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Abstract

The generalized tight-binding model is developed to investigate the rich and unique electronic

properties of AB-bt (bottom-top) bilayer silicene under uniform perpendicular electric and mag-

netic fields. The first pair of conduction and valence bands, with an observable energy gap, displays

unusual energy dispersions. Each group of conduction/valence Landau levels (LLs) is further classi-

fied into four subgroups, that is, there exist the sublattice- and spin-dominated LL subgroups. The

magnetic-field-dependent LL energy spectra exhibit irregular behavior corresponding to the critical

points of the band structure. Moreover, the electric field can induce many LL anti-crossings. The

main features of the LLs are uncovered with many van Hove singularities in the density-of-states

and non-uniform delta-function-like peaks in the magneto-absorption spectra. The feature-rich

magnetic quantization directly reflects the geometric symmetries, intra-layer and inter-layer atomic

interactions, spin-orbital couplings, and the field effects. The results of this work can be applied

to novel designs of Si-based nano-electronics and nano-devices with enhanced mobilities.
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I. INTRODUCTION

Two-dimensional (2D) materials, such as groups IV- and V layered structures, 1–9,15,18–28

have become main-stream condensed-matter systems since the discovery of graphene in

2004 by mechanical exfoliation. They possess unique geometric properties, nano-scaled

thicknesses, a specific lattice symmetry, a planar/buckled structure, and a stacking configu-

ration. Such systems are verified/predicted to exhibit diverse physical properties and have

many potential device applications. Their Hamiltonians include complex effects from orbital

bonding, spin-orbital coupling (SOC), magnetic fields, electric fields, and inter-layer atomic

interactions. How to solve them becomes one of the basic tasks in solid-state physics today.

This work is mainly focused on magneto-electronic properties of AB-stacked bilayer silicene.

Recently, few-layer silicene with buckled honeycomb lattices have been successfully syn-

thesized on Ag(111), Ir(111) and ZrBi2 surfaces. 3,4 According to first-principles calcula-

tions, 5–9,15,18 these buckled structures might be meta-stable. Both AB and AA stackings,

being characterized by the (x, y)-plane projection, display bottom-top (bt) and bottom-

bottom (bb) configurations on the (x, z) plane. 9 Up to now, the AB-bt and AB-bb config-

urations have been confirmed by high-angle annular dark field scanning transmission elec-

tron microscopy. 22 The geometric symmetry, the intra-layer and inter-layer atomic interac-

tions, and SOC are expected to dominate the low-energy physical properties. For example,

monolayer silicene presents a slightly displaced Dirac cone with a narrow direct bandgap

(Eg ∼10 meV) in the presence of SOC. 3 The low-lying band structures in bilayer silicene

become very sensitive to changes in stacking configurations, such as the stacking-induced

indirect gap in AB-bt and semimetal in AA-bb configurations. The former, with the lowest

ground state energy, is chosen to be a model system in this paper for studying magnetic

quantization phenomena.

The low-energy electronic properties of monolayer silicene are mainly determined by the

outer 3pz orbitals, similar to graphene systems. The perturbation approximation of the 4× 4

Hamiltonian could be made around the high-symmetry point (the K point in Fig. 1(a)),

and then the magnetic quantization follows in a straightforward way. The LL energies are

found to be related to the energy gap and Fermi velocity analytically. 29 These LLs look

similar to those of monolayer graphene as their magnitudes become much larger than Eg.

It has been noticed that the LLs remain doubly degenerate for the spin degree of freedom
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even with the SOC, 29 and the effective-mass approximation becomes too cumbersome for

bilayer silicene with unusual band structures. On the other hand, the generalized tight-

binding model has been developed for solving rigorous Hamiltonians in various condensed-

matter systems. It is built on sub-envelope functions of distinct sublattices (Fig. 1(d)), in

which all the intrinsic interactions and the external fields can be taken into consideration

simultaneously. 30 Specifically, the magnetically quantized energy spectra and wave functions

could be evaluated very efficiently through the exact diagonalization method even for a very

large Hamiltonian matrix with complex elements. This model has been utilized to carry out

systematic studies of the magnetic properties of graphene-related systems. 31,32 It has been

proven suitable for studying the rich magnetic quantization phenomena in bilayer silicene

with different stacking configurations as well as complicated interlayer atomic interactions.

In this paper, we use the generalized tight-binding model, accompanied with the dy-

namic Kubo formula and gradient approximation, to investigate the low-energy electronic

and optical properties of AB-bt silicene in the presence of uniform magnetic (Bzẑ) and

electric (Ezẑ) fields. The main features of the quantized LLs, energy spectra and spatially-

oscillating modes are thoroughly examined, especially for the composite effects arising from

intrinsic interactions and external fields. This work demonstrates that LLs are character-

ized by the dominating (B1 and B2) sublattices and spin configurations, leading to four

subgroups of conduction/valence LLs. This LL degeneracy splitting will effectively reduce

both the impurity and phonon scatterings and result in enhanced mobilities at the same

time. The unique LLs are directly reflected in the magneto-optical conductivities with a

lot of single, double and twin non-uniform delta-function-like peaks. The sublattice- and

spin-dependent LL energies are confirmed by the calculated DOS, for which the Bz-induced

energy splitting behaviors could be verified through experiments using scanning tunneling

microscopy (STM). Additionally, the LL energies are found to be tuned easily by an elec-

tric field, leading to the crossing and anti-crossing energy-spectral features which could be

selected by the electric field. Therefore, the use of bilayer silicene, in comparison with

monolayer silicene and bilayer graphene, has brought in new opportunity for gate controlled

magneto-quantum channel conductance, which is expected to be very useful for novel designs

of Si-based nano-electronics and nano-devices. 33–35
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II. METHOD

The generalized tight-binding model has been developed to investigate the feature-rich

electronic properties of AB-bt bilayer silicene arising from intra-layer and inter-layer atomic

interactions, SOC and the buckled structure. The magnetic and electric fields are simul-

taneously included in our calculations. The AB-bt bilayer silicene, with the low-buckled

honeycomb lattice, consists of four silicon atoms in a unit cell, as depicted in Fig. 1(a). The

two primitive unit vectors, a1 and a2, have a lattice constant of a = 3.86 Å. 18 Bilayer sil-

icene acquires four sublattices of (A1, B1) and (A2, B2). For each layer, the two sublattices

lie on two distinct buckling planes with a separation of lz = 0.46 Å. The B1 and B2 are

located on the higher and lower planes, respectively, for which the inter-layer distance is

2.54 Å. The buckled angle due to the intra-layer Si-Si bond and the z axis is θ = 78.3 ◦. The

low-energy electronic properties are dominated by the silicon 3pz orbitals. The Hamiltonian

built from the tight-binding model includes the intra- and inter-layer atomic interactions,

and two kinds of SOCs. The intralayer hopping integral and two kinds of SOCs are similar

to monolayer silicene in the previous theoretical prediction. 36 On the other hand, AB-bt

bilayer silicene exhibits the layer-dependent SOCs, a vertical and two non-vertical interlayer

atomic interactions, which is absent in monolayer silicene. Such complicated Hamiltonian

could be written as

H =
∑
m,l

(εlm + U l
m)c†lmαc

l
mα +

∑
m,j,α,l,l′

tll
′

mjc
†l
mαc

l′

jα

+
i

3
√

3

∑
〈〈m,j〉〉,α,β,l

λSOCl γlvmjc
†l
mασ

z
αβc

l
jβ

− 2i

3

∑
〈〈m,j〉〉,α,β,l

λRl γlumjc
†l
mα(~σ × d̂mj)zαβcljβ . (1)

Here, εlm(Al, Bl) is the sublattice-dependent site energy related to the chemical environment

difference (εlm(Al) = 0; εlm(Bl) = −0.12 eV). U l
m(Al, Bl) is the height-induced Coulomb

potential energy arising from a uniform perpendicular electric field. The clmα/c†lmα operator

represents the annilation/creation of an electronic state with spin polarization α at the

m-th site of the l-th layer. The atomic interactions in the second term cover the nearest-

neighbor intra-layer hopping integral (t0 = 1.13 eV and three inter-layer hopping integrals

due to (A1, A2), (B1, A2) or (A1, B2) and (B1, B2) (t1 = −2.2 eV, t2 = 0.1 eV, t3 = 0.54 eV

4



FIG. 1: (Color online) The top view (a) and side view (b) of the atomic structure for bilayer

silicene with intra- and inter-layer atomic interactions. The first Brillouin zone along the high

symmetry points is illustrated in (c), the highly symmetric K (K′) and Γ points and an extreme

one, T(kx = 0.1 ×
√

3, ky = 0.1) (1/Å), are presented. The enlarged rectangular-shape unit cell

under a uniform perpendicular magnetic field is shown in (d).

in Fig. 1(b)). Specifically, the large inter-layer vertical hopping integral of t1 induces very

strong orbital hybridizations in bilayer silicene. The traditional SOC (the third term) and

the Bychkov-Rashba SOC (the fourth term) take into account the next-nearest-neighbor

pairs 〈〈m, j〉〉. ~σ is the Pauli spin matrix and d̂mj = ~dmj/|dmj| denotes the unit vector

connecting the m- and j-th lattice sites. vmj = ±1 when the next-nearest-neighbor hopping

is anticlockwise/clockwise with respect to the positive z axis. umj = ±1 corresponds to the

A and B sites, respectively. γl = ±1 presents the layer-dependent SOCs due to the opposite

buckled ordering of AB-bt bialyer silicene. Two kinds of SOCs appear in the diagonal

elements of the Hamiltonian matrix. They are chosen as λSOC1 = 0.06 eV, λSOC2 = 0.046 eV,

λR1 = −0.054 eV, λR2 = −0.043 eV so that the calculated band structure approaches that from

the first-principles method. 15
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A uniform perpendicular magnetic field can produce an extra Peierls phase in the tight-

binding function through the vector potential ~A, leading to an enlarged rectangular-shape

unit cell, as illustrated in Fig. 1(d). The Peierls phase is characterized by GR = 2π
φ0

∫ r
R
~A.d~l,

in which φ0 = hc/e is the magnetic flux quantum and φ = Bz

√
3a2/2 is the magnetic flux

through a hexagon. There are totally 16RB (RB = φ0/φ) Si atoms in the enlarged unit cell.

The resulting magnetic Hamiltonian, based on the tight-binding atomic base functions in

distinct sublattices, is a 16RB × 16RB Hermitian matrix. The eigenvalues and eigenfunctions

of the magnetic Hamiltonian are efficiently numerically solved using the band-like method

and the spatial localizations of the magnetic wavefunctions. After the diagonalization of

bilayer magnetic Hamiltonian, the Landau level wavefunction, with quantum number n,

could be expressed as

Ψ(n,k) =
∑
l=1,2

RB∑
m=1

∑
α,β

[Al,mα,β(n,k)|ψl,mα,β(A)〉+Bl,m
α,β(n,k)|ψl,mα,β(B)〉]. (2)

Here, ψl,mα,β is the tight-binding function localized at the sublattice-dependent lattice sites,

Al,mα,β(n,k) (Bl,m
α,β(n,k)) is the amplitude on the sublattice-dependent lattice site. Specifically,

all the amplitudes in an enlarged unit cell could be regarded as the spatial distributions

of the sub-envelope functions on the distinct sublattices. This is because the magnetic

distribution width is much larger than lattice constant. Such subenvelope functions provide

much information for explaining the interesting LL behaviors, such as the LL quantum

number, the localization centers, and the crossing/anticrossing pheonomena. For bilayer

silicene, the buckled honeycomb structure, the complex intra- and inter-layer atomic

interactions and the significant SOCs need to be fully taken into account in the theoretical

model calculations. Such a system is expected to show diverse physical properties under

various external fields.

The zero-field and magneto optical conductivities are taken into consideration. The

optical conductivity can be expressed as σ(ω) ∝ A(ω)/ω, in which, the optical absorption

function, A(ω), is calculated according to the Fermi golden rule

A(ω) ∝
∑

c,v,m,m′

∫
1stBZ

dk

(2π)2

∣∣∣〈Ψc(k,m′)
∣∣∣Ê ·P
me

∣∣∣Ψv(k,m)
〉∣∣∣2
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×Im
[ f(Ec(k,m′))− f(Ev(k,m))

Ec(k,m′)− Ev(k,m)− ω − iΓ
]
. (3)

P is the momentum operator, f(Ec,v(k,m) the Fermi-Dirac distribution function; Γ the

broadening parameter. The absorption spectrum is associated with the velocity matrix el-

ements (the first term) and the joint density of states (the second term). The former can

determine whether the inter-LL transitions are available. The velocity matrix elements, as

successfully done for carbon-related materials, 11 are evaluated under the gradient approxi-

mation in the form of

〈
Ψc(k,m′)

∣∣∣Ê ·P
me

∣∣∣Ψv(k,m)
〉
∼= ∂

∂ky

〈
Ψc(k,m′)

∣∣∣H∣∣∣Ψv(k,m)
〉

=
3∑

l,l′=1

2RB∑
m,m′=1

(
c∗Al

m,k
cAl′

m′,k

∂

∂ky

〈
Alm,k

∣∣∣H∣∣∣Al′m,k′

〉

+c∗Al
m,k
cBl′

m′,k

∂

∂ky

〈
Alm,k

∣∣∣H∣∣∣Bl′

m,k′

〉

+c∗Bl
m,k
cAl′

m′,k

∂

∂ky

〈
Bl
m,k

∣∣∣H∣∣∣Al′m,k′

〉

+c∗Bl
m,k
cBl′

m′,k

∂

∂ky

〈
Bl
m,k

∣∣∣H∣∣∣Bl′

m,k′

〉)
. (4)

In this approximation, we do not need to really do the inner product of the left side in Eq.

(4); that is, the tight-binding functions of the 2pz orbital are not included in the calculation,

but only amplitudes are sufficient in the right-hand side of Eq. (4). It means that, the

subenvelope functions can be used to calculated the magneto-absorption spectra. The similar

theoretical framework is available in understanding the quantum Hall conductivities. In

general, we can fully understand the critical factors purely due to the characteristics of LLs,

e.g., monolayer graphene presents many symmetric delta-function-like absorption peaks with

uniform intensity in the magneto-absorption spectrum. 12

In general, there are two kinds of theoretical models to study the magnetic quantization

phenomena, namely, the low-energy elective-mass approximation and tight-binding model.

Concerning the low-energy perturbation method, 13,14 the zero-field Hamiltonian matrix el-

ements are expanded about the high-symmetry points (e.g., K point in graphene). And
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then, the magnetic quantization is further made from an approximate Hamiltonian matrix.

That is to say, the zero-field and magnetic Hamiltonian matrices have the same dimension.

However, some interlayer hopping integrals in layered graphene will create much difficulty in

the study of magnetic quantization. Some of them are usually ignored in the effective-mass

approximation. Consequently, certain unique and diverse magnetic quantization phenomena

are lost by using this method, e.g., the anticrossing phenomenon in ABC-stacked trilayer

graphene, and the extra magneto-absorption selection rules. 15 In general, this perturbation

method cannot deal with the low-symmetry systems with multi-constant energy loops. For

AB-bt bilayer silicene, maybe it is impossible to solve for the low-lying energy bands with

the use of a low-energy expansion method; that is, the effective-mass model is not suitable

for expanding the low-energy electronic states from the K and T points simultaneously.

This model becomes too cumbersome to generate the further magnetic quantization. So,

it is very difficult to comprehend the LLs, being attributed to the unique Hamiltonian in

bilayer silicene. It is in sharp contrast with the monolayer silicene case.

Within the tight-binding method, the magnetic phases due to the vector potential are

included in the calculations. In the previous studies, 16,17 this model is developed using the

~k-scheme, but not the ~r-scheme. This is, the magnetic states are built from the original elec-

tronic states in the first Brillouin zone (the hexagonal Brillouin zone in graphene). However,

it is not suitable to present the main features of LL wavefunctions (oscillatory distribution

in real space with localization centers). Explicitly, the subenvelope functions could not be

identified as the LL wavefunctions since they are only the random distributions. This scheme

is very difficult to deal with the essential properties under spatially modulated/non-uniform

magnetic field, the modulated electric field, and the composite magnetic and electric fields,

e.g., the magneto-optical properties and magneto-Coulomb excitations. For the generalized

tight-binding model used in this study, the calculations are based on the sublattices in an

enlarged unit cell in the real space. Under a perpendicular magnetic field, the Hamiltonian

matrix becomes very huge so that we need to arrange it in a band-like form. The magnetic

Hamiltonian is dependent on kx and ky in the reduced first Brillouin zone. Moreover, LL en-

ergies are fully degenerate in this Brillouin zone. The LL degeneracy is D =
~B.Shex

h/2e
≈ 32000

Bz
.

In addition, the original hexagonal first Brillouin zone is changed into a small rectangular

one. The degenerate (kx,ky) states in the reduced first Brillouin zone only make the same

contribution for any physical properties. Therefore, we choose the (kx = 0,ky = 0) state to
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study the magneto-electronic properties of bilayer silicene.

III. RESULTS AND DISCUSSION

A. Electronic structure

AB-bt bilayer silicene exhibits feature-rich band structure due to its buckled lattice, com-

plex intra- and inter-layer atomic interactions, and significant SOCs. There exist two pairs of

conduction and valence bands. This work will mainly address the electronic properties of the

low-lying energy bands, as clearly indicated in Fig. 2(a). The conduction and valence bands

display an asymmetric energy spectrum about the Fermi level (EF = 0), strong energy dis-

persions, a highly anisotropic behavior, and a spin-dependent double degeneracy (the spin-

up- and spin-down-dominated degenerate states discussed with respect to Figs. 2(b)-2(e)).

The conduction-band valley is initiated from the K point and presents a special shoulder-like

structure along the K-Γ direction in the range of 0.2 eV< Ec < 0.22 eV. On the other hand,

the valence-state valley is built from the T point between the K and Γ points; furthermore,

the unusual energy spectrum, with an extreme K point, is revealed along the TK direction

at Ev ∼ −0.33 eV. There exists a noticeable indirect gap of 0.3 eV, corresponding to the

highest occupied state at the T point and the lowest unoccupied state at the K point. This

is in sharp contrast with the zero-gap band structures of bilayer graphene. 37 These special

properties leave footprints in the different magneto-electronic properties discussed in the

next Subsection.

The state probabilities on the distinct sublattices, A1,2 and B1,2 with spin-up and spin-

down configurations (↑ and ↓), could provide mutual dependence among them, as clearly

presented in Figs. 2(b)-2(e). The doubly-degenerate states have identical wave functions

under interchange of (B1
↑ , B

1
↓ , A

1
↑, A

1
↓) and (B2

↓ , B
2
↑ , A

2
↓, A

2
↑), and each one exhibits very strong

sublattice, spin and wave vector dependence. The conduction states are dominated by the

B1
↑ sublattice, especially for the full dominance at the K point (the solid blue curve in 2(b)).

The B2
↑ sublattice also makes some important contributions to the K-valley states (the solid

purple curve in Fig.2(c)). As for the T-valley valence states, the B1
↓ sublattice shows strong

dominance (the red curve in Fig.2(d)), accompanied by partial contribution from the B2
↓

sublattice (the green curve in Fig.2(e)). The A1,2 sublattices do not show the dominating
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FIG. 2: (Color online) The first pair of conduction and valence energy bands (a) at Ez = 0, the

state probabilities for the conduction band [(b), (c)] and the valence band [(d), (e)]. Also shown

in the inset of (a) are Ez-split energy bands.

features, and the dominant B1,2 sublattices are expected to determine largely the quantum

modes of the magnetic LLs.

A uniform perpendicular electric field can drastically modify the electronic properties of

bilayer silicene, mainly owing to the destruction of the z = 0 mirror symmetry. The field

also breaks down the spin-dependent state degeneracy and changes considerably the energy

gap, leading to a dramatic transformation of the band structure. It is noticed that the effects

due to an external electric field are revealed through the different Coulomb potentials on
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each sublattice which depends on the atom heights. Such a field does not change either the

geometric structure or the hopping integrals. Each conduction/valence band is split into a

pair of energy subbands, as denoted by Sc1,2 and Sv1,2 in the inset of 2(a) for Ez = 10 mV/Å.

The first and second conduction (valence) subbands are characterized, respectively, by the

dominant B2
↓ and B1

↑ (B1
↓ and B2

↑) sublattices, for which the former is relatively close to

the Fermi level. Such a feature will be magnified in the Ez-enriched LL energy spectra, as

discussed below. Moreover, the sizable band gap is easily tuned by the external electric field.

With further increase of the field strength, the Sc1 and Sv1 energy subbands will be pushed

down to the Fermi level, while the opposite is true for the Sc2 and Sv2 ones. Apparently,

the band gap is reduced and then vanishes beyond a critical field (Ez = 106 meV), and

a semiconductor-semimetal transition occurs at higher electric fields. This makes bilayer

silicene extremely useful for electronic device applications.

B. The quantized Landau levels

The low-lying LLs possess rich characteristics due to the buckled structure, strong inter-

layer atomic interactions, and sizable SOCs. All the LLs are degenerate in the reduced

first Brillouin zone with |kx| ≤ 2π/aRB and |ky| ≤ 2π/
√

3a (an area of 4π2/
√

3a2RB). The

(kx = 0, ky = 0) magnetic state is sufficient for understanding the main behaviors of magnetic

quantization. The conduction and valence LLs, corresponding to the magnetic quantization

of their electronic states, respectively, near the K (or K′) and T points, are asymmetric

with respect to EF = 0 (Figs. 3 and 4). They are reduced to doubly degenerate under the

broken equivalence of the (B1, B2) sublattices and spin-up and spin-down configurations.

The non-degenerate conduction (valence) states are localized at 1/6 and 2/6 (1/4) of the

expanded unit cell. One should note that the conduction [valence] LLs are degenerate at

the (1/6 and 4/6) and (2/6 and 5/6) [(1/4 and 3/4)] localization centers. 37

As for the low-lying conduction LLs, there exist four non-degenerate states for a chosen

quantum number, as illustrated by blue, red, green and purple colors in Fig. 3(a) for Bz = 20

T. They are distinguished by LL wave functions based on the 3pz− and spin-dependent

sub-envelope functions on the separate sublattices. The spatial distributions are similar to

the oscillation modes of a harmonic oscillator. For example, the n = 2 LLs acquire well-

behaved spatial oscillations with two nodes in the dominant sublattices, in which the B2
↑
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FIG. 3: (Color online) At Bz = 20 T, the low-lying conduction LL energies (a); the spatial

amplitude distributions for the B2
↑- and B1

↓-dominated LLs (b) and the B1
↑- and B2

↓-dominated

LLs (c). The numbers in the abscissa represent the quantum numbers of those Landau levels.

They are determined by the number of zero points of the spatial distributions on the dominating

sublattices.
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FIG. 4: (Color online) At Bz = 20 T, the low-energy valence LLs (a); the spatial wave functions

for the B2
↑- (b), B1

↓- (c), B1
↑- (d) and B2

↓-dominated (e) LLs.

and B1
↓-dominated states (the B1

↑ and the B2
↓-dominated ones) correspond to the 1/6 (2/6)

localization center by the purple and red curves in Fig. 3(b) (the blue and green curves in

Fig. 3(c)). In parallel with B1
↑ , B

1
↓ , B

2
↑ and B2

↓ , the sublattice- and spin-dominated LLs

could be classified into four subgroups: nc↑1, n
c
↓1, n

c
↑2 and nc↓2. Here, c and v represent the

conduction and valence LLs, respectively; 1/2 is the dominating B1/B2 sublattice and ↑ (↓)
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indicates the dominating spin-up (spin-down) state of the subgroup. With this notation,

we find it convenient to show the critical mechanisms related to LLs, such as, the inter-

LL optical transition (Fig. 9), and the inter-LL Coulomb scattering. 38 Each LL subgroup

exhibits normal ordering for increasing state energy, i.e., nc increases with Ec. However,

the LL energy spacing decreases with increasing nc. There exists a very narrow energy

spacing between the LLs at 1/6 (purple/red curve) and 2/6 (blue/green curve) centers under

similar spin dominance, as seen from Fig. 3(a). For example, the sublattice-dependent energy

splitting between the nc↑2 = 0 (1/6 center) and nc↑1 = 0 (2/6 center) is only about 0.5 meV.

This is much smaller than the spin-induced energy splitting, e.g., ∼ 3 meV for the nc↑1 = 0

and nc↓1 = 0 LLs (or nc↑2 and nc↓2 ones). The above-mentioned features also appear in the

valence LLs, as clearly indicated in Figs. 4(a)-4(e). There are four valence LL subgroups,

nv↑1, n
v
↓1 n

v
↑2 n

v
↓2 (Fig. 4(a)). The B1

↓-, B
2
↓-, B

2
↑-, and B1

↑-dominated LLs (Figs. 4(b)- 4(e))

shows the same 1/4 localization center. The non-equivalence of the B1 and B2 sublattices

and the absence of spin-state degeneracy are responsible for these unique LLs.

The Bz-dependent LL energy spectrum, which is identified from the unique sublattice-

and spin-dominated LL wave functions in bilayer AB-bt silicene, is critical in comprehend-

ing the diverse quantization phenomena. As for the conduction-LL energy spectrum, four

distinct subgroups exhibit similar magnetic field dependence, as clearly shown in Fig. 5(a).

In the range of 165 meV≤ Ec ≤ 195 meV, the small-nc LL energies have monotonic/almost

linear Bz-dependence and the normal ordering among four subgroups. However, the abnor-

mal behaviors, i.e., unusual field dependence and LL anti-crossings, show up frequently at

higher energies. The nc↑1 and nc↓2 LLs (blue and green curves) anti-cross with each other

within a specific Bz range, and so do the nc↓1 and nc↑2 LLs (red and purple curves), as marked

by the pink and yellow circles for the nc = 7 LLs. Therefore, two kinds of inter-subgroup

anti-crossings appear frequently for the specific quantum modes. These anti-crossings clearly

indicate that the wave functions of the perturbed LLs include the main and side modes, but

not a single mode. Furthermore, such modes change substantially as the field strength is var-

ied (discussed later with respect to Fig. 7). 30,37 Similarly, there exists a simple relationship

between the valence LL energies and the field strength for −300 meV≤ Ev ≤ −165 meV.

The deeper-energy spectrum presents two kinds of inter-subgroup LL anti-crossings arising

from neighboring LLs, i.e., [nv↑1 and n
v
↓2 + 2] (blue and green curves in Fig. 5(c)) and [nv↑2
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FIG. 5: (Color online) The Bz-dependent LL energy spectrum: the blue, red, purple, and green

curves are the different subgroups of conduction (a) and valence (b)-(c) LLs based on the dominant

B1
↑ , B

1
↓ , B

2
↑ and B2

↓ sublattices, respectively.

and nv↓1 + 2] (purple and red curves). Here, the nv = 10 (nv = 12) LLs acquire a side

mode of 12 (10), leading to the anti-crossings for (nv↑1 = 10 and nv↓2 = 12) and (nv↑2 = 10 and

nv↓1 = 12) LLs, as indicated by the blue circle in Fig. 5(c). According to the Wigner-von Neu-

man non-crossing rule, two multi-mode (single-mode) LLs avoid crossing each other when

they simultaneously possess certain identical modes (nonidentical mode) with comparable

amplitudes on the specific sublattices. The details of LL anti-crossings have been shown in

Figs. 3 and 4. The rich and unique LL energy spectra are closely related to the magnetic

quantization of the unusual conduction and valence bands.

The rich sublattice- and spin-dominated LL energy spectra can be seen from the DOS,

as shown in Figs. 6(a) and 6(b). Four subgroups of conduction and valence LLs are clearly
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FIG. 6: (Color online) The density-of-states of the conduction (a) and valence (b) LLs under a

magnetic field of Bz = 20 T.

displayed in the form of δ-function-like peaks. The low-energy DOS exhibits a uniform peak

height in the presence of the same LL degeneracy and the absence of LL crossings. In each

subgroup, the spacing between two neighboring peaks gradually decreases with increasing

energy. Moreover, the subgroup-dependent DOS peaks appear under a specific ordering.

The DOS of the conduction LLs presents the ordering of nc↓2-, n
c
↓1-, n

c
↑1- and nc↑2-dominated

peaks (green, red, blue and purple in Fig. 6(a)), while the sequence for the DOS of the

valence LLs is nv↓1-, n
v
↑2-, n

v
↓2- and nv↑1-induced peaks (red, purple, green and blue peaks in

Fig. 6(b)), except for the nv↓1 = 0 and nv↓2 = 0 initial peaks. The well-behaved LL DOS peaks

disappear at higher energy as a result of the frequent anti-crossings/crossings (Figs. 5(a) and

5(c)).

The main features of the DOS peaks, covering the structure, height, number and energy,

could be verified by scanning tunneling spectroscopy (STS). 39–45 To our knowledge, STS

measurements have been successfully used to identify the magneto-electronic energy for

layered graphene. The LL energies in monolayer 39–41 and AB bilayer graphenes 42,43 are

confirmed with the square-root and linear dependence on Bz, respectively. The coexistence
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of
√
Bz and linear Bz-dependent LL energies in ABA-stacked trilayer graphene, 44 as well

as the 3D and 2D characteristics of the Landau subbands in AB-stacked graphite 45, have

also been examined. Moreover, the LL crossings and anti-crossings phenomena can also

be verified by measuring the shift of the plateaus in the quantum Hall effect (QHE) due

to the increase in the LL degeneracy, 46 while the latter can be examined by identifying

the non-monotonic changes in the structures, energies, intensities and numbers of the DOS

peaks. 47 Finally, the unusual magneto-electronic properties in AB-bt bilayer silicene could

be further verified by STS, including the normal and unusual Bz-dependence, the sublattice-

and spin-dominated four subgroups of LLs, as well as the special LL splittings, crossings

and anti-crossings.

C. The electric field-enriched Landau levels

The magneto-electronic properties can be remarkably diversified by applying an external

electric field. In the presence of composite electric and magnetic fields, the LL energies,

which belong to [nc,v↑ 1 and nc,v↓ 1 ] along with [nc,v↑ 2 and nc,v↓ 2 ] subgroups, respectively, increase or

decrease with the electric field strength, as clearly shown in Figs. 7(a) and 8(a) by the [blue

and red curves] and the [purple and green curves]. The Ez dependence of these subgroups

is opposite for the B1 and B2-dominated LL energies. This clearly indicates Ez-enhanced

sublattice non-equivalence by means of distinct Coulomb potential energies. There exist

many LL anti-crossings and crossings in the Ez-dependent energy spectra, in which the

former are induced by the neighboring [nc,v↑ 1 and nc,v↓ 2 ] LLs (blue and green curves) and [nc,v↓ 1

and the nc,v↑ 2 ] ones (red $ purple curves). However, such behaviors are absent between the nc,v↑ 1

and nc,v↓ 1 subgroups as well as between the nc,v↑ 2 and nc,v↓ 2 subgroups. That is, the spin-related

LL energy spacing is weakly affected by Ez.

Here, the LL anti-crossings are worthy of close examination. In the Ez-dependent energy

spectrum, the inter-subgroup anti-crossings are only related to two neighboring LLs with

quantum number difference ∆n = 0, ± 1, ± 2. These electronic transitions are either difficult

to observe or changed to crossing behaviors. The conduction LLs anti-cross each other for

[nc↓,1 and nc↑,2], [nc↓,1 and nc↑,2 + 1] as well as [nc↑,1 and nc↓,2 + 1] as shown in Fig. 7(a). The

valence LLs behave similarly, as seen in Fig. 8(a). The nc↓ 1 = 1 LL is chosen as an example

for understanding the evolution of the wave functions as the field strength is increased (red
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FIG. 7: (Color online) The Ez-dependent conduction-LL energy spectrum (a) at Bz = 20 T; the

[nc↓ 1 = 1 & nc↑ 2 = 1] and [nc↓ 1 = 1 & nc↑ 2 = 2] anti-crossings (b), corresponding to the evolutions

of wavefunctions in (c) and (e), respectively.

curve in Fig. 7(b)). In this case, the nc↓ 1 = 1 LL has its first anti-crossing with the nc↑ 2 = 1

LL as Ez increases initially from zero (red and purple curves). They remain in their states

for (n = 1) on the B1
↓ and B2

↑ sublattices, as displayed in Fig. 7(c). However, one of two

amplitudes (red) gives rise to phase switching during the anti-crossing, e.g., those at Ez = 0

and 0.75 mV/Å. Moreover, the wave functions of the nc↓1 = 1 and nc↑2 = 1 LLs on the B2
↑ and

B1
↓ sublattices, respectively, are greatly enhanced near the anti-crossing center and acquire

comparable amplitudes commensurate with the dominating ones (right- and left-hand sides

black curves and by the red and purple curves). With further increase of Ez, the nc↓ 1 = 1 and

nc↑ 2 = 2 LLs encounter another weak anti-crossing at Ez ∼ 1.75 mV/Åin Fig. 7(d). In this

case, the latter one on the B2
↑ sublattice is mapped directly onto the former wave function

on the B2
↑ sublattice and vice versa in Fig. 7(e)). The above-mentioned LL wave functions

agree with the Wigner-von Neuman non-crossing rule. Similar anti-crossings can be found

for valence LLs in Fig. 8(a). For example, the nv↓ 2 = 1 LL anti-crosses with the nv↑ 1 = 1
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FIG. 8: (Color online) The Ez-dependent valence-LL energy spectrum (a) at Bz = 20 T; the

[nv↓ 2 = 1 & nv↑ 1 = 1] and [nv↓ 2 = 1 & nv↑ 1 = 2] anti-crossings (b), corresponding to the evolutions

of wavefunctions in (c) and (e), respectively.

and nv↑ 1 = 2 LLs at lower and higher electric fields in Figs. 8(b) and 8(d)), respectively, as

can be identified from the drastic changes of amplitude in Figs. 8(c) and 8(e) or even the

transformation of oscillating modes on the B1
↑ and B2

↓ sublattices.

The AB-bt bilayer silicene sharply contrasts with AB-stacked bilayer graphene with re-

spect to band structure and LLs. The former and latter, respectively, belong to an indirect-

gap semiconductor and a semimetal. The graphene structure has two pairs of valence and

conduction bands, with monotonic energy dispersions, a weak anisotropy and a small over-

lap near the K point. Electronic states are independent of the spin configurations in the

absence of SOCs. They remain doubly degenerate for the spin degree of freedom under any

external fields. The neighboring states are magnetically quantized into well-behaved LLs

with specific nodes in the oscillating probability distribution. For each (kx, ky) state, the

LLs are eight-fold degenerate as a result of the equivalent sublattices and spin degeneracy.

The conduction/valence LLs cannot be classified into four LL subgroups, in which they only

19



present the regular Bz-dependent energy spectra without the anti-crossing behaviors. More-

over, a perpendicular electric field can lead to a semimetal-semiconductor phase transition,

but not the semiconductor-semimetal transition associated with the split energy bands. For

silicene, the electric field also leads to a lifting of the degenerate K and K′ valleys for the

magnetic LL states. There exist four degenerate LLs with frequent anti-crossings in the Ez-

dependent energy spectra. The important differences between bilayer silicene and graphene

highlight the main features of the spin- and sublattice-dependent energy bands and LLs,

demonstrating directly the distinct geometric structures, atomic interactions and SOCs.

D. The optical conductivities

The feature-rich band structure and LLs are directly reflected in the unusual optical

properties in bilayer silicene. The zero-field and magneto optical conductivities are shown

in Figs. 9(a)-(b). In the absence of external fields, the low-lying absorption spectrum mainly

exhibits two kinds of special structures: discontinuities and logarithmic divergences (Fig.

9(a)). There exist two shoulder-like structures at 0.42 and 0.48 eV’s, and a sharp symmetric

peak at 0.52 eV which are, respectively, corresponding to the vertical transitions of extreme

and saddle points in the energy-wave-vector space. These optical structures can be verified

by the infrared reflection spectroscopies and absorption spectroscopies. 48,49

The magneto-absorption spectrum exhibits a lot of single, double and twin non-uniform

delta-function-like peaks (Fig. 9(b)). Each symmetric peak is marked by ωnv ,nc , in which nv

and nc indicate the quantum numbers of the unoccupied valence and the occupied conduction

LLs, respectively. It is very difficult to identify the absorption peaks because they belong

to the vertical transitions of the multi-mode LLs. Such transitions do not follow a specific

selection rule. When a conduction/valence LL possesses a sufficiently large quantum number,

its spatial distribution will be extended along the x-axis so that it overlap with that of the

valence/conduction LL. This leads to the inter-LL optical transitions between those LLs.

The intensities of absorption peaks strongly depend on the overlapping relation of the initial

and final LLs. The threshold peak (optical gap), which is identified as nv1↓ = 0→ nc1↓ = 12, is

located at about 0.39 eV for Bz = 40 T (arrow in Fig. 9(b)). This optical gap is much larger

than the energy gap (0.3 eV) since the low-lying conduction and valence LLs are localized

at different centers. As a result, the optical transitions among the low-lying conduction and
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FIG. 9: (Color online) The optical conductivities of AB-bt bilayer silicene under (a) zero magnetic

field and (b) Bz = 40 T.

valences LLs are forbidden. Moreover, the threshold peak frequency is relatively lower than

that of the zero-field absorption spectrum. This is the strong evidence of the anti-crossing

phenomena of the LLs quantized from the shoulder-like band structure. The former will

be recovered to the latter when the phonon-assisted optical process are allowed at finite

temperatures. In general, the optical gap is changed with the variation of the magnetic field

strength.

IV. CONCLUDING REMARKS

The magneto-electronic and optical properties of bilayer AB-bt silicene are studied by the

generalized tight-binding model, combined with the dynamic Kubo formula and gradient ap-

proximation. This system presents asymmetric conduction and valence bands about EF = 0,

parabolic and irregular energy dispersions, the strong anisotropy, and an observable indirect

gap, leading to the rich and unique magnetic quantization. The low-lying conduction and
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valence LLs are doubly degenerate for each (kx, ky) state, in which they could be classified

into the sublattice- and spin-dominated four subgroups. The non-equivalence of B1 and B2

sublattices and spin splitting are clearly revealed in the field-dependent energy spectra. The

LLs exhibit the almost linear Bz-dependence near EF , and there exists a specific ordering

among four subgroups. In general, the magnetic quantization phenomena in AB-bt bilayer

silicene with complex SOCs and interlayer atomic interactions are very different from those

of other 2D systems. The sublattice- and spin-dominated four groups of LLs in this system

are never revealed in other 2D emergent materials up to now. The STS measurements on

LLs are very useful in examining the interplays of the complicated interlayer atomic inter-

actions and the important SOCs. However, the abnormal energy spectra, accompanied with

the frequent anti-crossings and crossings, come to exist at higher/deeper energy. The unique

features in bilayer silicene are expected to be verifiable by direct experimental measurements.

The electronic properties in bilayer silicene are very sensitive to an applied electric field.

We can easily adjust the band gap, which is a crucial quantity for inducing a semiconductor-

semimetal phase transition. Furthermore, the electric field also dramatically alters the main

features of the LLs, including the spatial distribution and the anti-crossing phenomena. The

B1 and B2-dominated LL energies present the opposite Ez-dependences, so that a lot of

anti-crossings and crossings appear at low field strength. The former, being associated with

∆n = 0, ± 1 and ± 2, are identified from the drastic changes of wavefunction amplitudes

or even the mode transformation on the specific two sublattices. They mainly arise from

the cooperation of the intrinsic interactions and the external fields. In short, the AB-

stacked bilayer silicene and graphene quite differs from each other in band structure, LL

degeneracy, field-dependent energy spectra, and anti-crossing/crossing behaviors. We expect

the utilization of bilayer silicene will bring us new opportunity in gate controlling of magneto-

quantum channel conductance which can be applied to novel designs of Si-based nano-

electronics and nano-devices with enhanced mobilities.

AB-bt bilayer silicene exhibits the unique and abnormal optical conductivities. In the

absence of external field, the absorption spectrum shows the shoulder structures and log-

arithmic divergence which, respectively, come from the vertical transitions of the extreme

and saddle points of energy band. The magneto-optical peaks are enriched by the inter-LL

excitations among four subgroups of LLs. Such transitions do not obey a specific optical se-
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lection rules, being in sharp contrast with those in bilayer graphene. They are very sensitive

to the localization centers, and their intensities depend on the LL overlap. The absorption

spectrum exhibits the single-, double- or twin-peak structures with non-uniform intensities.

The main features of LLs are responsible for the unusual magneto-optical conductivities.

For the complicated band structure of bilayer silicene, the magnetic quantization can

only be solved by the generalized tight-binding model. This is because the geometric sym-

metry, the intrinsic interactions (hopping integrals and SOCs), and the external fields need

to be solved by the generalized tight-binding model simultaneously. On the other hand,

the effective-mass model is very difficult/impossible to solve the magnetic quantization by

the low energy expansion because of distinct valleys, strong anisotropy and weakly energy

dispersions in conduction and valence bands. Even when the low-energy conduction K val-

ley and the valence T one can be done, it is not exact to make the magnetic quantization

separately, which is inconsistent with the requirement of quantum statistics (the distribution

of Fermions).

The tight-binding model is capable of directly combining with the single- and many-

particle theories to explore other fundamental physical properties, such as, the magneto-

optical properties, quantum Hall effect, and magneto-Coulomb excitations. We have built

up a theoretical framework to investigate the critical physical properties of condensed-matter

systems. The optical conductivities are studied using the dynamic Kubo formula and gra-

dient approximation. The quantum Hall effect is explored by the employment of the static

Kubo formula within the linear response theory. Moreover, the random-phase approximation

needs to be modified to agree with the layer-dependent tight-binding model, and then it is

available for exploring the magneto-electronic excitations in few-layer silicene systems. That

is, intra- and inter-layer atomic interactions and intra- and inter-layer Coulomb interactions

are taken into account simultaneously. The whole theoretical framework is very concise and

meaningful.
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