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We present an approximate analytical solution to the dynamic equation of two Ising-coupled
qubits with oscillating classical control fields that are non-perpendicular to the static fields. This is
a situation that has recently arisen in some solid-state experiments. With our solution we derive the
analytical expressions for the local invariants as well as the local rotations needed to isolate a purely
nonlocal gate. This determines the set of parameters that are required to generate any entangling
gate. Moreover, we use our results to describe a recent experimental work on capacitively coupled
singlet-triplet qubits in GaAs and discuss possible differences for a similar device in silicon.
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I. INTRODUCTION

Examples of two-level quantum systems coupled to an
oscillating field can be found in many areas of quan-
tum physics, from quantum optics [1–3] to solid-state
physics [4–8], and having an analytical expression for the
evolution operator is relevant for obvious reasons. The
rotating-wave approximation (RWA) is a widely used ap-
proach that provides an approximate analytical solution.
The RWA is also used to analytically determine the quan-
tum logic operations that are accessible by an oscillating
Hamiltonian [9, 10]. This approximation is mostly used
in qubits whose oscillating control field is perpendicu-
lar to its static field, where the effect of the RWA is
to produce a Hamiltonian that is time-independent in
the rotating frame. However, not all systems present
this perpendicularity between fields [11, 12]. Ref. [9] dis-
cusses the proper use of the RWA to find an analytical
solution to the dynamic equation of a single qubit with
non-perpendicular fields.

In recent experiments with capacitively coupled
singlet-triplet qubits[8], where the oscillating control
fields are non-perpendicular to the static fields, the time-
independent Hamiltonian is obtained using the RWA.
However, this approximation is applied after neglecting
the static field’s component parallel to the oscillating
field in order to recover perpendicularity between fields.
While that simplified analysis gives quick insight, a more
precise treatment that considers the full static field is
necessary to fully capture the system’s dynamics.

In this work, we present an analytical solution to the
dynamic equation of two Ising-coupled qubits with non-
perpendicular fields followed by a characterization of the
entangling properties of the two-qubit gates accesible by
the system’s Hamiltonian. In Sec. II, we show the steps
to properly use the RWA and the necessary assumptions
to find an analytical solution to the dynamic equation.
We show that only the component of the oscillating field
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perpendicular to the combined static field affects the dy-
namics within the RWA. More importantly, our solution
provides the full Cartan-decomposed expression for the
gate, including the local operations needed to convert the
gate to a purely nonlocal controlled phase gate. We also
calculate the local invariants [13], which completely char-
acterize the nonlocal properties of the evolution operator
and the logical gates that it can generate. In Sec. III we
apply our results to a recent experiment with capacitively
coupled singlet-triplet qubits [8].

II. ANALYTICAL SOLUTION

We consider two qubits with a static Ising coupling, α.
The local part of the Hamiltonian has an uncontrolled
static term along x, h, and a control field along z oscil-
lating with amplitude j about an average value J . We
have capacitively coupled singlet-triplet qubits [14, 15] in
mind, but our results are applicable to any system with
Ising coupling and non-perpendicular local fields, e.g.,
coupled flux qubits [16]. The evolution operator, U , is
then determined by

iU̇ =

[
2∑
i=1

(
Ji + ji cos[ωit]

2
σ

(i)
Z +

hi
2
σ

(i)
X

)
+ ασZZ

]
U,

(1)

where σij ≡ σ
(1)
i ⊗ σ

(2)
j . It is advantageous to perform

a local frame rotation such that the x-axis lies along
the vector sum of the combined local static parts of the
Hamiltonian, so defining U1 by

U = exp

[
i

2

2∑
i=1

φiσ
(i)
Y

]
U1 exp

[
− i

2

2∑
i=1

φiσ
(i)
Y

]
(2)
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with φi ≡ arctan Ji
hi

, Eq. (1) becomes

iU̇1 =

[ 2∑
i=1

(
Ω2
i + Jiji cos[ωit]

2Ωi
σ

(i)
X + 2χi cos[ωit]σ

(i)
Z

)
+

α

Ω1Ω2
(J1J2σXX + J1h2σXZ + J2h1σZX + h1h2σZZ)

]
U1,

(3)

where Ωi ≡
√
J2
i + h2

i is the local total energy split-
ting and χi ≡ hiji/4Ωi is the Rabi frequency. Below
we present approximate solutions for various cases.

A. Similar qubits with near-resonant driving

Consider the case of qubits with similar energy split-
tings and nearly resonant control fields with the same
driving frequency, ω1 = ω2 ≡ ω ∼ Ω1 ∼ Ω2. First we
transform to a rotating frame,

U1 = exp

[
−iωt

2

2∑
i=1

σ
(i)
X

]
U2. (4)

Typically, one would be interested in producing an en-
tangling gate with duration T ≥ 1/α � 1/ω, so it is
a good approximation to coarse-grain time-average over
a timescale τ ∼ 2π/ω. In this RWA, terms that go as
e±iωt and e±2iωt drop out. (Note that this cannot be
done in the lab frame because the evolution operator it-
self is rapidly varying there due to the large static term
in the lab frame Hamiltonian. It is safe in the rotat-
ing frame, as long as the driving is near resonance and
relatively weak, i.e., ω � {|Ωi − ω|, |χi|}.) Then the ro-
tating frame Hamiltonian is time-independent and can
be directly solved by exponentiation

U2 = exp

[
−it
( 2∑
i=1

(
Ωi − ω

2
σ

(i)
X + χiσ

(i)
Z

)
+

α

2Ω1Ω2
(2J1J2σXX + h1h2 (σY Y + σZZ))

)]
. (5)

Note that only the perpendicular oscillating terms, χi,
in Eq. (3) survive the RWA; the Jiji terms do not con-
tribute.

Combining with Eqs. (2) and (4) gives the full evolu-
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FIG. 1. Overlap, F = 1
4
|Tr

(
U†Unum

)
|, between the approx-

imate evolution operator U and the exact evolution operator
Unum obtained numerically. The straight (oscillatory) curve
denote results after one (two) round(s) of RWA (6) ((10))
using the parameters given in Sec. III.

tion operator in the lab frame:

U = exp

[
i

2

2∑
i=1

φiσ
(i)
Y

]
exp

[
−iωt

2

2∑
i=1

σ
(i)
X

]

× exp

[
−it
( 2∑
i=1

(
Ωi − ω

2
σ

(i)
X + χiσ

(i)
Z

)
+

α

2Ω1Ω2
(2J1J2σXX + h1h2 (σY Y + σZZ))

)]
× exp

[
− i

2

2∑
i=1

φiσ
(i)
Y

]
. (6)

This approximation is quite good for typical parameters,
as shown in Fig. 1 where the analytical approximation
is compared to a numerical solution of the differential
equation using mathematica’s ndsolve for a specific
set of values. However, by sacrificing a bit of precision, we
can get a simpler solution that makes the entanglement
dynamics more clear. Define another rotating frame,

U2 = exp

[
−it

2∑
i=1

χiσ
(i)
Z

]
U3. (7)

In this new frame there are again time-varying terms that
go as e±i2χit, e±i2(|χ1|+|χ2|)t, and e±i2(|χ1|−|χ2|)t. We per-
form another round of RWA, averaging over an arbitrary
timescale bounded by π/|χi| < τ � 1/α, implicitly as-
suming that |χi| � {α, |Ωi − ω|}. (Note that this as-
sumption is more readily satisfied when hi > Ji, as in
Ref. [8], than vice versa.) The first two types of time-
varying terms drop out, but the e±i2(|χ1|−|χ2|)t terms can
only be handled in two cases: a) ||χ1|− |χ2|| � 1/T ∼ α,
in which case they are approximately constant, or b)
||χ1|−|χ2|| > 2π/τ , i.e., the difference in Rabi frequencies
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is not much less than the smallest one, in which case they
drop out along with the other oscillating terms. Thus,
for ||χ1| − |χ2|| � 1/T ∼ α we have

U3 = exp

[
−iαt

2

(
h1h2 + 2J1J2

2Ω1Ω2
(σXX + σY Y ) +

h1h2

Ω1Ω2
σZZ

)]
.

(8)
and the evolution operator in the lab frame can again be
obtained by combining Eqs. (2), (4), (7) and (8). On
the other hand, for ||χ1| − |χ2|| > 2π/τ , we have

U3 = exp

[
−it αh1h2

2Ω1Ω2
σZZ

]
(9)

and the corresponding evolution operator in the lab
frame is

U = exp

[
i

2

2∑
i=1

φiσ
(i)
Y

]
exp

[
−iωt

2

2∑
i=1

σ
(i)
X

]

exp

[
−it

2∑
i=1

χiσ
(i)
Z

]
exp

[
−it αh1h2

2Ω1Ω2
σZZ

]

exp

[
− i

2

2∑
i=1

φiσ
(i)
Y

]
. (10)

The accuracy of this approximation, Eq. (10), is shown
in Fig. 1.

The nonlocal properties of the evolution operator, i.e.,
its entangling properties, are characterized by the op-
erator’s local invariants, i.e., quantities that remain in-
variant under local rotations. In a nutshell, the lo-
cal invariants are the coefficients of the characteristic
polynomial of the symmetric matrix m(U), defined as
m(U) = (Q†UQ)TQ†UQ (where Q denotes the transfor-
mation of the matrix U from the logical basis into the
Bell basis), and whose spectrum is invariant under local
operations [13]. The local invariants equations are

G1 =
tr2[m(U)]

16 det[U ]
,

G2 =
tr2[m(U)]− tr[m2(U)]

4 det[U ]
.

(11)

Using Eq. (8) for ||χ1| − |χ2|| � 1/T ∼ α we obtain
the evolution operator’s local invariants

G1 =
1

16

(
cos

[
4(h1h2 + J1J2)αt

Ω1Ω2

]
+ 6 cos

[
2h1h2αt

Ω1Ω2

]
+ cos

[
4J1J2αt

Ω1Ω2

]
+ 8 cos

[
(h1h2 + 2J1J2)αt

Ω1Ω2

])
+

i

16

(
− 2 sin

[
2h1h2αt

Ω1Ω2

]
− sin

[
4J1J2αt

Ω1Ω2

]
+ sin

[
4(h1h2 + J1J2)αt

Ω1Ω2

])
,

G2 = cos

[
2h1h2αt

Ω1Ω2

]
+ 2 cos

[
(h1h2 + 2J1J2)αt

Ω1Ω2

]
.

(12)

Alternatively, using Eq. (10) for ||χ1| − |χ2|| > 2π/τ , we
calculate the following local invariants

G1 = cos2

[
h1h2αt

Ω1Ω2

]
, G2 = 2 + cos

[
2h1h2αt

Ω1Ω2

]
. (13)

A gate locally equivalent to a cnot (or, equivalently,
cphase) has G1 = 0, G2 = 1. Here that is generated
when h1h2αt

Ω1Ω2
= π

2 . The entangling power, which quan-

tifies the average produced entanglement, is ep(U) =
2/9 [1− |G1|] [17], and perfect entangling gates [13, 18],
i.e., gates that can produce a maximally entangled state
from an unentangled one, have 1/6 ≤ ep(U) ≤ 2/9 and
−1 ≤ G2 ≤ 1 [17].

B. Dissimilar qubits with near-resonant driving

We can also consider the case when the qubits have
very different energy splittings, |Ω1 − Ω2| � {α, χi}.
This may occur, for example, in an array of singlet-triplet
qubits in silicon where the hi terms are produced by a
fixed, asymmetrical micromagnet instead of being tun-
able by dynamical nuclear spin polarization. There one
might easily have |h1 − h2| ∼ GHz [19, 20]. We again
transform to a rotating frame,

U1 = exp

[
−i t

2

2∑
i=1

ωiσ
(i)
X

]
U2. (14)

If there exists a timescale τ such that
{2π/min{ωi}, 2π/|ω1 − ω2|} < τ � 1/α, time-averaging
gets rid of terms that go as e±iωit, e±2iωit, e±i(ω1+ω2)t,
and e±i(ω1−ω2)t. (We are again implicitly assuming
the driving is near resonance and weak.) This time we
obtain

U2 = exp

[
−it

(
2∑
i=1

(
Ωi − ωi

2
σ

(i)
X + χiσ

(i)
Z

)
+
αJ1J2

Ω1Ω2
σXX

)]
.

(15)
Using the same arguments as previously, we can go to
the frame defined by Eq. (7) and apply another round of
RWA to simplify the approximate solution, but now in
the case of dissimilar Rabi frequencies, the nonlocal part
of the evolution does not survive the averaging and one
is left with a local gate. On the other hand, in the case
of similar Rabi frequencies, ||χ1| − |χ2|| � 1/T ∼ α, one
has

U3 = exp
[
− iαt J1J2

2Ω1Ω2
(σXX + σY Y )

]
. (16)

Interestingly, comparing Eq. (16) to Eq. (9), the charac-
ter of the effective nonlocal coupling has changed from
Ising to XY , and the coupling strength itself is only dif-
ferent by interchanging hi ↔ Ji. Although one might
think that makes the nonlocal term depend more sen-
sitively on fluctuations in Ji, taking a derivative shows
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FIG. 2. (a) Real and (b) imaginary components of the process
matrix at t ∼ 616ns using the parameters given in Sec. III.

that that is not the case. We leave a more detailed anal-
ysis of the sensitivity of the various parameter regimes
to a future work. The local invariants of this evolution
operator are

G1 = cos2

[
J1J2αt

Ω1Ω2

]
, G2 = 1 + 2 cos

[
2J1J2αt

Ω1Ω2

]
, (17)

and the operator can generate an iswap gate (G1 =
0, G2 = −1) when 2J1J2αt

Ω1Ω2
= π

2 .

III. EXAMPLE: COUPLED SINGLET-TRIPLET
QUBITS IN GAAS

We apply the results obtained in the previous section
to two capacitively coupled singlet-triplet qubits. The ex-
perimental setup consists of two similar qubits with near-
resonant driving frequency where, using the experimen-
tally reported values of Ref. [8, 21], the static components

(a)

(b)

���� ���� ����

����

����

����

� [μ�]

��
(�

)

��� ��� ��� ��� ��� ���

����

����

� [μ�]

��
(�

)

FIG. 3. (a) Entangling power vs. time for the evolution opera-
tor U(t) = U(χi, t/2)U(−χi, t/2), using the parameters given
in Sec. III. The rapidly oscillating entangling power is marked
by the blue shaded region. The light green shaded areas are
intervals where −1 ≤ G2 ≤ 1 according to Eq. (18). Perfect
entangling gates are generated in the subsets of the shaded
regions where the entangling power is above 1/6 (horizontal
green line). The vertical red rectangles mark the time inter-
vals where the likelihood of generating a maximally entangling
gate is maximum. (b) A close-up of (a) around t ∼ 616ns.

of the exchange interaction energies at each qubit are
J1/2π = 266.4MHz and J2/2π = 320MHz, the respective
magnetic field differences are h1/2π = 922.3MHz and
h2/2π = 905.1MHz, the driving frequency in each qubit
is ω1 = ω2 ≡ ω = (2π)960MHz ∼ Ω1 ∼ Ω2, oscillation
amplitudes are in the range 25MHz ≤ ji/2π ≤ 70MHz
and approximately different by a factor of two [22], and
the coupling strength is in the range 0.4MHz ≤ α/2π ≤
2.5MHz, corresponding to entangling times of hundreds
of ns. Note that the assumptions made in the first round
of RWA leading to Eq. (6), ω � χi, α, are clearly valid for
these values, and that the factor of two difference in ex-
perimental Rabi frequencies means that the assumption
made in the second round of RWA leading to Eq. (10) is
also valid.

The use of rotary echo [23], as in Ref. [8], is also in-
cluded in our analysis. The rotary echo is applied simul-
taneously to both qubits, giving an evolution operator
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U(t) = U(χi, t/2)U(−χi, t/2).
According to the concurrence plot in Ref. [8], the gate

time of the first peak is around 600ns, so for the sake
of comparison we focus on gates that can be generated
close to that time, although a maximally entangling gate
could also be generated earlier.

Using Eq. (10) and rotary echo we perform quantum
process tomography [24] to calculate the process matrix
(which characterizes the action of a process on the com-
ponents of the density matrix) at different times, cou-
pling strengths, and Rabi frequencies in order to com-
pare to the measured process matrix reported in Ref. [8].
In Fig. 2 we show the process matrix at a time equal
to 615.7ns, a coupling strength α = 2π × 2.3MHz, and
j1 = 2π× 69.3MHz, j2 = 2π× 36MHz [25]. These values
produce a positive process matrix χ relatively close to the
not completely positive process matrix χexp reported in
Ref. [8] (Tr(χ χexp) = 86%). Note that in Ref. [8], after
using a maximum likelihood estimation process to ensure
a completely positive process matrix, a brute-force nu-
merical search over all possible completely positive pro-
cess matrices generated by an Ising coupling matches the
experimental result with at best 87% fidelity [8]. Thus, in
the absence of the experimental noise causing deviations
from positivity, our theory captures the dynamics well.
Moreover, the process matrix presented here is uniquely
generated by a given set of experimental parameters and
does not require a search over single-qubit rotations as
previous modeling did [8].

As a consequence of the rotary echo, the local in-
variants and entangling power of the evolution operator
now depend on the driving frequency ω, in contrast to
Eq. (13), and are given by

G1 =
1

16

(
1− cos[ωt] + (3 + cos[ωt]) cos

[
h1h2αt

Ω1Ω2

])2

,

G2 =
1

2

(
3 + cos

[
2h1h2αt

Ω1Ω2

]

+ cos

[
h1h2αt

Ω1Ω2

](
2− 4 cos[ωt] sin2

[
h1h2αt

2Ω1Ω2

]))
.

(18)
We can identify the time frames where maximally en-
tangling gates are generated by plotting the entangling
power versus time, as shown in Fig. 3. During the first
microsecond there are two shaded time intervals in Fig.
3 where perfect entangling gates are produced, but the
entangling power oscillates rapidly. Nonetheless, there
are regions within the shaded time intervals where the
average likelihood of generating a maximally entangling
gate is larger. These regions are marked by red vertical
rectangles in Fig. 3(a) and are delimited by the points
where the slowly oscillating envelope (dashed curve) of
the entangling power, calculated with Eq. (13), is equal
to 2/9 or 1/6. In these regions the evolution operator
can, in principle, produce a maximally entangling gate
despite possible noise effects. The gate time associated

with the process matrix of Fig. 2, t = 615.7ns, falls within
one of these intervals (Fig. 3(b)). In fact, the evolu-
tion operator, whose local invariants at that time are
{G1 ∼ 0.03, G2 ∼ 1.06}, is equivalent to a cphase gate
up to single-qubit rotations with a fidelity of ∼ 99.2%.
This fidelity is in the absence of noise, which will of course
reduce the fidelity. Furthermore, considering the initial
Hamiltonian, Eq. (1), numerically with the parameters
given in this section and using rotary echo we find that
the corresponding evolution operator is indeed equiva-
lent to a cphase gate up to single-qubit rotations with
a fidelity of ∼ 99.1%. This shows that our approximate
analytical solution conveys with high precision the non-
local properties of the system.

Our results are in broad agreement with Ref. [8],
where the experimental process matrix was equivalent
to a cphase gate up to single-qubit rotations with 90%
fidelity (or 87% if one enforces complete positivity).
One may understand why the experimentally reported
cphase fidelity was only ∼ 90% instead of the ∼ 99%
we calculate. The main difference, of course, is that we
have not included the effects of noise in our calculations,
a detailed noise analysis lying well beyond the scope of
this paper. However, by considering that the T echo

2 de-
coherence time was longer than the experimental entan-
glement time by about a factor of six for the Rabi fre-
quencies in use we can roughly estimate the magnitude
of the effect of the noise. Note that the reported T echo

2 is
a single-qubit decoherence time, but it should be similar
for two qubits because charge noise gives rise to fluctu-
ations in J and j, in turning producing fluctuations in
the Rabi frequency χ which causes random local phases
to accumulate in Eq. (10), while the fluctuations in cou-
pling strength are negligible in comparison [14]. Thus,
the entangling part of the gate is relatively unaffected,
since the perturbation in the nonlocal phase is propor-
tional to JδJ/Ω2 and Ω >> J . Only the accompanying
local rotations are strongly affected. So then, considering
charge noise with a power spectral density of 1/f0.7, one
might expect fidelity when using the rotary echo to be

roughly comparable to e−2(t/T echo
2 )

1.7

∼ 90%, where the
factor of two in the exponent is because independent local
dephasing is occurring on both qubits. The experimen-
tally reported cphase fidelity of ∼ 90% is not surprising
then, even apart from other possible effects such as im-
perfections in the rotary echoes, control calibration, and
tomography.

IV. CONCLUSIONS

We have presented an approximate analytical solution
to the dynamic equation of an Ising-coupled two-qubit
system whose oscillating and static fields are not perpen-
dicular. This solution has been obtained by an appropri-
ate chain of local transformations and proper application
of the RWA. Moreover, by isolating the nonlocal content
of the evolution for four cases, depending on whether the
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qubits’ energy splittings and Rabi frequencies are similar
or not, we calculated the local invariants, which deter-
mine the type of logical gates the system can generate.

We applied our results to a recent experimental work
on capacitively coupled singlet-triplet qubits in GaAs.
Our solution gives new insight into the type of entangling
gates which are being generated, predicts the presence
of other perfect entangling gates at shorter times, and
present regions where the two-qubit evolution operator
can produce at least minimally entangling gates regard-
less of possible perturbations. Furthermore, our discus-
sion of a case with highly asymmetric qubit energy split-
tings is relevant for future experiments in silicon where
dynamical nuclear spin polarization is not available to
tune the hi fields. Future work will explore the sensi-
tivity of the entangling gates to various physical noise

sources. However, the results presented in this work are
immediately relevant to ongoing experiments with capac-
itively coupled singlet-triplet qubits as well as any system
with a similar form of Hamiltonian.
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