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We study the quantum phase transitions of a disordered two-dimensional quantum anomalous Hall
insulator with s-wave superconducting proximity, which are governed by the percolation theory of
chiral Majorana fermions. Based on symmetry arguments and a renormalization group analysis, we
show there are generically two phase transitions from Bogoliubov-de Gennes Chern number N = 0
to N = 1 (p + ip chiral topological superconductor) and then to N = 2, in agreement with the
conclusion from the band theory without disorders. Further, we discuss the critical scaling behavior
of the e2/2h conductance half plateau induced by N = 1 chiral topological superconductor recently
observed in the experiment. In particular, we compare the critical behavior of the half plateau
induced by topological superconductor with that predicted recently by alternative explanations of
the half plateau, and show that they can be distinguished in experiments.

I. INTRODUCTION

The search for two-dimensional (2D) p + ip chiral
topological superconductor (TSC) with a Bogoliubov de-
Gennes (BdG) Chern number N = 1 has attracted ex-
tensive theoretical and experimental interest in the past
decades1–19. As one of the simplest topological phases
of matter, it gives rise to chiral Majorana fermions on
the edge which are anti-particles of themselves, and Ma-
jorana zero modes in π flux vortices in the bulk which
obey non-Abelian statistics and have a potential applica-
tion in topological quantum computations20–25. In par-
ticular, it has been proposed that the N = 1 chiral TSC
can be realized in a heterostructure of a 2D quantum
anomalous Hall insulator (QAHI) ferromagnetic thin film
and an s-wave superconductor (SC)16–18. In the vicin-
ity of the phase transition of the thin film from QAHI
to normal insulator (NI), such a structure is predicted
to exhibit a half quantized two-terminal conductance
plateau of value e2/2h in between two integer plateaus
0 and e2/h, which signals the occurrence of chiral Ma-
jorana edge fermion and the realization of N = 1 chi-
ral TSC17,18. In accordance with the theoretical predic-
tion, such a half plateau is observed in the experiment
of He et al.19, where heterostructures of Cr doped thin
film (Bi,Sb)2Te3 QAHI26–29 and Nb superconductor are
adopted, which is the first quantized feature for chiral
Majorana fermions in condensed matter experiments.

The original theory of the half plateau from chi-
ral Majorana fermion is formulated in a homogeneous
system16–18. However, the half plateau in the experi-
ment occurs in the magnetization flipping stage of the
thin film19, which is expected to be extremely inhomoge-
neous. Alternative explanations of the half plateau un-
der strong disorders have been raised30,31, questioning
the experimental realization of p+ ip chiral TSC. In this
paper, we employ the percolation theory of chiral Majo-
rana fermion32,33 to study the effects of disorder on the
chiral TSC phase. Based on both symmetry arguments

and renormalization group (RG) analysis, we show that
the N = 1 chiral TSC phase in such a system is robust
under disorders. Furthermore, we study the critical be-
haviors of the transitions from the chiral TSC induced
half plateau e2/2h to 0 and that from e2/2h to e2/h, and
show they are quite distinct from those in the alternative
explanations30,31. In particular, the e2/2h to 0 transi-
tion belongs to the A symmetry class with a localization
length critical exponent νA ≈ 7/3, while the e2/2h to
e2/h transition belongs to the D symmetry class with a
localization length critical exponent νD ≈ 1, which lead
to different size and temperature scalings that can be
tested in current and future experiments.

The paper is organized as follows. In Sec. II we briefly
review the rise of p + ip chiral TSC in a homogeneous
QAHI system proximity coupled with a uniform s-wave
SC, and the mechanism of half conductance plateau due
to the single chiral Majorana edge state of the TSC. In
Sec. III we illustrate the chiral Majorana fermion perco-
lation picture of the system in the presence of disorders,
and formulate it as a particle-hole symmetric network
model in the D symmetry class without time-reversal
and spin-rotational symmetries32. Via an RG analysis,
we show the N = 1 chiral TSC phase is stable against
disorders. In Sec. IV we discuss the critical size and
temperature dependent scaling of the half plateau in-
duced by chiral TSC and its transition to neighbouring
integer plateaus, and show they are completely differ-
ent from the critical behaviors predicted in alternative
explanations30,31, which are testable in current and fu-
ture experiments. At last, we draw our conclusions in
Sec. V.

II. TSC FROM A HOMOGENEOUS QAHI

In the absence of disorders, the low energy BdG Hamil-
tonian of a 2D QAHI in the vicinity the Hall plateau tran-
sition from σxy = 0 to σxy = e2/h under the proximity
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of an s-wave SC is as follows:

HBdG(k) =

(
h(k)− µ i∆σy
−i∆∗σy −h∗(−k) + µ

)
, (1)

where σx,y,z are Pauli matrices, and

h(k) = (m−Dk2)σz +Akxσx +Akyσy ,

with D > 0. The Nambu basis of the BdG Hamiltonian is
(c↑,k, c↓,k, c

†
↑,−k, c

†
↓,−k), where cs,k and c†s,k are the elec-

tron annihilation and creation operators with spin s and
momentum k. In the magnetic TI thin film, A is the
spin-orbital coupling strength, µ is the chemical poten-
tial, ∆ is the s-wave proximity pairing amplitude, while
the Dirac mass m = λ−λ0 is half of the QAHI gap, where
λ is the ferromagnetic exchange field and λ0 is a constant.
The BdG Chern number N of such a superconductor is
given by

N =


0 , (m < −

√
µ2 + |∆|2)

1 , (|m| <
√
µ2 + |∆|2)

2 , (m >
√
µ2 + |∆|2)

(2)

The N = 0 phase and N = 2 phase are topologically
equivalent to the NI and QAHI phases, respectively, while
the N = 1 phase is the p + ip chiral TSC phase with a
single chiral Majorana state on its edge. All the three
phases have a finite gap for quasiparticles. Therefore,
the system undergoes two phase transitions from N = 2
to N = 0 as a function of the exchange field λ when
∆ 6= 016.

When an s-wave SC is in proximity with a QAHI in
the way as shown in Fig. 1(a), the system becomes a

QAHI/TSC/QAHI junction for 0 < m <
√
µ2 + |∆|2,

where the TSC has N = 1, and the chemical potential µ
is in the QAHI gap. In the homogeneous case, the two-
terminal conductance of the junction can be shown17,18

to be quantized into one half of the quantum conduc-
tance σ12 = e2/2h. This can be understood as follows.
As shown in Fig. 1(a), each of the charged chiral edge
states ψi of the left and right QAHI regions split into two
chiral Majorana edge states γi at the boundaries of the
TSC (1 ≤ i ≤ 4). At zero energy, all the chiral Majorana
fermions γi are charge neutral, and they are related to the
charged chiral fermions ψi via the relation ψi = γi+iγi+1,
where γ5 is identified with −γ1. When an electron is in-
jected into chiral edge state ψ1, it has equal probabilities
to become either an electron or a hole in either chiral
states ψ2 or ψ4. This gives r = rA = t = tA = 1/4, where
r, rA, t, tA are the normal reflection, Andreev reflection,
normal transmission and Andreev transmission probabil-
ities of the junction, respectively. According to the gener-
alized Landauer-Büttiker formula34,35, the two terminal
conductance is given by σ12 = (t + rA)e2/h = e2/2h.
Therefore, the system will exhibit a σ12 = e2/2h half

quantized plateau for 0 < m <
√
µ2 + |∆|2. In contrast,

when m >
√
µ2 + |∆|2, the middle region is in the same

phase as QAHI, so σ12 → e2/h. While when m < 0, the
left and right regions of the junction become NIs, and
one would have σ12 → 0.
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FIG. 1. (a) Illustration of the QAHI/TSC/QAHI junction,
where a QAHI thin film is in proximity with an s-wave SC
on top in the middle region. (b)-(d) Evolution of BdG Chern
number N = 0, 1, 2 regions during the domain flipping pro-
cess, where each of the two chiral Majorana states γa and γb
undergoes a delocalization transition. (b), (c) and (d) show
configurations where N = 2, 1 and 0 regions are extended,
respectively.

III. STABILITY OF TSC AGAINST DISORDER

The experiment of He et al.19 observed the half plateau
as predicted above in the Cr doped (Bi,Sb)2Te3 thin
film QAHI with proximity from a Nb superconductor,
which provides a strong evidence for the realization of
chiral TSC. The Dirac mass m = λ − λ0 of the fer-
romagnetic QAHI thin film is controlled by the mag-
netic field B. When the system is deep in the QAHI
phase, the film is a ferromagnetic single domain with
a homogeneous exchange field λ > λ0. By adding a
magnetic field B opposite to the magnetization, the sys-
tem is driven into a disordered multi-domain configura-
tion, while the spatial average value of the exchange field
〈λ(r)〉 is gradually reduced. To a good approximation,
we have 〈λ〉 − λ0 = 〈m〉 ∝ B − B0 for small m, where
B0 is the magnetic field at which the average Dirac mass
〈m〉 = 0. The multi-domain structure during the de-
crease of 〈λ〉 leads to enormous inhomogeneities into the
system, so the phase transitions can no longer be well
understood within the homogeneous band theory above.

Instead, the random domain structure requires the
knowledge of the percolation theory for understanding
the phase transitions36,37. In general, all the three pa-
rameters, the Dirac mass m(r), the chemical potential
µ(r) and the pairing potential ∆(r) are spatially nonuni-
form. Depending on the local values of m,µ and ∆, the
space can be divided into three kinds of regions accord-
ing to Eq. (2) with BdG Chern numbers N = 0, 1, 2,
respectively. As shown in Fig. 1(b)-(d), there will be a
charge neutral chiral Majorana edge state on each edge
in between two regions with N differing by 1. We shall
denote the chiral Majorana fermion between N = 0 and
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N = 1 regions as γa, and that between N = 1 and
N = 2 regions as γb. When the system is in the QAHI
phase with the average Dirac mass 〈m〉 sufficiently pos-
itive, the N = 2 region dominates and is extended as
shown in Fig. 1(b). As 〈m〉 decreases into a certain
interval in the vicinity of 0, the system enters a phase
where the N = 1 region becomes extended, while both
the N = 0 and 2 regions are bounded into finite size is-
lands, as shown in Fig. 1(c). This is exactly the chiral
TSC phase in the presence of disorder. When 〈m〉 further
decreases to sufficiently negative, the N = 0 region be-
comes extended (Fig. 1(d)), and the system enters a NI
phase. Therefore, in this percolation picture, the system
still has three phases N = 2, 1 and 0, and undergoes two
phase transitions similar to that predicted by the band
theory. Accordingly, the chiral Majorana edge states γb

and γa at zero energy become delocalized exactly at the
two phase transition points, respectively.

During the flipping of magnetic domains, one expects
the spatial fluctuations in the Dirac mass m to be greater
than the fluctuations in µ and ∆. In this case, the N = 1
regions are generically narrower compared with N = 0
and N = 2 regions, as shown in Fig. 1. This may intro-
duce a nonzero hopping between γa and γb when they
are separated by a narrow N = 1 region, which can be
characterized by the following effective 1D Hamiltonian:

Hedge = ivaγ
a∂lγ

a + ivbγ
b∂lγ

b − 2iηγaγb , (3)

where l is the 1D coordinate along either of the two nearly
parallel neighbouring edges, va > 0 and vb > 0 are the
velocities of γa and γb, and η is the hopping between
γa and γb due to their wave function overlap. One may
equivalently rewrite the Hamiltonian under the charge
basis ψ = γa + iγb and ψ† = γa − iγb as

Hedge = ivFψ
†∂lψ − ηψ†ψ + (i∆pψ

†∂lψ
† + h.c.) , (4)

where vF = (va + vb)/2, ∆p = (va − vb)/4 and η act as
the Fermi velocity, p-wave pairing amplitude and chemi-
cal potential of the charged chiral fermion ψ, respectively.
At low energies, the Fermi velocity vF = A, and the p-
wave pairing is of order ∆p ∼ (A/λ)∆. When ∆p = 0,
ψ simply reduces to the charged chiral edge state of the
QAHI. However, the Hamiltonian under charged basis
in Eq. (4) does not explicitly reflect the fact that γa

and γb are spatially separate when ∆p 6= 0, which is the
key to see there are two phase transitions instead of one.
Therefore, we shall work in the Majorana basis γa, γb

hereafter. Below, we will show that the two phase tran-
sitions discussed above are unaffected by the inter-edge
hopping 2iηγaγb term.

The percolation of chiral Majorana modes γa and γb

can be simplified into a 2D network model within the D
symmetry class32, which respects the particle-hole sym-
metry while breaks both the spin rotational and the time
reversal symmetries. Fig. 2(a) shows the network con-
figuration in the vicinity of the phase transition from
N = 2 to N = 1, where the small (large) plaquettes host
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FIG. 2. (a) Formulation of the system into a D class network
model. (b) Illustration of the scattering of Majorana state γb
at network vertices.

N = 0 (N = 1) regions, and thus γa (γb) live on the inner
(outer) edges surrounding smaller (larger) plaquettes. To
the center of each pair of small and large plaquettes we
assign a coordinate (x, y), with x and y taking integral
values. The four links of a small (large) plaquette are
denoted by i = 1, 2, 3, 4, respectively, and the chiral Ma-
jorana edge state on link i is denoted by γai (γbi ). At the
vertices in between two large plaquettes, two nearby γb

states at zero energy come close and can scatter into each
other. The scattering at vertices located at (x, y+ 1

2 ) can
be described by the scattering matrix(

γb2
γb4

)
=

(
cos θb sin θb
− sin θb cos θb

)(
γb1
γb3

)
, (5)

while at vertices located at (x+ 1
2 , y)(

γb1
γb3

)
=

(
cos θb sin θb
− sin θb cos θb

)(
γb4
γb2

)
, (6)

where the angle θb ∈ [0, π/2] is a function of (x, y). We
denote these two matrices as Sb(θb) and S′b(θb), respec-
tively. Similarly, there are also an angle θa and two ma-
trices Sa(θa), S′a(θa) of the same form describing the scat-
tering of two nearby γa states at all vertices. An obvious
critical point is θa = π/4 (θb = π/4), when γa (γb) has
equal probabilities to scatter in either direction. In the
vicinity of the π/4 critical point, the two scattering angles

take the form θb = π/4− τc(m−
√
µ2 + |∆|2) and θa =

π/4 − τc(m +
√
µ2 + |∆|2) for small (m ∓

√
µ2 + |∆|2),

respectively, which are both linear in the local value of
m, where τc > 0 is a constant depending on details of
the scattering process. Note that this means θa ≤ θb in
the entire space, so their spatial averages also generically
satisfy 〈θa〉 < 〈θb〉.

In addition to the scattering matrices at vertices, the
network model also has a propagator on each link of a
plaquette. In the basis of Majorana fermions γa and γb,
the propagator is real. According to Eq. (3), the hopping
term η leads to an amplitude γa and γb to scatter into
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FIG. 3. (a) The propagation amplitude Mtot,n
bb of γb near its

delocalization transition, which has two peaks at φ2 = 0 and
π. (b) Illustration of the RG flow of θa, θb and φi near the
delocalization transition of γb.

each other, so the propagator on a link, for instance, on
link 1 of plaquette (x, y) at zero energy takes the form(

γa1
γb1

)
x− 1

2 ,y

=

(
cosφ1 sinφ1
− sinφ1 cosφ1

)(
γa1
γb1

)
x,y+ 1

2

, (7)

where the propagation angle φ1 depends on η and the
length l1 of link 1. Similarly, we can define the prop-
agation angles φi on links i = 2, 3, 4. This constitutes
a D symmetry class O(n) orthogonal random network
model32, where n is the number of flavors of Majorana
fermions (n = 2 here). We note that in general a Ma-
jorana fermion γa could also scatter into γb at a vertex,
or vice versa, but this mutual scattering can be effec-
tively regarded as a propagation of γa into γb followed
by a scattering from γb to γb. Therefore, we can sim-
ply assume there is no mutual scattering without loss of
generality.

If all the angles φi are either 0 or π, γa and γb will never
propagate into each other, and the above network model
simply decouples into two copies of the minimal O(1)
random network model33, which exhibits two delocaliza-
tion phase transitions at 〈θa〉 = π/4 and 〈θb〉 = π/4,
respectively, while all the states are localized otherwise.
If φi are not restricted to 0 or π, the two copies of net-
work models are coupled as an O(2) random network
model. This, however, does not affect the fact that there
are two delocalization phase transitions, as is ensured by
the D class symmetry32. Here we present a simplified
real space RG analysis to show this fact. Consider the
tunneling of Majorana states from vertex (x − 1

2 , y) to

vertex (x + n − 1
2 , y), where n > 1 is an integer. As a

great simplification, we ignore the spatial variations of
θa, θb and φi, and assume only φ2 is nonzero. For conve-
nience, we define δθb = θb−π/4 and δθa = θa−π/4, and
assume |δθb| < |δθa|, in which case γb is more delocalized
than γa. The propagation amplitude Mn

αβ from γβ to

γα (α, β = a, b) contributed by the shortest path is then
given by the 2× 2 matrix

Mn =

(
cos θa sin θa cosφ2 cos θb sin θa sinφ2
− cos θa sin θb sinφ2 cos θb sin θb cosφ2

)n
,

(8)
where the basis is (γa, γb)T . In particular, the amplitude
from γb to γb reaches its maximum |Mn

bb| = 1/2n when

θb = π/4 and φ2 = 0 or π. On the other hand, we know
γb is delocalized at θb = π/4 and φ2 = 0 or π, in which

case the total propagation amplitude Mtot,n
bb should not

decay. Therefore, we approximate the total amplitude
as Mtot,n

bb ≈ 2nMn
bb, which can be thought of as the

summation of 2n effective paths similar the shortest path.
When n grows large, the amplitude Mtot,n

bb becomes
peaked at φ2 = 0 and π as shown in Fig. 3(a), with a

peak width around π/n. We then regardMtot,n
bb across n

plaquettes as the propagation amplitude across a single
renormalized plaquette. Matching the peak value of the
amplitude at φ = 0 or π gives a renormalized θ′b satisfying
sin(2θ′b) = sinn(2θb). Furthermore, we define δφ2 to be
the relevant range of the propagation angle φ2 centered
at 0 or π, which can be identified with the peak width of
Mtot,n

bb , namely, δφ2 = π/n. Therefore, the only relevant
φ2 at large distances are 0 and π, while φ2 with other
values has an amplitude quickly decaying as a function
of n. For small δθb and δφ2, we arrive at the following
RG flow equations:

dδθb/dt = δθb/2 , dδφ2/dt = −δφ2 , (9)

where dt = dn/n. In general, we expect similar RG flow
equations to hold qualitatively for θa and other φi. As an
example, the RG flow of the system for 〈θa〉 > 〈θb〉 ≥ π/4
is as illustrated in Fig. 3(b). As one can see, at low
energies φi flows to 0 or π, so the system tends to two
decoupled O(1) random network models, and has two
phase transitions at θa = π/4 and θb = π/4, respectively.

IV. SIZE AND TEMPERATURE DEPENDENCE

The localization length ξα of Majorana states γα in
the D class network model obeys a critical behavior
ξα ∝ |〈θα〉 − π/4|−νD = |〈δθα〉|−νD , with α = a, b. In
the simplified RG picture above, the RG flow equation
(9) leads to a critical exponent νD = 2; while direct nu-
merical calculations of the D class network model show
νD is close to 133,38. In addition, in the vicinity of the
critical point π/4, both 〈δθa〉 and 〈δθb〉 are linear in the
average Dirac mass 〈m〉 and therefore linear in the mag-
netic field B, namely, 〈δθα〉 ∝ (B − B∗α), where B∗α is
the magnetic field where γα delocalizes. Therefore, the
localization length ξα ∝ |B −B∗α|−νD .

In the vicinity of the plateau transition of σ12 from
e2/2h to e2/h, 〈θa〉 is far below π/4 while 〈θb〉 is close to
π/4. At zero temperature, as 〈θb〉 approaches π/4, the
system flows under RG to an effective configuration as
shown in Fig. 4(a), where all the Majorana edge states
γa are localized in the bulk except for the two edge states
γa12 and γa34, while the percolation of γb in the middle
region is effectively described by a single renormalized
scattering matrix Sb(θ

∗
b ) as(

γb2
γb4

)
=

(
cos θ∗b sin θ∗b
− sin θ∗b cos θ∗b

)(
γb1
γb3

)
, (10)
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where θ∗b ∈ [0, π/2] is the renormalized scattering angle
of γb at length scale of the size of the TSC region L.
The scaling behavior of δθ∗b = θ∗b − π/4 suggests it is
an analytical function δθ∗b = fb(κb) of the dimensionless

parameter κb = [L/ξb(B)]1/νD , where ξb(B) is the local-
ization length of γb at magnetic field B39,40. For small
κb, δθ

∗
b can be expanded into

δθ∗b = fb(κb) = b1κb + b2κ
2
b + · · · . (11)

Note that κb ∝ L−νD (B−B∗b ) at small κb, so this agrees
with the fact that δθ∗b ∝ 〈δθb〉 ∝ (B −B∗b ).

The two terminal conductance σ12 can be expressed
as a function of θ∗b . The charged fermion operators
in Fig. 4(a) are related to the Majorana operators
as ψ1 = γa12 + iγb1, ψ2 = γa12 + iγb2, ψ3 = γa34 + iγb3
and ψ4 = γa34 + iγb4. Therefore, the normal (Andreev)
transmission (reflection) probabilities of the junction

are given by t = |〈ψ†2ψ1〉|2 = (1 + cos θ∗b )2/4, tA =

|〈ψ2ψ1〉|2 = (1 − cos θ∗b )2/4, r = |〈ψ†4ψ1〉|2 = sin2 θ∗b/4

and rA = |〈ψ4ψ1〉|2 = sin2 θ∗b/4, respectively. The con-
ductance σ12 = (t+rA)e2/h according to the generalized
Landauer-Büttiker formula34,35 is then

σ12 =
1 + cos θ∗b

2

e2

h
. (12)

In particular, one finds the slope of σ12 as a function of
B near the critical point θ∗b = π/4 has a critical scaling
behavior

dσ12
dB

∝ dδθ∗b
dB

∝ L1/νD , (13)

in analogy to the scaling behavior of the integer quantum
Hall effect (IQHE) plateau transition40. In the regime
L > ξb, namely κb > 1, the scattering amplitude between
γb on opposite edges is expected to be proportional to
e−L/ξb , and one expects σ12 to behave as40

|σ12 − σ0
12| ∝ e−|κb|

νD
= e−L/ξb , (14)

where σ0
12 is either e2/2h or e2/h depending on which

side of plateau transition the system is on.
The plateau transition from e2/2h to 0, however, is in

a different universality class, which happens at 〈m〉 ∝
(B − B0) = 0. This transition is induced by the phase
transition from QAHI to NI, namely Chern number C = 1
to C = 0, in the left and right regions of the junction,
which is in the A class32, while the middle region remains
deep in the N = 1 chiral TSC phase. The QAHI to NI
transition is governed by an A symmetry class network
model describing the delocalization transition of charged
chiral states36, where a scattering angle θh and scatter-
ing matrix Sh(θh) can be defined at each vertices of the
network similar to Eq. (5). The only difference of the
A class network model from a D class network model is
its propagation angles φi are arbitrary instead of being
only 0 or π, while the delocalization transition is still at
θh = π/4. When θh deviates from π/4, the localization
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e2/2h to e2/h after RG flow. (b) The picture of transition
from 0 to e2/2h after RG flow. (c) Predicted temperature
dependence and critical behavior of σ12 near the half plateau.

length ξh of the charged chiral states obeys the critical
behavior ξh ∝ |〈δθh〉|−νA , where δθh = θh − π/4, and
νA ≈ 7/3 as revealed by numerical calculations36. Phys-
ically, δθh is proportional to the Dirac mass m, and thus
its average value 〈δθh〉 ∝ 〈m〉 ∝ B −B0.

Similarly, under RG the system in the vicinity of the
QAHI to NI transition flows to a configuration as shown
in Fig. 4(b), where both the left and right regions are
described by an effective scattering matrix

Sh(θ∗h) =

(
cos θ∗h sin θ∗h
− sin θ∗h cos θ∗h

)
, (15)

with (ψf4 , ψ
f
1 )T = Sh(θ∗h)(ψi4, ψ

i
1)T , and (ψf3 , ψ

f
2 )T =

Sh(θ∗h)(ψi3, ψ
i
2)T . The renormalized scattering angle θ∗h =

fh(κh) is an analytical function of dimensionless pa-
rameter κh = [L/ξh(B)]1/νA ∝ L1/νA(B − B0), where
L being the size of the QAHI regions. Besides, each
charged chiral state has a random propagation phase.
The normal (Andreev) transmission (reflection) probabil-

ities t = |〈ψf†2 ψi1〉|2, tA = |〈ψf2ψi1〉|2, r = |〈ψf†4 ψi1〉|2 and

rA = |〈ψf2ψi1〉|2 can be calculated by summing over all
the propagation probabilities via various paths, which is
rather difficult. However, the two terminal conductance
σ12 = (t + rA)e2/h can be calculated much more eas-
ily by noting that each path containing chiral Majorana
edge states of the TSC contributes equally to t and tA,
and also equally to r and rA. For an incident electron
from state ψi1, the only path not involving chiral Majo-

rana edge states is the shortest path from ψi1 to ψf4 , which
contributes a probability sin2 θ∗h only to r. Therefore one

has t = tA, and r − rA = sin2 θ∗h. Besides, the unitarity
puts a restriction t + tA + r + rA = 1, from which one
finds

σ12 = (t+ rA)
e2

h
=

cos2 θ∗h
2

e2

h
. (16)

In the vicinity of the A class critical point θ∗h = π/4, an
expansion with respect to δθ∗h = θ∗h − π/4 yields

dσ12
dB

∝ dδθ∗h
dB

∝ L1/νA . (17)
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While when the system is far away from the critical point,
one has40

|σ12 − σ0
12| ∝ e−|κh|

νA
= e−L/ξh , (18)

where σ0
12 is either e2/2h or 0.

At finite temperatures T , the size L of the junc-
tion should be replaced by when the inelastic scatter-
ing length41 Lin of the QAHI or L′in of the TSC is
smaller than the system size L, one should replace L
by Lin and L′in in the plateau transition from e2/2h to
0 and that from e2/2h to e2/h, respectively. Due to the
scale invariance at quantum phase transitions, the inelas-
tic scattering lengths generically obey power law scaling
Lin ∝ T−p/2 and L′in ∝ T−p

′/2, where p > 0 and p′ > 0
are critical exponents of inelastic scattering for A class
and D class systems, respectively42. In IQHE or QAHI
systems, it is known p = 2 in the homogeneous limit, and
p = 1 in the disordered limit40,43,44. For 2D superconduc-
tors, the critical exponent is approximately p′ ≈ 2 (more
often denoted as z = (p′/2)−1 ≈ 1)42,45. Assuming the
slope of exchange field 〈λ〉 with respect to B approaches
a constant as T → 0 (as is true for ferromagnetic ma-
terials), we arrive at the temperature dependence of the
slope of two terminal conductance σ12

dσ12
dB

∝ L1/νA
in ∝ T−p/2νA (19)

from 0 to e2/2h, and

dσ12
dB

∝ L′1/νDin ∝ T−p
′/2νD (20)

from e2/2h to e2/h.
In addition, a finite temperature T also drives the

half conductance plateau away from the quantized value
σ12 = e2/2h. This is because the conductance is con-
tributed by quasi-particles within a finite energy window
kBT near the fermi surface, while the chiral Majorana
edge modes at finite energies are no longer charge neu-
tral. When an electron ψi,ε (1 ≤ i ≤ 4) at finite en-
ergy ε encounters the boundary of the TSC as shown in
Fig. 1(a), it splits into γi,ε and γi+1,ε in the way ψi,ε =
ui(ε)γi,ε + ivi(ε)γi+1,ε (label i is identified with i + 4),
where the coefficients satisfy ui(0) = vi(0) = 1. The
transmission and Andreev reflection probability from ψ1,ε

to ψ2,ε and to ψ4,ε are given by t(ε) = |v∗1(ε)u2(ε)|2/4 and
rA(ε) = |u1(ε)v4(ε)|2/4, respectively. The two terminal
conductance σ12 of the junction is then given by

σ12 =

∫
dε

[
−df(ε)

dε

]
[t(ε) + rA(ε)] , (21)

where f(ε) is the Fermi Dirac distribution at temperature
T . For small ε one has [t(ε) + rA(ε)] = 1/2 + c1ε+ c2ε

2,
and an easy calculation gives δσ12 = σ12 − e2/2h ∝ T 2.

Recently, two papers30,31 have discussed potential al-
ternative explanations to the half plateau of σ12 observed
in the experiment19. In both papers, the middle region of

the junction is formulated as a wiggling 1D charged chiral
state based on the classical percolating picture, with ran-
dom pairing amplitude ∆(r) perturbations added, and
the critical behavior of the A class is used in the work
of Huang et al.31. They conclude a half plateau arises
when the effective length of the 1D state is much longer
than the system size. We first emphasize that the sys-
tem should always be treated within the D class as long
as the pairing ∆(r) is nonzero. In particular, the two
chiral Majorana states γa and γb are spatially separated
under the RG flow, therefore cannot be regarded as a sin-
gle charged chiral state. Accordingly, the single A class
phase transition from Chern number C = 1 to 0 is always
unstable when ∆(r) is nonzero, and will split into two
phase transitions from BdG Chern number N = 2 to 1
and from N = 1 to 0. Secondly, the picture of a single
wiggling 1D chiral state assumed in both papers may not
be able to capture the exact physics of this system, which
is intrinsically 2D. The quantum tunnelings between spa-
tially nearby parts of the wiggling path of the chiral state
are ignored in this picture, which may significantly affect
the critical behavior. Further, their theories lead to sev-
eral predictions different from ours as we shall illustrate
below, which can be tested in the experiments.

In the work of Ji and Wen30, they argue the dephas-
ing together with the finite system size under strong
disorders can also lead to a half conductance plateau,
which vanishes as the system size L → ∞, and there
is only one delocalization phase transition directly from
BdG Chern number N = 0 to N = 2. They pre-
dict the half plateau occurs when the classical localiza-
tion length ξ in the QAHI is larger than L. The scal-
ing law of the classical localization length is given by
ξ ∝ |B − B0|−ν with ν = 4/3. This leads to a plateau
width ∆B1/2 ∝ L−1/ν . This is a key difference from
our D class theory, where we predict an intermediate
N = 1 TSC phase and a finite half plateau width as
L → ∞. For the experiment19, L = 1mm, their the-
ory would predict a plateau width way too small. The
domain wall measurement of Cr doped (Bi,Sb)2Te3 thin
films46 reveals that the magnetic domain size is of order
0.1µm at a magnetic field 50mT away from the perco-
lation transition. If we identify the domain size as ξ at
this magnetic field, their theory yields a plateau width
∆B1/2 ∼ (50mT)(L/0.1µm)−1/ν . 0.3mT, while the ob-
served plateau width is much larger around 20mT. We
expect future experiments on the size dependence of half
plateau width to further confirm our theory.

Besides, their theory implicitly predicts the slope of
plateau transition dσ12/dB from 0 to e2/2h and from
e2/2h to e2/h depends on (V 2/lφ) when the temperature
T < eV/kB , where lφ is the dephasing length of the sys-
tem, and V is the voltage applied between leads 1 and 2
for measuring σ12. In contrast, the slope dσ12/dB near
plateau transitions does not have a voltage dependence
in our theory; instead it only depends on the system size
and temperature.

In another work of Huang et al.31, they support our
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conclusions that an intermediate N = 1 TSC phase
should exist in between the N = 0 and N = 2 phases,
while they argue σ12 could be well quantized to the half
plateau way before the system enters the N = 1 phase.
At the plateau transitions from e2/2h to 0 or e2/h, they
obtain a critical behavior very different from ours, which

reads σ12 =
(
1± e−(lh/l0)

)
e2/2h, where lh ∝ ξ

df
h is the

circumference of a 1D cluster of size ξh, ξh is the QAHI
localization length we discussed ahead, df = 91/48 is the
fractal dimension of 2D clusters, and l0 is some charac-
teristic length of the system. The slope of such a plateau
transition is expected to have a different dependence on
temperature T and system size L from that in our theory.

In the end of their paper they also mentioned an-
other possibility that the intermediate phase could be
a thermal metal instead of an N = 1 TSC under strong
disorders33,38,47–49, which also leads to a half plateau.
However, numerical studies show such a thermal metal
phase is possible only if there are sufficient localized
random Majorana zero modes in the D class network
model, which can be induced either by sufficiently dense
π flux superconducting vortices33 or strong enough elec-
trostatic disorder potentials38,48,49. The discussion of
thermal metal phase will be non-perturbative regime and
is beyond the scope of this paper. But we note that the
creation of dense π flux vortices in realistic systems are
energetically quite unfavorable, since the s-wave SC on
top of the QAHI is thick (∼ 200nm). Further numerical
studies based on realistic parameters50 will be necessary
to propose or exclude such a possibility.

V. CONCLUSION

In this paper, we studied the phase transitions of dis-
ordered QAHI system in proximity of an s-wave super-
conductor employing the percolation theory of chiral Ma-
jorana fermions, which can be written as a random net-
work model in the D symmetry class. Based on symme-
try arguments and a simple RG flow analysis, we show
there are generically two phase transitions separating
three superconducting phases carrying BdG Chern num-

bers N = 2, 1 and 0, respectively, which agrees with the
conclusion from the simple band theory of homogeneous
systems16. In particular, the N = 1 phase, namely, the
p+ ip chiral TSC phase, is robust against disorders.

For a QAHI bar in proximity with an s-wave SC in its
middle region (Fig. 1(a)), it has been shown in the ab-
sence of disorders that the two terminal conductance σ12
exhibits a half plateau at e2/2h in between two integer
plateaus at 0 and e2/h as a function of B, which indi-
cates the formation of a p + ip chiral TSC17,18. Since
we have shown the p + ip chiral TSC phase is stable
against disorders, we conclude the half plateau picture
still holds in inhomogeneous systems, which explains the
half plateau recently observed in disordered Cr doped
(Bi,Sb)2Te3 QAHI thin films under SC proximity19. We
then study the critical scaling behavior of the half plateau
and the plateau transitions governed by the percolation
theory with respect to system size and temperature. In
particular, the plateau transition from 0 to e2/2h and
that from e2/2h to e2/h belong to the A and D symme-
try classes, respectively, and have different critical expo-
nents. Finally, we discussed the differences between our
results and two recent alternative explanations of half
plateau30,31, and showed the critical behaviors we pre-
dicted are quite distinct from those predicted in their
theories, which are testable in current and future exper-
iments.
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