverse, and the individual spin or cavity
frequencies cannot be changed. We analyze the fidelity of using such a scheme to measure the state
of the electron spin degree of freedom, and argue that the longitudinal readout scheme can operate
in regimes where the traditional dispersive approach fails.

I. INTRODUCTION

Electron spin is a highly robust quantum degree of free-
dom whose use in quantum information is often limited
by the difficulty of implementing fast high-fidelity read-
out and the realization of long-distance interactions1–5.
Spin-photon coupling in hybrid devices composed of
double-quantum-dots (DQD) coupled to superconduct-
ing transmission-line cavities is being investigated and
developed as a means to overcome these difficulties5–19.
Very recently several experiments have demonstrated
strong spin-photon coupling20–22 based on coupling me-
diated by the charge degree of freedom23–26. In addi-
tion to applications in quantum information, such de-
vices harbour new physics, including controllable single-
atom lasing27–30, ground-state lasing31 bistability32, non-
equilibrium thermodynamics33, and quantum phase tran-
sitions34.

In this work we focus on the practical task of how to
switch19, in situ, between an amplified longitudinal35–40,
and an amplified transverse coupling, by only modulat-
ing the coupling strength, and without changing the spin
or cavity energies directly. With the former (amplified
longitudinal coupling) one can realize fast high-fidelity
readout35 and qubit-qubit coupling36. With the latter
(amplified transverse coupling) one can investigate the
extreme limits of light-matter coupling41–47 in a simu-
lated manner48–52.

Our primary result is that one can realize an effective
amplified longitudinal coupling even when there is a non-
negligible intrinsic transverse term in the Hamiltonian by
modulating the coupling strength at both the cavity and
qubit frequencies simultaneously (two-tone), and moving
to an appropriate frame. We show that this works op-
timally when the intrinsic qubit frequency is half of the
cavity frequency. The effect can be intuitively under-
stood in terms of a simultaneous resonant force on the
cavity and electron-spin-resonance (ESR) on the qubit.

We say that the coupling strength is amplified in the
sense that the influence of the qubit on the cavity is in-
creased drastically as the effective cavity frequency is re-
duced.

With the electron spin-based devices we discuss in this
work this modulation is potentially achievable with elec-
trical control of a single gate-voltage36,53. This method
is particularly desirable when, as is the case we outline
below, one cannot (or may not want to) directly engi-
neer a longitudinal interaction, or cannot control in-situ
the intrinsic properties of the device (other than the cou-
pling itself). The two-tone approach54, similar in philos-
ophy to stroboscopic schemes55,56, also has the advan-
tage that, when used as a means to measure the qubit
state, it is faster than dispersive readout, and can still
operate well in the limit of strong coupling and a bad
cavity56. The downside is that, like the normal disper-
sive readout scheme, it is approximate, and the quantum
non-demolition (QND) nature of the measurement breaks
down away from ideal parameters (unlike an ideal intrin-
sic longitudinal coupling). Thus the longitudinal readout
part of our proposal lies between the “pure” longitudi-
nal case and the traditional dispersive case, with the fast
readout of the former, and the potentially easier imple-
mentation of the latter (albeit with corresponding limits
to its intrinsic QND fidelity away from an optimal choice
of parameters).

First we describe the basic elements of the spin-photon
coupling mechanism. We then introduce the modulated
coupling, and discuss how the two-tone modulation al-
lows us to realize a longitudinal coupling even when the
intrinsic Hamiltonian is transverse. We then analyze the
fidelity of a two-tone longitudinal measurement scheme,
and show how it compares to the normal longitudinal
readout (with only a single-tone modulation of the cou-
pling) and dispersive readout approaches. We investigate
the influence of unwanted exchange tunneling terms, and
then finally discuss how a single-tone modulation can give
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an amplified transverse coupling. In the appendix, we
present a detailed analysis of the perturbative limits of
the two-tone modulation approach.

II. ORIGIN OF THE SPIN-PHOTON
COUPLING

Following the approach of Ref. (53) we consider a
model of a DQD operating in the two-electron regime,
and at the charge-degeneracy point to minimize dephas-
ing. A microwave resonator modifies the gate voltage
that controls the interdot tunneling, which results in
a spin-photon coupling as described below. In addi-
tion, the electrons in the dots are subject to an ex-
ternal magnetic field Bex = Bẑ, separating the triplet
states, T+ = | ↑↑〉 and T− = | ↓↓〉, from the triplet

state, T0 = (| ↑↓〉 + | ↓↑〉)/
√

2, and the singlet state,

S = (| ↑↓〉 − | ↓↑〉)/
√

2. For brevity we neglect reference
to the corresponding spatial orbital wavefunctions57–60

of the electrons in the double dot. The electrons are
also subject to inhomogeneous magnetic fields BL and
BR, originating from either inhomogeneous nuclear Over-
hauser fields or the strong gradient field of a micromag-
net. Here, we define,

σz = | ↓↑〉〈↓↑ | − | ↑↓〉〈↑↓ | ≡ |T0〉〈S|+ |S〉〈T0| (1)

σx = | ↓↑〉〈↑↓ |+ | ↑↓〉〈↓↑ | ≡ |T0〉〈T0| − |S〉〈S|. (2)

Within this restricted two-state subspace the Hamilto-
nian for the spin states of the dots is given by,

Hd =
J0

2
σx +

∆h

2
σz, (3)

where J0 is the exchange tunnelling57,59,60 and ∆h =
geµB(BL − BR) the difference in local Zeeman energies.
In this work we focus on the regime where ∆h� J0.

We assume that the superconducting transmission line
is coupled to the interdot tunnel gate. The vacuum state
in the cavity has a non-zero voltage that can modify this
barrier, and thus induces a Hamiltonian,

Hc = ωca
†a+ Jrσx(a+ a†) (4)

where ωc is the resonant cavity frequency, and Jr is the
spin-photon coupling strength (see below). Reference
(53) considers the eigenstates of Hd as the qubit ba-
sis, and by applying a large global magnetic field they
propose tuning J0 → 0, to maximize the transverse spin-
boson coupling. One downside to this approach, however,
is that this mechanism of tuning J0 to zero is, to our
knowledge, as yet unobserved in experiments. It also re-
quires strong external magnetic fields, which, depending
on design, may be incompatible with the critical field-
requirements of a superconducting transmission line res-
onator, and may also reduce the intrinsic strength of Jr.
In addition, reference (53) suggests that the opposite lon-
gitudinal regime can be reached by tuning the Zeeman
splitting ∆h, such that it is much smaller than the ex-
change tunnelling J0.

Here, we investigate a complementary approach to this
notion of switching between longitudinal and transverse
interactions, based purely on modulation of the coupling
strength between the cavity and double quantum dot.
As mentioned in the introduction, this also allows us
to realize fast longitudinal-coupling readout35. This on-
chip tunability is particularly beneficial to certain double
quantum dot devices where it may be difficult to tune ∆h
in situ., and where an inherently large ∆h may be desir-
able for state-preparation purposes.

A. Driven Coupling

In Ref. (53) the functional dependence of the exchange-
tunnelling mediated spin-photon coupling Jr is given by:

Jr(t) = eVr sinh

[
16Vh(t)(ω2

0 + 2ω2
L)

~ω2
0

√
ω2

0 + ω2
L

]−1

(5)

where ωL = eB/2m is the Larmor frequency, ω0 is the
frequency of the harmonic well defining each dot, and Vh
is the height of the tunnel barrier between the two dots.
Essentially, the vacuum-fluctuation induced voltage Vr
modifies the height of the tunnel barrier, which in turn
changes the exchange splitting between triplet and sin-
glet states57,59,60. The height Vh is in practice a tunable
parameter which can be controlled by a gate voltage. By
applying time-dependent driving61 to this gate voltage,
Vh(t), one can make Jr(t) time dependent. One caveat is,
in the same stroke, we also induce a time-dependence in
the exchange tunnelling, J0, itself. However, as discussed
in the different context of superconducting qubits35, this
type of imperfection typically has a minimal influence of
the fidelity or QND-ness of the measurement (as we will
discuss below).

Using exchange tunnelling to realize modulated cou-
pling is not the only potential way to implement this
tunable spin-photon coupling scheme. Following the pro-
posal described in Ref. (8) one could couple the spin of a
single electron in a double dot structure to the microwave
cavity by applying a strong magnetic field gradient with
a micromagnet20,21. This could then be made time de-
pendent by electrical control of the dot potential19,62, or
modulation of the field gradient with a suspended nano-
magnet63. There are various advantages and disadvan-
tages to using single spin versus an effective singlet-triplet
qubit. The latter tends to have worse dephasing than the
former when the exchange tunnelling or the dot bias are
changed8, but has the advantage of being well developed
in terms of electrical preparation and readout of the qubit
state.

III. TWO-TONE DRIVING AND AMPLIFIED
LONGITUDINAL READOUT

When ∆h � J0 our intrinsic Hamiltonian is trans-
verse, and we assume ∆h is a static property that can-
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FIG. 1. (a) Shows an example of the evolution of the imagi-
nary part of the cavity state α = 〈a〉 when the qubit is pre-
pared in the 〈+〉 or 〈−〉 eigenstates of the σx for the two-tone
modulated longitudinal readout scheme. Note that in our
notation, the scheme is longitudinal in the σx basis, and is
quasi-QND in that basis, as shown by the Bloch sphere in-
set. The dashed curves show the approximate RWA solution,
while the solid lines show the full numerics, which includes
oscillations due to the counter-rotating terms. The insets (b)
and (c) show the Wigner function of the cavity state for the
different initial qubit states at t = 16/κ. In this figure we
have used non-ideal parameters to accentuate the unwanted
oscillations, with ∆h = 0.15ωc, Jr = 0.05ωc, and κ = Jr/2.
The oscillations due to counter-terms reduce the QND fidelity
of the measurement, but this can be improved by of course
increasing ∆h or reducing the coupling strength Jr [and corre-
spondingly reducing κ to maintain the same signal magnitude
α(t→∞) = Jr/2κ.]

not be tuned in-situ. However, as mentioned in the in-
troduction, we can access an effective amplified longitu-
dinal regime by driving the coupling at two frequencies.
When the natural splitting of the qubit and cavity are off-
resonance (∆h ∼ ωc/2), we can do quasi-QND amplified
longitudinal readout of the σx basis, as we have defined
it. More specifically, returning again to the Hamiltonian

H = ωca
†a+

∆h

2
σz + Jr(t)σx(a+ a†) (6)

and choosing

Jr(t) = Jr cos (ωct) cos (∆ht) (7)

and moving to a rotating frame under the unitary trans-
formation U = exp i(ωca

†a+ (∆h/2)σz)t, under the as-
sumptions that ωc,∆h� Jr, and neglecting fast oscillat-
ing terms64 of frequency 2ωc, 2∆h, ωc+∆h, and ωc−∆h,

(the neglect of which relies on ωc,∆h, ωc−∆h� Jr), we
obtain

H0 =
Jr
4
σx(a+ a†) . (8)

Thus, we have effectively entered a frame where both
the cavity frequency (as in the previous section) and the
qubit splitting are zero. This Hamiltonian thus describes
a σx-dependent resonant force on the cavity, and with it
we can perform fast quasi-non-QND readout of the eigen-
states of that basis (albeit in a rotating frame). It is more
traditional to redefine the basis states to measure in σz,
but we refrain from doing so. With this Hamiltonian
the qubit-dependent displacement of the cavity tends to-
wards

α = 〈a〉 = ±Jr/2iκ (9)

in the steady-state, as shown in Fig. 1, and does so faster
than the equivalent dispersive interaction35 (here κ is the
cavity loss rate, see below for a full description). If one
prefers to perform a measurement in the σz basis one
must of course initially apply a rotation on the qubit
before the measurement is performed.

The validity of Eq. (8) depends strongly on

ωc,∆h� Jr (10)

and

ωc −∆h� Jr. (11)

In a regime where Jr/8 < ∆h < ωc − J/8, the leading
non-QND terms are, asymptotically,

O(max[J2
r /∆, J

2
r /(ωc −∆)]), (12)

suggesting an optimal point of

ωc = 2∆h, (13)

(see Appendix for details). Explicitly, using Van-Vleck
perturbation theory (see Appendix for the derivation),
the lowest order non-QND terms are

HVV = H0 +

(
Jr
4

)2 [
(a+ a†)2

2∆h
(14)

− ∆h

ωc2 −∆h2

(
a†a+

1

2

)]
σz,

We validate this analysis with a numerical simulation
of the full dynamics65,66, which involves solving a Master
equation including the full time-dependent Hamiltonian
Eq. (6) and cavity loss rate κ,

ρ̇ = − i
~

[H(t), ρ] +
κ

2

[
2aρa† − a†aρ− ρa†a

]
. (15)

Here we neglect qubit (DQD) loss and dephasing, and fo-
cus only on the influence of the cavity losses by assuming
that κ is the largest loss rate in our system. This assump-
tion is complementary to the benefit that the longitudinal
readout scheme works well in the bad-cavity limit.



4

Figures of merit for the efficiency of the readout
scheme are the non-destructiveness (QND-ness) and the
time-dependent signal-to-noise ratio. In Fig. 2, from
the full numerical results, we show a simple measure,
Min[〈|+〉〈+|〉]τ , of the non-destructiveness of the mea-
surement in terms of the minimum overlap between the
state of the qubit (in the rotating frame) and the initial
state |+〉, across the whole time evolution interval τ , as a
function of ∆h. Note that, at this stage, we tune across
a large range of ∆h, but always assume that ∆h � J0,
even when ∆h→ 0. This is because we wish to first show
the breakdown of our approach due to the failure of the
RWA approximation leading to Eq. (8). We will address
the issue of finite J0 in the next section.

At ∆h = 0, we retrieve the purely longitudinal re-
sults of Didier et al.35. As ∆h increases, readout relying
on a single-tone modulation of the coupling just at the
cavity frequency of course fails to produce a satisfactory
QND-ness, as shown by the gray dashed curve. How-
ever, by modulating at two frequencies (solid curve) we
observe first a drop in the QND-ness, and then right af-
terwards we see a revival, as the simplified RWA model
Eq. (8), which predicts ideal non-destructive measure-
ment at ∆h = ωc/2, becomes valid (see appendix).

The time-dependent signal-to-noise ratio is given by,

SNR(τ) =
〈M(τ)+〉 − 〈M(τ)−〉[

〈δM(τ)2
+〉+ 〈δM(τ)2

−〉
]1/2 , (16)

where + and − refer to the qubit-state in the σx basis,
and

M(τ) =
√
κ

∫ τ

0

dt [a†out(t) + aout(t)], (17)

is the homodyne signal in terms of the integrated quadra-
ture amplitude of photons leaking out of the cavity at a
rate κ [where aout(t) =

√
κa(t) + ain(t) includes vacuum

noise 〈ain(t)a†in(t′)〉 = δ(t − t′)]. The integrated noise
is given by the sum of the variance of both outcomes,
δM(τ) = M(τ)−〈M(τ)〉, which can be evaluated as67,68,

δM(τ)2 = κ2

∫ τ

0

dt

∫ τ

0

dt′
(
Tr[(a+ a†) exp {L(t′ − t)}

(aρ(t) + ρ(t)a†)]u(t′ − t) (18)

+Tr[(a+ a†) exp {L(t− t′)}
(aρ(t′) + ρ(t′)a†)]u(t− t′)

)
+ κτ − 〈M(τ)〉2

which, in the case that the state in the cavity is a coher-
ent state, reduces to δM(τ)2 = κτ , where τ is the total
measurement period. Here, the step functions are defined
as u(t) = 1 for t > 0 and u(t) = 0 for t < 0.

In Fig. 3 we show the signal-to-noise ratio, Eq. (16),
also as a function of ∆h, up to a maximum integration
time of τ = 2/κ. The larger SNR at ∆h = 0 is ultimately
due to the effectively larger coupling Jr, compared to
the case when one has a finite frequency of modulation
(i.e., at ∆h = 0, Jr is effectively two times larger com-
pared to when the modulation at finite ∆h occurs, and

0 0.05ωc 0.1ωc

∆h

0.6

0.8

1

Q
N

D
-n

es
s

∆h = Jr

Jr(t) = Jr cos(ωct)cos(∆ht), J̄0 = 0, δJ0 = 0

Jr(t) = Jr cos(ωct), J̄0 = 0, δJ0 = 0

Jr(t) = Jr cos(ωct)cos(∆ht), J̄0 = 0, δJ0 = Jr

Jr(t) = Jr cos(ωct)cos(ωqt), J̄0 = Jr, δJ0 = 0, option A

Jr(t) = Jr cos(ωct)cos(ωqt), J̄0 = Jr, δJ0 = 0, option B

FIG. 2. As a figure of merit of the QND fidelity of the mea-
surement process we use, for an initial excited state |+〉, i.e.,
Min[〈|+〉〈+|〉]τ , and we take the maximum evolution time as
τ = 2/κ. Here we use parameters closer to those expected in
a DQD-Cavity setup, with ωc/2π = 5 GHz, Jr/2π = 50 MHz
and κ/2π = 25 MHz. In the black curve we set the static ex-
change tunneling to zero J0 = 0, and we tune ∆h/2π across
the range 0 to 250 MHz (the magnitude of Jr is indicated by
the vertical gray line). The black dashed curve shows the same
except with a modulation of the spin-photon coupling just at
the cavity frequency alone. When ∆h = 0 we recover the pure
longitudinal result of Didier et al.35. As ∆h is increased, the
QND-ness of the two-tone modulation scheme decreases until
a critical turning point, corresponding to the passage from an
adiabatic regime to a fast-modulation regime, where the RWA
starts to become valid. This regime is ideal when ∆h = ωc/2
(see appendix for a complete analysis), but we see that, for
the parameters in this example, it already performs well as
∆h→ ωc/20. The red dashed curve shows the influence of a
modulated exchange tunnelling, δJ0/2π = Jr/2π = 50 MHz.
The dashed orange curve shows the influence of a static ex-
change tunnelling, J̄0/2π = Jr/2π = 50 MHz, following the
strategy A for preparation and readout, described in the text.
The dashed-dotted blue curve shows the influence of a static
exchange tunnelling, J̄0/2π = Jr/2π = 50 MHz, following the
strategy B for preparation and readout, also described in the
text. In the cases with static exchange coupling present, we
modulate the spin-photon coupling at the eigenenergy of the

dot system ωq =
√

∆h2 + J̄0
2
.

whence averaging over fast oscillations effectively reduces
the coupling strength). As ∆h increases, as with Fig. 2,
modulating the coupling at just a single frequency is ac-
companied with a loss of signal. However, if one modu-
lates at two frequencies, ωc and ∆h, the SNR plateaus,
as expected from Eq. (8) and the analysis performed in
reference (35).

In comparing their pure longitudinal measurement
scheme to the traditional dispersive approach, reference
(35) argued that the SNR of the longitudinal scheme in-
creases faster than that of the dispersive one at short
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∆h = Jr

Jr(t) = Jr cos(ωct)cos(∆ht), J̄0 = 0, δJ0 = 0

Jr(t) = Jr cos(ωct), J̄0 = 0, δJ0 = 0

Jr(t) = Jr cos(ωct)cos(∆ht), J̄0 = 0, δJ0 = Jr

Jr(t) = Jr cos(ωct)cos(ωqt), J̄0 = Jr, δJ0 = 0, option A

Jr(t) = Jr cos(ωct)cos(ωqt), J̄0 = Jr, δJ0 = 0, option B

FIG. 3. Here we show the integrated signal-to-noise ratio
obtained up to time τ = 2/κ, as a function of ∆h, with other
parameters set as in Fig. 2, ωc/2π = 5 GHz, Jr/2π = 50
MHz and κ/2π = 25 MHz. The black curve shows that SNR
is maximal for ∆h → 0, then drops and saturates as ∆h is
increased (the magnitude of Jr is indicated by the vertical
gray line). The black dashed curve shows the same except
with modulation of the spin-photon coupling just at the cavity
frequency alone. The red dashed curve shows the influence
of a modulated exchange tunnelling, δJ0/2π = Jr/2π = 50
MHz. The dashed orange curve shows the influence of a static
exchange tunnelling, J̄0/2π = Jr/2π = 50 MHz, following the
strategy A for preparation and readout, described in the text.
The dashed-dotted blue curve shows the influence of a static
exchange tunnelling, J̄0/2π = Jr/2π = 50 MHz, following the
strategy B for preparation and readout, also described in the
text. In the cases with static exchange coupling present, we
modulate the spin-photon coupling at the eigenenergy of the

dot system ωq =
√

∆h2 + J̄0
2
.

times:

SNR(τ) ∝ 1

κ
(κτ)5/2 for dispersive case,

SNR(τ) ∝ 1

κ
(κτ)3/2 for longitudinal readout,

SNR(τ) ∝ 1

κ
(κτ)1/2 for both at longer times τ � κ−1.

While this is also the case for the two-tone readout, we
point out an additional advantage of both the purely lon-
gitudinal scheme35 and that of our two-tone modulation
readout. In the examples shown in Figs. 2 and 3 we
evolve to time scales of order κ−1 and we set the loss
κ = Jr/2. The choice of this ratio is important in the
sense that a smaller coupling would give a lower magni-
tude steady state, and a smaller SNR, while a smaller loss
κ would give a slower overall readout time. In the nor-
mal dispersive readout, the equivalent requirement for a
non-negligible SNR on this same time scale is

E

κ

J2
r

∆
> κ/2, (19)

where ∆ = ωc − ∆h, and E is the magnitude of an ex-
ternal resonant drive on the cavity. However, due to the

perturbative nature of the dispersive interaction, there
is a limit on the value of E/κ < (∆/

√
8Jr) (sometimes

termed the “critical photon number”69–74). This in turn
limits the value of κ one can allow in the dispersive read-
out scheme at least to Jr/

√
2, and in practice much less

(the critical photon number is an extreme upper limit,
related to how dressed the eigenstates of the dispersive
Hamiltonian become at larger photon numbers). On the
other hand, the longitudinal schemes function with high
fidelity up to the “bad cavity” limit of κ = Jr/2 (as illus-
trated in Fig. 2 and Fig. 3), a regime which potentially
offers faster readout (a related point regarding single-
shot readout with longitudinal coupling, even in the bad
cavity limit, was made by Beaudoin et al.56). For exam-
ple, for the same parameters we use in the figures, the
dispersive readout fails completely.

A. Finite exchange tunneling

As discussed in the introduction, it was proposed in ref-
erence [53] that one can tune J0 → 0 by applying a large
global magnetic field. However, in general there may be
technical issues limiting how small J0 can be made. In
addition, even with negligible J0 there maybe be a resid-
ual time-dependant exchange tunnelling arising when we
modulate the height of the gate voltage. For complete-
ness, we discuss the influence of these two imperfections
on our results in Fig. 2 and Fig. 3. Returning to the
Hamiltonian for the dot system,

Hd =
J0

2
σx +

∆h

2
σz, (20)

we define J0 = J̄0 + δJ0(t), i.e., an exchange tunneling
with both a static and modulated part.

If J̄0 = 0, and the residual modulation of the exchange
term has the same functional dependance as the modu-
lated coupling, δJ0(t) = δJ0 cos(∆ht) cos(ωct), then the
influence of this modulation on the QND-ness is negligi-
ble if δJ0 � ωc±2∆h, ωc. We illustrate this in Fig. 2 and
Fig. 3, where the red dashed curves show that a modula-
tion with a magnitude equal to the spin-photon coupling
in those figures has almost no influence on the SNR and
QND-ness for this parameter range. However, non-zero
δJ0 does reduce the QND-ness and SNR around (but not
at) the optimal point ∆h = ωc/2, where the above RWA
condition breaks down (we do not explicitly show this in
the figures). Precisely at the optimal point ∆h = ωc/2,
the QND-ness and SNR are restored because the Hamil-
tonian again becomes of the QND form.

Conversely, if J̄0, is small but finite, and the accidental
modulation of the exchange term is δJ0(t) = 0, we require
J̄0 � ∆h for the influence of the static exchange tun-
nelling to be negligible, as one might expect. This error
can be mitigated to some degree by changing the modu-
lation of the coupling term so that is on resonance with

the new eigenenergy of the qubit, ωq =

√
∆h2 + J̄0

2
. In
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this basis, the full Hamiltonian becomes,

H =
ωq
2
σ̄z + ωca

†a (21)

+ Jr cos(ωqt) cos(ωct) [sin(θ)σ̄x + cos(θ)σ̄z] (a+ a†).

where θ = arctan(∆h/J̄0).
Given this new Hamiltonian, we have two options,

which are distinguished as option A and option B in the
figures. In option A, we still assume the qubit starts
in an eigenstate of the original-basis Pauli operator σx,
and it is in that basis, and in the interaction picture of
the ωqσ̄z free Hamiltonian, that we evaluate the QND-
ness and SNR in the orange dashed curves in Fig. 2 and
Fig. 3. For J̄0 = Jr the presence of this static J̄0 does
reduce the QNDness and SNR for small ∆h, but this
rapidly increases and becomes comparable to the ideal
case around ∆h = 0.1ωc. The SNR does not recover for
∆h = 0 in this case because of the residual modulation
of the coupling at J̄0 in this limit.

Alternatively, for option B, we change the basis of our
readout such that the qubit is prepared, and measured, in
an eigenstate of σ̄x. This implies that the error term, for
finite J0, is the residual cos(θ)σ̄z part of the above Hamil-
tonian. This choice has a better performance for inter-
mediate ∆h, but fails completely when ∆h → 0. This is
trivially seen to be because, at ∆h = 0, our choice of ini-
tial state is not an eigenstate of the remaining coupling
Hamiltonian, σ̄z.

Note that, for the same parameters, but modulating
at just ∆h, and using just the ∆h part of the free Hamil-
tonian to define the interaction picture, and the mea-
surement basis, there is a much larger reduction in the
QNDness around ∆h = J̄0. We do not explicitly show
this case in the figures, as it essentially performs worse
than the above two options. Also not shown is the influ-
ence of both finite J̄0 and δJ0(t) on options A and B, as
the influence of the static J̄0 is the dominant contribution
for the parameters shown in the figures.

IV. AMPLIFIED TRANSVERSE COUPLING
REGIME

The magnitudes of the spin-photon coupling strengths
predicted in theory8,53, and seen in experiments so
far20–22, are in the strong-coupling regime (in that it ex-
ceeds the qubit and cavity losses). However, they are
still far from the ultra-strong regime41–43,45–47, as they
are orders of magnitude smaller than the qubit or cavity
frequency themselves. In addition, in the system we de-
scribe in this paper, the singlet-triplet spin-qubit is typi-
cally off-resonant with the cavity. If one wishes to realize
effective resonant interactions, or even simulate48–52 cer-
tain aspects of the ultra-strong coupling regime, one can
do so by modulating the qubit-cavity coupling, Jr(t) to
make the influence of the qubit on the cavity again akin
to a resonant force. One can do this by now choosing

Jr(t) = Jr cos (ωdt) (22)

In which case, the total Hamiltonian becomes

H =
J0

2
σx +

∆h

2
σz + ωca

†a+ Jr cos(ωdt)σx(a+ a†).

Applying a standard transformation U = exp
(
iωda

†at
)
,

this Hamiltonian becomes

H =
J0

2
σx +

∆h

2
σz + (ωc − ωd)a†a (23)

+ Jr cos(ωdt)σx(ae−iωdt + a†eiωdt).

Applying the rotating wave approximation (RWA), as-
suming ∆h, Jr � ωd, in the limit that J0 is negligible,
one obtains,

HR =
∆h

2
σz + (ωc − ωd)a†a+

Jr
2
σx(a+ a†). (24)

For resonant interactions, one can choose (ωc−ωd) = ∆h.
As the effective cavity frequency is reduced, the influ-
ence of the qubit on the cavity is amplified. To realize
certain aspects of the ultra-strong coupling regime one
can choose (ωd − ωc) = 0, thus, as in the longitudinal
case, entering a frame where the cavity frequency van-
ishes. In principle, this would also allow one to study a
non-equilibrium variant of the single-qubit Dicke phase
transition34, similar to the non-equilbrium Dicke phase
transition model studied by Bastidas et al.75.

V. CONCLUSIONS

In this work we showed how a two-tone modulation
of the coupling between a qubit, as exemplified with the
singlet-triplet states in a double quantum dot, and a cav-
ity allows one to switch between transverse and longitudi-
nal coupling schemes. While being more “approximate”
than a purely engineered longitudinal coupling, and thus
not perfectly QND in some regimes, this approach allows
one to switch between transverse and longitudinal cou-
pling, as required. For the latter, we presented a detailed
perturbative analysis in the Appendix, to show the ro-
bustness of the scheme for realistic parameters. Finally,
we argued that the longitudinal scheme can be used in
the “bad cavity” (large κ) limit, in principle allowing for
a faster readout. Of course, this approach can also be
applied to traditional circuit QED35, and perhaps also
to other approaches to spin-photon coupling8,20,21.
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VI. APPENDIX

In this appendix we present a perturbative analysis
which explains the different features of Fig. 2 and Fig. 3
for the case where the exchange tunnelling J0 is zero. We
will do this for a full range of ∆h from 0 to ωc. Specif-
ically, in Section A, we identify the regimes where the
full dynamics can (or cannot) be well approximated by
a QND time-independent Hamiltonian. In section B, we
present a higher order approximation of such an effective
dynamics. Finally, we present two figures, complemen-
tary to 2 and 3 presented in the main text for the QND
and SNR, over the full range of ∆h.

A. Perturbative analysis

Starting from the full Hamiltonian,

H = ∆h
2 σz + ωca

†a+ Jr cos (ωct) cos (∆ht)σx(a+ a†),
(25)

with two-tone modulation of the coupling, we will per-
form a perturbative analysis of the different regimes lying
in the range 0 ≤ ∆h ≤ ωc.

It is convenient to write the previous Hamiltonian in a

frame ˜|Ψ〉 = U |Ψ〉, with U = exp [i(ωca
†a+ (∆h/2)σz)t]

as

H = Jr cos (ωct) cos (∆ht)(ei∆htσ+ + e−i∆htσ−)

× (eiωcta† + e−iωcta)

= H0 +
∑

n∆h,nC=−1,0,1

Hn∆hnc
e2i(n∆h∆h+ncωc)

(26)
where

H0 =
Jr
4
σx(a+ a†), (27)

H1,0 =
Jr
4

(a+ a†)σ+,

H0,1 =
Jr
4
σxa

†,

H1,1 =
Jr
4
σ+a

†, and

H−1,1 =
Jr
4
σ−a

†

with H−n∆h,−nc
= H†n∆h,nc

, and H0,0 = 0.

In the following we assume Jr/ωc < 1, and, for formal
convenience, define

J̃r =
Jr
8

(28)

In the following, we will do the following:

• Perform a initial rotating wave approximation
(RWA) to write H = HRWA +O(J̃2

r /ωc).

• Perform an additional approximation, to put the
rotating wave Hamiltonian in a QND form, i.e.,

H → Heff ∝ H0 (29)

This will be achieved by either:

– An additional rotating wave approximation
(RWA), to neglect terms which rotate at a fre-

quency ω satisfying λRWA(ω) = J̃r/ω < 1.

– An adiabatic approximation (A), to neglect
slowly-rotating terms at frequency ω satisfy-
ing λA(ω) = ω/J̃r = 1/λRWA < 1.

The error of this approximation depends on the specific
range of parameters considered. Specifically, we will an-
alyze the regimes 0 < ∆h < ωc/2 and ωc/2 < ∆h < ωc
separately.

1. Regime 0 < ∆h < ωc/2

When 0 < ∆h < ωc/2, the frequencies ωc −
∆h, ωc,∆h+ωc appearing in the Hamiltonian in Eq. (26)
are O(ωc). Keeping the most relevant error, the RWA al-
lows us to write

H = HRWA
∆h +O

(
J̃2
r

ωc

)
(30)

where

HRWA
∆h = H0 + 2J̃r(a+ a†)(e2i∆htσ+ + e−2i∆htσ−) (31)

To proceed further, we need to analyze the perturbative
parameters λRWA and λA for the time dependent part of
the previous Hamiltonian.

• When 0 < ∆h < J̃r, we have λRWA(∆h) =

J̃r/∆h > 1 and λA(∆h) = 1/λRWA(∆h) < 1, which
is compatible with an adiabatic approximation. In
fact, for times t < τ with τ = 1/J̃r, (consistent with

the choices T = 1/κ, 2/κ and κ = Jr/2 = 4J̃r used

for the simulations), the condition 0 < ∆h < J̃r
allows one to expand the exponentials in Eq. (31)
at first order in (∆h t), to obtain

HRWA
∆h = 2H0 +O(∆h) (32)

so that, in this regime Heff = 2H0. The quality of
this approximation degrades as ∆h→ J̃r.

• When ∆h = J̃r, the frequency of the time-
dependent term becomes equal to its energy scale
and λRWA(J̃r) = λA(J̃r) and neither a further RWA
or the adiabatic approximation are allowed.
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• When J̃r < ∆h < ωc/2, we have λRWA(∆h) =

J̃r/∆h < 1 and λA(∆h) = 1/λRWA(∆h) > 1, which
allows us to perform an additional RWA, giving,

HRWA
∆h = H0 +O

(
J̃r

2

∆h

)
(33)

so that, in this regime, Heff = H0.

2. Regime ωc/2 < ∆h < ωc

When ωc/2 < ∆h < ωc, the frequencies ∆h, ωc,∆h +
ωc appearing in the Hamiltonian in Eq. (26) are O(ωc).
Keeping the most relevant error, the RWA allows us to
write

H = HRWA
ωc−∆h +O

(
J̃2
r

ωc

)
(34)

where

HRWA
ωc−∆h = H0 + 2J̃r[e

2i(ωc−∆h)tσ−a
† + e−2i(ωc−∆h)tσ+a]

(35)
Again, to proceed further, we need to analyze the per-
turbative parameters λRWA and λA.

• When ωc/2 < ∆h < ωc − J̃r, we have

λRWA(ωc −∆h) = J̃r/(ωc −∆h) < 1 and
λA(ωc −∆h) = 1/λRWA(ωc −∆h) > 1, which
again allows us to perform a further RWA to write

HRWA
ωc−∆h = H0 +O

(
J̃r

2

(ωc −∆h)

)
(36)

so that, in this regime Heff = H0.

• When ∆h = ωc − J̃r the frequency of the time-
dependent term becomes equal to its energy scale
and λRWA(ωc − g̃) = λA(ωc − J̃r); once again nei-
ther a further RWA or adiabatic approximation are
allowed.

• When ωc − J̃r < ∆h < ωc, we have
λRWA(ωc −∆h) = J̃r/(ωc −∆h) > 1, and
λA(ωc −∆h) = 1/λRWA(ωc −∆h) < 1, which once
again allows us to perform an adiabatic approxi-
mation. For times t < τ with τ = 1/J̃r, (again
consistent with the choices T = 1/κ, 2/κ and κ =

Jr/2 = 4J̃r used in the simulations), the condition

ωc − J̃r < ∆h < ωc, allows one to expand the ex-
ponentials in Eq. (35) at first order in [(ωc−∆h) t]
to obtain

HRWA
ωc−∆h = H0 + 2J̃r(σ−a

† + σ+a) +O(ωc −∆h)

= H0 +O(ωc −∆h) +O(J̃r)
(37)

so that, in this regime, Heff = H0. The quality of
this approximation degrades as ∆h→ ωc − J̃r.

The results of this analysis are collected in the following
table. Most importantly, from Eq. (33) and Eq. (36) we
see that the scaling of errors is minimized for ∆h = ωc/2,
justifying our suggestion, in the main text, of ∆h = ωc/2
being the optimal working point.

B. High-Frequency Regime

Deep in the high-frequency regime, where the condi-
tion J̃r � ∆h � ωc − J̃r is satisfied, all time depen-

dent contributions to the original Hamiltonian H sat-
isfy λRWA � 1 and a more rigorous analysis can be per-
formed. By using Van Vleck perturbation theory in Flo-
quet space76–78 an alternative effective Hamiltonian (see
Eq. (14) in the main text) can be written as

HVV = DHD−1

= H0 − 1
2

∑
n∆hnC=−1,0,1

[H−n∆h,−nC
, Hn∆h,nC

]

2n∆h∆h+ 2nCωc
+O

(
J̃r

3

∆h2

)
+O

(
J̃r

3

ωc2

)
+O

(
J̃r

3

(ωc −∆h)2

)
+O

(
J̃r

3

(ωc + ∆h)2

)

= H0 + (2J̃r)
2

[
(a+ a†)2

2∆h
− ∆h

ωc2 −∆h2
(a†a+

1

2
)

]
σz

(38)

in a frame defined as D = exp (−iS(t)), with

S(t) =
∑

n∆h,nC

iHn∆h,nc

2n∆h∆h+ 2ncωc
Fn∆h

Fnc
, (39)

where Fn∆h
= exp (2in∆h∆ht), FnC

= exp (2incωct).
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Range RWA: H = HRWA +O(J̃2
r /ωc) Regime Heff Heff −HRWA

∆h = 0 HRWA
0 = 2H0 - 2H0 0

0 < ∆h < J̃r HRWA
∆h = H0 + 2J̃r(a+ a†)(e2i∆htσ+ + e−2i∆htσ−) Adiabatic 2H0 O(∆h)

J̃r < ∆h < ωc
2

HRWA
∆h = H0 + 2J̃r(a+ a†)(e2i∆htσ+ + e−2i∆htσ−) High-Freq. H0 O(J̃r

2
/∆h)

ωc
2
< ∆h < ωc − J̃r HRWA

ωc−∆h = H0 + 2J̃r[e
2i(ωc−∆h)tσ−a

† + e−2i(ωc−∆h)tσ+a] High-Freq. H0 O
(
J̃r

2
/(ωc −∆h)

)
ωc − J̃r < ∆h < ωc HRWA

ωc−∆h = H0 + 2J̃r[e
2i(ωc−∆h)tσ−a

† + e−2i(ωc−∆h)tσ+a] Adiabatic H0 O(ωc −∆h) +O(J̃r)

∆h = ωc HRWA
ωc

= H0 + 2J̃r(σ−a
† + σ+a) - H0 O(J̃r)

TABLE I. In this table we summarize the analysis in Appendix A. For each parameter range, our goal is to identify the error
in approximating the behavior as the effective QND Hamiltonian Heff . These errors are minimized at the trivial extreme point
∆h = 0, where we return to the intrinsically longitudinal case studied elsewhere. More interestingly, in the regime of interest
of this article (J̃r < ∆h < ωc − J̃r), the scaling of the errors suggest the presence of another optimal point at ∆h = ωc/2.

The appearance of σz at this order suggests is the first
non-QND term that arises (recalling that our scheme is
performing measurements in the σx basis, such that evo-
lution due to σz terms will causes deviations from the
desired QND behavior).

We note that the Floquet resonances defined by the
intuitive condition

n1∆h+n2ωc+n3(ωc+∆h)+n4(ωc−∆h)� Jr/4 (40)

with |ni − nj | = ±1, 0 for i, j = 1, 2, 3, 4, are due to a
skewed description of the system as a more appropriate
description can be found in terms of slow envelopes of the
remaining high-frequencies pulses. As a consequence, the
usual high-frequency approximations in Floquet space
can be supported by adiabatic considerations79–81 lead-
ing to Eq. (38).

For completeness, it is also worth taking into consid-
eration the tilting of the frame described in Eq. (39) in

which the Van Vleck Hamiltonian is valid. For example,
at t = 0, the change of frame is already non-trivial (al-
though highly suppressed in the high frequency regime)
and reads

S(0) =
∑

n∆h,nc

iHn∆h,nC

2n∆h∆h+ 2ncωc
. (41)

By un-doing this change of frame with the operator D0 =
exp (−iS0) we get

HV V
0 = D−1

0 DHD−1D0, (42)

= D−1
0 HV VD0,

= HV V − i[H0, S(0)] +O

(
g3

∆h2

)
,

= HV V +
∑

n∆h,nc

[H0, Hn∆h,nc ]

2n∆h∆h+ 2ncωc
,

and, finally

HV V
0 = H0 + (2J̃r)

2

[
(a+ a†)2

2∆h
− ∆h

ωc2 −∆h2
(a†a+

1

2
)− (a+ a†)

∆h
+

∆h

ωc2 −∆h2
(1 + (a+ a†)2)

]
σz (43)

To compare the different levels of approximations studied
in this Appendix, we finish by presenting, in Fig. 4, the
QND fidelity over the full range of ∆h, complementing

Fig. 2 in the main text. In Fig. 5 we also present the
SNR for the same range of ∆h, complementing Fig. 3 in
the main text.
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and E. Solano, “Deep strong coupling regime of the Jaynes-
Cummings model,” Phys. Rev. Lett. 105, 263603 (2010),
arXiv:1008.1240.

43 S. Ashhab and Franco Nori, “Qubit-oscillator systems in
the ultrastrong-coupling regime and their potential for
preparing nonclassical states,” Phys. Rev. A 81, 042311
(2010), arXiv:0912.4888.

44 X. Gu, A. F. Kockum, A. Miranowicz, Y.-X. Liu,
and F. Nori, “Microwave photonics with superconduct-
ing quantum circuits,” Phys. Rep. 718, 1–102 (2017),
arXiv:1707.02046.

45 R. Stassi, V. Macr̀ı, A. F. Kockum, O. Di Stefano, A. Mi-
ranowicz, S. Savasta, and F. Nori, “Quantum nonlinear
optics without photons,” Phys. Rev. A 96, 023818 (2017),
arXiv:1702.00660v1.

46 R. Stassi and F. Nori, “Quantum Memory in the
Ultrastrong-Coupling Regime via Parity Symmetry Break-
ing,” arXiv:1703.08951.

47 A. F. Kockum, A. Miranowicz, V. Macr̀ı, S. Savasta, and
F. Nori, “Deterministic quantum nonlinear optics with sin-
gle atoms and virtual photons,” Phys. Rev. A 95, 063849
(2017), arXiv:1701.05038.

48 D. Ballester, G. Romero, J. J. Garćıa-Ripoll, F. Deppe,
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