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Topological effects typically discussed in the context of quantum physics are emerging as one of the
central paradigms of physics. Here, we demonstrate the role of topology in energy transport through
dimerized micro- and nano-mechanical lattices in the classical regime, i.e., essentially “masses and
springs”. We show that the thermal conductance factorizes into topological and non-topological com-
ponents. The former takes on three discrete values and arises due to the appearance of edge modes
that prevent good contact between the heat reservoirs and the bulk, giving a length-independent
reduction of the conductance. In essence, energy input at the boundary mostly stays there, an effect
robust against disorder and nonlinearity. These results bridge two seemingly disconnected disciplines
of physics, namely topology and thermal transport, and suggest ways to engineer thermal contacts,
opening a direction to explore the ramifications of topological properties on nanoscale technology.

Topology gives rise to fascinating phenomena and can
lead to the emergence of many exotic states of matter1–4,
from condensed matter5,6 to cold atoms7 to quantum
computation8,9. An example of a lattice with a non-
trivial topology is the Su-Schrieffer-Heeger (SSH) model
of electrons hopping in polyacetylene10, which is the focus
of many cold-atom studies, e.g., for measuring the Zak
phase11 and demonstrating topological Thouless pump-
ing12,13. While there are works focusing on topological
effects in the classical regime14–25, few connect topology
and energy transport26. We present a mechanical sys-
tem that manifests topological effects in energy trans-
port and has relevance to many nanoscale scenarios27,28.
This system is the mechanical counterpart to the SSH
model in Fig. 1(a) where alternating nearest neighbor
coupling strengths “dimerize” the lattice. When both
ends terminate on weak bonds, the whole lattice pairs
into dimers. Terminating on a strong bond, though,
leaves the end sites unpaired, resulting in the formation
of an edge mode. Hence, depending on the topology –
e.g., swapping the nearest neighbor couplings constants,
which does not change the bulk – there will be zero, one
(on either the left or right), or two edge modes.

The mechanical lattice we examine has vibrational
spectrum equivalent to the energy spectrum of the
SSH model when all parameters (except the alternating
nearest-neighbor coupling) are uniform. Otherwise it is
identical to the spectrum of a slice of the time-dependent
Rice-Mele model, which has a quantized Chern num-
ber on the extended 2D plane4. The lattice has the
Hamiltonian H =

∑
n
mn

2

(
ẋ2
n + ω2

nx
2
n

)
+
∑
n
Kn

2 (xn −
xn+1)2 with masses mn, onsite frequencies ωn, and
nearest-neighbor couplings Kn for site n with coordinate
xn. These parameters, [mn, ωn,Kn], are [m1, ω1,K1] or
[m2, ω2,K2] for odd or even n, respectively. After a lat-
tice Fourier transform, we get the Bloch Hamiltonian

Hq = h0I + hzσz + H̄q, (1)

where σz is the z Pauli matrix, I is the 2 × 2 identity

matrix, and hz and h0 are given in the Supplemental
Material (SM)29, and

H̄q = − 1

m

[
0 f∗(q)

f(q) 0

]
, (2)

with m =
√
m1m2 and f(q) = K1 + K2e

iq. A natural
realization of this model is in one-dimensional micro- and
nano-electromechanical systems (MEMS-NEMS), which
provide a versatile platform for dynamical phenomena
and devices30. As we will discuss, a combination of laser-
induced heating and optical/electronic readout can topo-
logically characterize energy transport in MEMS-NEMS,
as shown in Fig. 1(b). However, since this model is one
of the most elementary examples of a physical system
– classically coupled “masses and springs” – there exists
many alternative realizations.

The topological nature of the lattice can be seen by
considering H̄q = Rxσx + Ryσy, where σx,y are the
Pauli matrices. The curve (Rx = K1 + K2 cos(q), Ry =
−K2 sin(q)) may or may not wrap around the origin in
the complex plane as q goes from 0 to 2π. Counting
how many times the curve encircles the origin gives the
winding number,

W =

{
1, K1 < K2

0, K1 > K2
. (3)

This number is an important topological property of
a 1D system’s band structure1,5. The Zak phase31 is
the 1D Berry phase and is 2π times the winding num-
ber. When the winding number is nonzero, the lattice
is topologically non-trivial and edge modes appear, de-
caying exponentially from the edges with a decay length
ξ = − log(K1/K2). Without loss of generality, we use
the convention that if only one edge mode is present, it
is on the left. The number of left (NL) and right (NR)
edge modes is thus

NL =W, NR =
1− eiπ(N+W)

2
. (4)
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Figure 1. (a) Illustration of dimerization in a mechanically alternating lattice. Intracell (K1) and intercell (K2) nearest-neighbor
couplings are shown by green and black lines, respectively. Depending on the value of the winding number, Eq. (3), and the
parity of the lattice length, N , there can be zero, one, or two edge modes, Eq. (4). For example, when N is even and K1 > K2

then W = 0 (K1 < K2 with W = 1) and no edge mode (two edge modes) are present as the strong couplings pair all the
sites (all but the two sites at the boundaries) as shown in the left (right) lattice. (b) Illustration of energy transport in an
envisioned micro- or nano-mechanical topological lattice. The large and small spacings between beams of length L alternate the
nearest neighbor couplings (varying widths can alternate other parameters). Other device characteristics (thickness t, undercut
d, device materials) can be used to tune the parameters in Eq. (1). A modulated laser of wavelength λ can equilibrate the end
beam of the lattice at some elevated temperature TL, while the other end is either damped into equilibrium with its surroundings
at TR or its local temperature is measured optically or electronically via its oscillations. A difference in these two temperatures
will drive an energy current J . The presence of the edge modes will create an interfacial resistance, as the localized modes tend
to decouple the bulk lattice from the boundaries, thereby reducing the ability of energy to flow away from the edge. (c) Three
representative normal modes, plotted as the polarization vector squared, u2

qn, versus beam position, n, along the lattice. The
two edge modes (solid red and dashed blue lines) are localized around the left and right edges, respectively, while delocalized
modes are spread across the entire lattice (dot-dashed green line shows

√
Nu2

qn for one delocalized mode). The parameters
are K2 = 2K1, m2 = 3m1/4, and ω2 = ω1. The inset shows the frequencies of all modes enumerated in ascending order of
frequency. The edge modes reside in the gap between the two bands of delocalized modes.

Figure 1(c) shows the decaying amplitude squared of two
edge modes. The σz term in Eq. (1), while not present in
the SSH model, does not destroy the edge modes as one
can verify explicitly (see the SM29). Moreover, the edge
modes persist in the presence of nonlinearity (see Fig. 2).

These modes are more than just a physical curiosity,
however. Figure 1(b) illustrates a lattice of interacting
cantilevers with one end at a temperature TL. When
the lattice is locally excited at the boundary, e.g., via
a laser as shown in Fig. 1(b), or via an electromagnetic
coupling, the resulting energy current will depend on the
presence of the edge modes, whether this energy flow
is due to a single transient excitation or in a steady-
state. The conductance, κ ≡ J/∆T , where ∆T is the
temperature difference between two reservoirs, captures
this effect. For the bulk, the intrinsic conductance, κ0, is
given by its average phonon group velocity37

κ0 =
kB
2π

ˆ
Ω

dq vq =
kBΩ

2π
, (5)

where we use Ω to indicate both the bands and the total
bandwidth. This is the maximum rate at which a har-

monic lattice can transport heat between two equilibrium
reservoirs at different temperatures. Since it depends
only on the bulk band structure, Ω, it is independent of
winding number, i.e., swapping the order of K1 and K2

– or changing the parity of the lattice – will not affect it.
Reaching this conductance in practice, however, requires
that all phonon modes are sufficiently in contact with
the reservoirs so that they are supplied ample thermal
energy37. In the presence of topological edge modes this
limit is never reached, and the thermal conductance is al-
ways lower than κ0, regardless of the system length. This
is rather surprising, considering the fact that there are
at most two edge modes, whereas the number of modes
grows linearly with the system size.

We note that the ability of a specific mode q to con-
duct heat will depend on its contact with the external
reservoirs and its intrinsic conductance (determined by
its group velocity). In the setup of Fig. 1(b), the strength
of the contact of a specific mode q with the reservoirs is
given by γu2

q1 and γu2
qN for the left and right, respec-

tively. The coupling (i.e., damping rate) γ is the strength
of contact of the reservoirs to the cantilever beam at the
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Figure 2. Band structure and edge modes for (a,b) the har-
monic lattice (that leads to Eq. (1)) versus the ratio of cou-
plings and (c,d) a nonlinear, FPU-like32–35 generalization ver-
sus temperature. (a,b) When K1 < K2 in an even site lattice,
there are two edge modes (purple and wine lines) that re-
side in the gap between the two phonon bands (outlined with
blue and red for the upper and lower bands, respectively).
As K1 increases the spatial extent of the edge states grows
until they merge with the bulk states at K1 = K2. This pro-
cess is shown for alternating couplings only (i.e., m1/m2 = 1;
ω1/ω2 = 1) and for the masses alternating (i.e., m1/m2 = 2;
ω1/ω2 = 1). (c,d) The edge modes also exist in nonlinear
lattices and persist even as the nonlinearity increases with
temperature T (at high enough temperatures, the nonlinear-
ity merges the edge modes with the bulk). The persistence
of the edge modes is relevant to MEMS/NEMS, which are
often operated in nonlinear regimes30,36. Prior studies also
show that classical nonlinear systems can exhibit topological
excitations15.

lattice boundary. The polarization vector of the mode on
the boundaries, u2

qn with n = 1 or N , attenuates the cou-
pling of the mode q to the reservoirs. When the lattice
weakly contacts the reservoirs – in order to minimally
perturb the boundaries – the conductance for mode q,
κq, is due to two contributions in series (see the SM29)

kB
κq

=
1

γu2
q1

+
1

γu2
qN

, (6)

where the first term is from the left interface and the
second from the right interface. To describe the behav-
ior for arbitrary γ, the bulk contribution – N/vq, the
intrinsic ability of the mode to transfer heat – and an
overdamping contribution proportional to γ would need
to be included in Eq. (6). Many of the results below hold
up to moderate values of γ, as explained in the SM29.

The edge modes have an exponentially vanishing am-
plitude, u2

qn ≈ 0, for either n = 1 or N , which yields
κq ≈ 0 for q ∈ E , where E is the set of edge modes. The

total conductance will then be

κ =
1

2π

ˆ
Ω

dq lim
N→∞

Nκq, (7)

where the integral is over only the phonon bands and thus
the edge state contribution – which would be a separate
sum – is absent. This equation has a similar form to Eq.
(5) but κq contains the non-ideal contact to the external
heat source and sink.

We proceed by giving a heuristic derivation of the ef-
fect of topology, and a rigorous derivation is in the SM29.
Considering all normal modes of a lattice, one has simple
“sum rules” for the boundary amplitudes,

∑
q u

2
q1 = 1/m

and
∑
q u

2
qN = 1/m for the case when m1 = mN = m,

that reflect the (mass) scaling and orthogonal transfor-
mations that yield the normal modes. In the absence
of edge modes, the bulk modes have a contact strength
u2
qn ∝ γ/(mN) for n = 1 and N . Using this value for
u2
qn, the non-topological interfacial conductance for an

even length lattice is

κ̄ =
kBγ

2m
, (8)

which is limited by the coupling of the external reservoirs
to the lattice, i.e., the heat injected is the bottleneck to
current flow37 (a similar situation occurs in electronic
transport38–40).

In the presence of edge modes – states localized at
the boundaries – the total coupling of the bulk to the
reservoirs is reduced:

∑
q∈Ω u

2
qn = 1/m − ∑q∈E u

2
qn.

The bulk modes therefore have a contact strength ∝
γ
(

1−m∑q∈E u
2
qn

)
/(mN). The amplitude squared of

an edge mode on a boundary of its origin is (1−e−2ξ)/m,
which follows from the normalization of an exponentially
decaying state (see the SM29). The bulk modes therefore
have contact γu2

qn ∝ γ exp (−2ξ) /(mN) for n = 1 and
N . The conductance in the presence of edge modes is
then

κ =
kBγe

−2ξ

2m
= e−2ξκ̄. (9)

Thus, there is a topologically induced component of the
conductance that manifests itself as a prefactor e−2ξ.

The case of odd or even N can support NL = 0, 1
states on the left and and NR = 0, 1 states on the right,
according to the winding number, Eq. (4). Generalizing
Eq. (9) to arbitrary length lattices, and also inhomoge-
neous mass and on-site frequency cases, the conductance
of the lattice is

κ = Ξκ̄, (10)

where κ̄ is the nontopological component of the conduc-
tance (for N odd, κ̄ = kBγ/2m1; for N even, κ̄ is the
conductance in the absence of edge modes, i.e., K1 and
K2 swapped, see the SM29) and Ξ gives the three discrete
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topological levels

Ξ =
2

e2NLξ + e2NRξ
. (11)

The quantity Ξ is thus a function of winding number, as
NL(R) depend on it through Eq. (4). Out of the different
configurations (using the parameters that give the same
bulk properties but ordering them in different ways), Eq.
(11) will give only three possible values, corresponding
to the presence of 0,1 or 2 edge modes. All trivial mass
effects (at the boundaries) are in κ̄.

The effect of topological edge modes on thermal con-
ductance is demonstrated in Figure 3, which discusses a
uniform lattice with alternating K1 and K2 only (solid
lines), a lattice with m1 = 2m2 and ω1 = ω2 (dashed
lines) and a lattice with m1/m2 = K1/K2, ω1 = ω2

(dash-dotted lines). For each bulk lattice, we show the
case with zero edge modes (green), two edge modes (pur-
ple), and one edge mode (red and blue for a left and right
edge mode, respectively).

Figure 3(a) plots the thermal conductance κ versus the
ratio K1/K2. The conductance can take on essentially
any value (by changing masses and on-site frequencies,
one can fill in the whole plot). However, when taking
simple ratios, κ/κ̄, of the thermal conductance, a sim-
ple quantization emerges, as shown in Fig. 3(b). These
ratios take on just three values given by Ξ. Generi-
cally, the introduction of edge modes suppresses the con-
ductance, as it reduces the contact between the energy
sources/sinks and the bulk states. Non-topological ef-
fects (i.e., the changing bulk state structure as K1/K2

increases) can also significantly influence the conductance
for certain sets of parameters41.

Since the suppression of the thermal conductance is
a topological effect, it will not depend on the specific
details of the system and reservoirs and is anticipated
to be robust against various modifications to the lattice
(so long as the topology is maintained). We demon-
strate this robustness in Fig. 3(c) where we plot the nor-
malized conductance versus K1/K2 for three additional
lattices; the FPU-β lattice of Fig. 2(c) and two disor-
dered, dimerized lattices. For all these cases, the con-
ductance follows Eq. (10), showing the universality of the

topology-induced reduction of thermal conductance. If
the Langevin reservoirs are replaced by uniform harmonic
lattices with constant coupling 0 < K < min(K1,K2)
representing trivial topology, the edge modes and their
influence on thermal conductance should still survive at
the boundary due to a change of topology.

We further note that Eq. (6) is a general result. It
entails, therefore, that even non-topological localized
modes (e.g., due to a light mass at the boundary)
can suppress the thermal conductance. However, non-
topological modes will not display the quantized con-
ductance of Eq. (10) and shown in Fig. 3b,c. As well,
there are many channels for heat/energy transport. In
the setup envisioned in Fig. 1, heat will also be carried
by vibrations of the underlying crystal lattice. Therefore,
it is necessary to use a low thermal conductivity mate-
rial so that vibrations of the cantilevers are the dominant
channel for energy transport.

Just as thermal transport can serve as a probe of non-
linear structural transitions42,43, these results show that
signatures of nontrivial topologies appear in classical
(or quantum) energy transport in conventional physical
systems, such as MEMS/NEMS or at crystal-polymer
interfaces. In particular, a combination of laser-induced
heating and optical/electronic readout will allow for
the topological characterization of energy transport in
micro- or nano-mechanical lattices and control of heat
flow44. The emergence of edge states may help design,
e.g., thermoelectric devices, where the lattice thermal
conductance needs to be suppressed independently of
the electronic conductance. Moreover, energy flow
and thermal properties are critical to the operation of
nanotechnologies, where they can limit and even define
the functionality of devices45–47. The results presented
here thus generate exciting prospects for observing
topological properties in conventional physical systems
and utilizing them to design micro- and nano-scale
devices.
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