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We study the connections among particle statistics, frustration, and ground-state energy in quan-
tum many-particle systems. In the absence of interaction, the influence of particle statistics on the
ground-state energy is trivial: the ground-state energy of noninteracting bosons is lower than that
of free fermions because of Bose-Einstein condensation (BEC) and Pauli exclusion principle. In the
presence of hard-core or other interaction, however, the comparison is not trivial. Nevertheless,
the ground-state energy of hard-core bosons is proved to be lower than that of spinless fermions,
if all the hopping amplitudes are nonnegative. The condition can be understood as the absence of
frustration among hoppings. By mapping the many-body Hamiltonian to a tight-binding model on
a fictitious lattice, we show that the Fermi statistics of the original particles introduces an effective
magnetic flux in the fictitious lattice. The latter can be effectively regarded as a kind of frustration,
since it leads to a destructive interference among different paths along which a single particle is
propagating. If we introduce hopping frustration, the hopping frustration is expected to compete
with the effective frustration due to the Fermi statistics, leading to the possibility that the ground-
state energy of hard-core bosons can be higher than that of fermions. We present several examples,
in which the ground-state energy of hard-core bosons is proved to be higher than that of fermions
due to the hopping frustration. The basic ideas were reported in the preceding Letter [W.-X. Nie,
H. Katsura, and M. Oshikawa, Phys. Rev. Lett. 111, 100402 (2013)]; more details and several
extensions, including one to the spinful case, are discussed in the present paper.

PACS numbers: 05.30.Fk, 05.30.Jp, 71.10.Fd

I. INTRODUCTION

In this paper, we study a simple question: how the
particle statistics affects the ground-state energy of the
system. More specifically, we compare the ground-state
energy of bosons and fermions on an identical lattice with
same parameters such as hopping amplitudes.
In noninteracting systems, the influence of particle

statistics on the ground-state energy can be understood
easily. The two systems in comparison are exactly
equivalent to each other, and thus have exactly the
same ground-state energy, when only a single particle
is present. The ground-state energy of fermions is sim-
ply given by the sum of the lowest single-particle en-
ergy eigenvalues, following the Aufbau principle. In con-
trast, in the ground state of noninteracting bosons, all
the bosons condense into the lowest single-particle state.
This phenomenon is known as Bose-Einstein Condensa-
tion (BEC). Therefore, the ground state energies of non-
interacting bosons and fermions satisfy the “natural” in-
equality:

EB
0 ≤ EF

0 . (1)

On the other hand, the comparison of the ground-state
energies of bosons and fermions is not trivial in the pres-
ence of interaction, because the simple argument based

on the perfect BEC breaks down. In a system of inter-
acting bosons, it is in fact already a nontrivial question
whether the BEC actually takes place. Einstein’s origi-
nal argument depends on the absence of interaction. For
interacting bosons, there is no general theorem that BEC
always occurs1. A counterexample is the solid 4He phase,
where BEC is absent even at zero temperature, under a
sufficiently high pressure. Rigorously proven examples
of BEC, in the sense of the off-diagonal long-range or-
der (ODLRO), in interacting systems are still rather lim-
ited2–4. Even if the occurrence of BEC or the ODLRO is
proved in a system of interacting bosons, it does not nec-
essarily restrict the ground-state energy, because single-
particle states with higher energies can be partially oc-
cupied. In particular, an ODLRO does not necessarily
imply the inequality (1). In fact, the influence of particle
statistics on the ground-state energy had not been much
explored in strongly correlated systems.

The comparison of the ground-state energies is par-
ticularly appealing in the case of hard-core bosons and
fermions. In both kinds of systems, each site is either
empty or occupied by a single particle. Thus the di-
mension of the Hilbert space is identical between them.
Nevertheless, the different particle statistics generically
lead to different ground-state energies, as we will see in
the following.

Before discussing the issue any further, let us comment
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on the physical relevance of the question itself. The en-
ergy eigenvalue itself is generally unphysical in the sense
that one can always redefine the energy by adding a con-
stant. It is thus the difference of energies of two different
states that matters.

We can understand the difference by defining the
ground-state energy with respect to a simple reference
state in each system, such as a vacuum state (in which
every site is empty). This ground-state energy is the sum
of energy gains in the process of filling the system with
particles, and is a measurable quantity5,6. This is some-
what similar to the “enthalpy of formation” studied in
chemistry7, which is the total change of enthalpy (per
mole) when the compound is formed from its elements
under a certain condition.

Since the vacuum state is equivalent between the sys-
tem of bosons and fermions, the comparison of the
ground-state energies is completely well defined. More-
over, even when the energy difference itself cannot be
measured, the comparison of the ground-state energies is
relevant for understanding stability of various different
phases. This is particularly the case with the possible re-
alization of statistical transmutation, as we will discuss
later in this paper.

Concerning the comparison of the ground-state ener-
gies between bosons and fermions, recently we found8 a
sufficient condition for the natural inequality (1) to hold,
without relying on the occurrence of BEC. That is, if
all the hopping amplitudes are nonnegative, the ground-
state energy of hard-core bosons is still lower than that of
the corresponding fermions. This theorem is extended to
the spinful case in the present paper. Once we relax the
condition of nonnegative hopping amplitudes, it is pos-
sible to reverse the inequality so that the ground-state
energy of bosons is higher than that of fermions. We
find several concrete models in which such a reversal is
realized; and in several cases it is even proved rigorously.
More examples and techniques will be introduced in the
present paper, than those discussed in Ref. 8.

Moreover, our study leads to a novel physical under-
standing of the effects of particle statistics, in terms of
frustration in quantal phase. This is more general than
the picture based on the perfect BEC, and is indeed ap-
plicable to systems with interaction.

We can map a quantum many-particle problem to a
single-particle problem on a fictitious lattice in higher
dimensions. When all the hopping amplitudes are non-
negative and the particles are bosons, the corresponding
single-particle problem also has only nonnegative hop-
ping amplitudes. In such a case, there is no frustration
in the quantal phase of the wavefunction. On the other
hand, Fermi statistics of the original particles gives an ef-
fective magnetic flux in the corresponding single-particle
problem. This implies a frustration in the phase of the
wavefunction, induced by the Fermi statistics. When
a magnetic flux is introduced in the original quantum
many-particle problem, it also results in a magnetic flux
in the corresponding single-particle problem, inducing a

frustration. This hopping-induced frustration and the
the effective frustration induced by the Fermi statistics
can sometimes partially cancel with each other, result-
ing in the reversed inequality between the ground-state
energies of the hard-core bosons and fermions.
The paper is organized as follows. In Sec. II, we present

the full proof of the natural inequality for the spinless
case and extend the discussion to the spinful case. Based
on the proof, in Sec. III, we put forward a unified un-
derstanding of the frustration for bosons and fermions in
the same manner. As a by-product, a strict version of the
diamagnetic inequality for a general lattice is presented.
Several examples, in which the natural inequality is vio-
lated owing to the hopping frustration, are presented in
Sec. IV. The examples include a simple yet instructive,
exactly solvable model of particles on a one-dimensional
ring, two-dimensional systems of coupled rings, systems
with flux in 2D and 3D, and flat band models. Rigorous
proof of the reversed inequality is provided for most cases.
Conclusions and discussions are presented in Sec. V. De-
tailed proofs of some of the theorems, and related tech-
nical results are presented in Appendices.

II. NATURAL INEQUALITY

The natural inequality (1) holds trivially for nonin-
teracting bosons and fermions with the same form of
the Hamiltonian. Now we present three theorems, which
state that the Eq. (1) holds even for hard-core bosons,
provided that all the hopping amplitudes are nonnega-
tive. A brief overview appeared in Ref. 8, but here we
give a more detailed discussion, and also an extension to
the spinful case.

A. Natural inequality for spinless case

First we consider the comparison of spinless hard-core
bosons with spinless fermions. We assume the system
of bosons or fermions is described by the same form of
Hamiltonian,

H = −
∑

j 6=k

(

tjkc
†
jck +H.c.

)

−
∑

j

µjnj +
∑

j,k

Vjknjnk,

(2)
where j is the label of a site on a finite lattice Λ and

nj ≡ c†jcj is the number of particles on j-th site. Chem-

ical potential µ is the uniform (site independent) part of
µj . For a system of bosons, we identify cj with the boson
annihilation operator bj satisfying the standard commu-
tation relations, with the hard-core constraint nj = 0, 1
at each site. The hard-core constraint may also be im-
plemented by introducing an infinite on-site interaction
U
2

∑

j nj(nj − 1), where U → +∞. For a system of
fermions, we identify cj with the fermion annihilation
operator fj satisfying the standard anticommutation re-
lations.
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This Hamiltonian is very general. We do not make any
assumption on the dimensionality or the geometry of the
lattice Λ, or on the range of the hoppings. In addition,
the interaction is also arbitrary, as long as it can be writ-
ten in terms of Vjk. The interesting aspect of attractive
interaction will be discussed in Appendix B. We note that
the Hamiltonian (2) conserves the total particle number.
Thus the ground state can be defined for a given num-
ber of particles M (canonical ensemble), or for a given
chemical potential µ (grand canonical ensemble). The
comparison between bosons and fermions can be made
in either circumstance.
Now we will present a sufficient condition for the natu-

ral inequality (1). Moreover, a sufficient condition for the
strict inequality EB

0 < EF
0 is provided. The proof is also

illuminating for physical understanding of the natural in-
equality in interacting systems, showing the importance
of the particle statistics and exchange processes.

Theorem 1. (Natural inequality for spinless case)
The inequality (1) holds for any given number of par-

ticles M on a finite lattice Λ with N ≥M sites, if all the
hopping amplitudes tjk are real and nonnegative.
Furthermore, if the lattice Λ is connected, and has a

site directly connected to three or more sites, and if the
number of particles satisfies 2 ≤ M ≤ N − 2, the strict
inequality EB

0 < EF
0 holds.

Proof. To write the matrix elements of the Hamilto-
nian (2), we choose the occupation number basis |φa〉 ≡
|{na

j }〉, where M is the total number of particles satisfy-
ing

∑

j n
a
j =M . The matrix elements of the number op-

erator nj are the same for hard-core bosons and spinless
fermions in this basis. We begin by defining the operator

KB,F ≡ −HB,F + C1. (3)

For convenience, we added an identity matrix with large
enough diagonal elements C such that all the eigenval-
ues κB,F of matrix KB,F and thus all the diagonal matrix
elements KB,F

aa are positive. The relation of the matrix
elements for bosonic and fermionic operators can be sum-
marized as

KB
ab =

{

|KF
ab| (a 6= b)

KF
aa (a = b)

= |KF
ab|. (4)

The difference between bosons and fermions is that, given
nonnegative hopping amplitudes tjk, the matrix elements
of the bosonic operator KB is nonnegative, while those of
the fermionic operator KF can be negative in sign. This
difference in signs generically leads to different ground-
state energies between bosons and fermions.
The ground state of the HamiltonianHB,F corresponds

to the eigenvector belonging to the largest eigenvalue
κB,F
max of KB,F. Let |Ψ0〉F =

∑

a ψa|φa〉F be the normal-
ized ground state for fermions. The trial state for the
bosons can be assumed as |Ψ0〉B =

∑

a |ψa||φa〉B, where
|φa〉B is the basis state for bosons corresponding to |φa〉F.

Then, by a variational argument,

κBmax ≥ B〈Ψ0|KB|Ψ0〉B =
∑

ab

|ψa||ψb|KB
ab

≥
∑

ab

ψ∗
aψbKF

ab = κFmax (5)

holds, implying EB
0 ≤ EF

0 . The first part of Theorem 1 is
thus proved. As a simple corollary, the ground-state en-
ergies for a given chemical potential µ also satisfy Eq. (1).
In order to prove the strict version of the natural in-

equality, let us consider LS ≡
(

KS
)n
, where S = B,F,

for a positive integer n. In the occupation number basis,
the matrix element of L is expanded as

LS
ab =

∑

c1,...,cn−1

KS
ac1K

S
c1c2K

S
c2c3 . . .K

S
cn−1b, (6)

in which each term in the sum represents a particle hop-
ping process among the connected sites.
From the definition of LS and the relation (4) between

KB and KF, we have the inequality for matrix elements
of LB,F:

LB
ab =

∑

c1,...,cn−1

KB
ac1K

B
c1c2K

B
c2c3 . . .K

B
cn−1b (7)

=
∑

c1,...,cn−1

|KF
ac1K

F
c1c2K

F
c2c3 . . .K

F
cn−1b|

≥ |
∑

c1,...,cn−1

KF
ac1K

F
c1c2K

F
c2c3 . . .K

F
cn−1b| = |LF

ab|.(8)

This applies, in particular, to the diagonal elements with
b = a.
From Eq. (4), the matrix elements of KF and thus the

amplitudes of the process in Eq. (6) can be negative for
fermions, while they are nonnegative for bosons. The
difference between bosons and fermions shows up exactly
when two particles are exchanged. To make two-particle
exchange process possible, let us introduce a “branching”
site directly connected to three or more sites belonging to
the lattice. An example of the branching site connected
to three sites is shown in Fig. 1. If the number of particle
falls in the range 2 ≤ M ≤ N − 2, two particles can be
exchanged from an initial state |φa〉 and back to the same
state in 6 hoppings, with the aid of the branch structure.
An example of particle exchange process on a lattice with
a branching site is demonstrated schematically in Fig. 1.
The contribution to the diagonal elements of bosons LB

aa

is always positive at n = 6, while the contribution to
LF
aa is negative when two particles are exchanged. On

the other hand, there is always a positive contribution to
LB
aa and LF

aa in the expansion of Eq. (6), at least from
the invariant process cj = a in which no particle moves
in n steps. Thus, the strict inequality LB

aa > |LF
aa| holds

in this case.
When the lattice Λ is connected, any basis state |φa〉B

can be reached by consecutive applications of the hop-
ping term in KB, and thus the matrix KB

ab satisfies the
connectivity. Together with the property KB

ab ≥ 0, KB
ab
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FIG. 1. A schematic example to show a two-particle exchange
process in six steps, where the four-site branch cluster is a
subsection of a real arbitrary lattice.

(and thus also LB
ab) is a Perron-Frobenius matrix9. Ap-

plying a corollary of the Perron-Frobenius theorem10 we
find κBmax > κFmax and hence the latter part of the theo-
rem follows.

We note in passing that, a consequence of the Perron-
Frobenius theorem is that the ground state of bosons has
a nonvanishing amplitude B〈φa|Ψ0〉B with a definite (say,
positive) sign for every basis state |φa〉B. This may be
understood as a lattice version of the “no-node” theo-
rem11,12.

B. Natural inequality for spinful case

Let us now discuss the spinful case. Here we compare
spinful hard-core bosons and spinful fermions on a finite
lattice, with spin-1/2. While actual bosons are known
to have only integer spins, they can have pseudospin-
1/2, which is sufficient for the present discussion. Here
the “hard-core bosons” means that two or more particles
with the same (pseudo) spin cannot occupy the same
site: njσ = 0, 1, where σ =↑, ↓. With this constraint, we
consider the Hamiltonian,

H = −
∑

j 6=k

∑

σ

(

tjkc
†
jσckσ +H.c.

)

−
∑

jσ

µjnjσ

+
∑

j 6=k

∑

σσ′

Vjknjσnkσ′ +
∑

j

Ujnj↑nj↓, (9)

which is a generalization of Eq. (2) with the introduction
of the spin degrees of freedom σ =↑, ↓.
Let us first discuss the case in which all Uj ’s are finite.

Then the following simple generalization of Theorem 1
holds:

Theorem 2. (Natural inequality for spinful case with
finite Uj ’s)
For any set of finite Uj’s, if all the hopping amplitudes

tjk are real and nonnegative, the inequality (1) holds for
any given number of particles M ≤ 2N on a finite lattice
Λ with N sites. Furthermore, if the lattice Λ is connected,
and has a site directly connected to three or more site,
and if the number of particles satisfies 3 ≤M ≤ 2N − 3,
the strict inequality holds.

The detailed proof including the restriction of filling,
which is a straightforward generalization of the proof of
Theorem 1, is given in Appendix A.

Now let us discuss the case Uj = +∞. The first half
of Theorem 2, the non-strict version of the inequality,
remains unaffected by taking the limit Uj = +∞. It is
easily proved by variational principle in the same manner
as in Proof of Theorem 1. However, the latter half of
Theorem 2, the strict inequality, is affected by taking the
limit.

The proof of the strict inequality is based on the
Perron-Frobenius theorem, which requires the irre-
ducibility of the matrix. For spinless particles and spinful
particles with finite Uj ’s, when the lattice is connected,
any pair of occupation number basis states |Φa〉 and |Φb〉
of the many-particle problem are connected by consec-
utive application of particle hoppings. This implies the
irreducibility of the matrix representing the many-body
Hamiltonian. However, in the case of spinful system with
Uj = +∞, connectivity of the lattice does not guaran-
tee the irreducibility of the many-body Hamiltonian ma-
trix. An illustrative example is the Hubbard model with
Uj = +∞ at half filling. Each site is occupied by a par-
ticle with either spin up or spin down; there are many
occupation-number basis states corresponding to differ-
ent spin configurations. However, since there is no empty
site, and double occupancy with spin up and down par-
ticles is forbidden, each basis state is not connected by
hopping to any other basis state. Therefore, in order to
prove the strict inequality, we need some additional con-
dition which guarantees the irreducibility of the Hamil-
tonian matrix. In fact, the irreducibility of the Hamilto-
nian matrix at Uj = +∞, and application of the Perron-
Frobenius theorem were discussed earlier by Tasaki13,14

in the context of Nagaoka’s ferromagnetism. Nagaoka’s
ferromagnetism is a mechanism of ferromagnetism in the
Hubbard model with a single hole doped into the half
filling with Uj = +∞, and can be understood as a con-
sequence of the Perron-Frobenius theorem. For that, the
irreducibility of the Hamiltonian matrix in a certain ba-
sis is required. In Ref. 14, a sufficient condition for the
irreducibility was presented: if the entire lattice is con-
nected by exchange bonds, then the Hamiltonian matrix
in the occupation number basis is irreducible. Here “ex-
change bond”14 is defined by a pair of sites which belongs
to a loop of length three or four, and the whole lattice
remains connected via nonvanishing hopping amplitudes
even when the two sites are removed. Thus we obtain

Theorem 3. (Natural inequality for spinful case not
above half filling)

When Uj’s are either +∞ or finite, if all the hop-
ping amplitudes tjk are real and nonnegative, the inequal-
ity (1) holds for any given number of particles M ≤ N
on a finite lattice Λ with N sites. Furthermore, if the en-
tire lattice Λ is connected by exchange bonds, and if the
number of particles satisfies 3 ≤ M ≤ N − 1, the strict
inequality holds.
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The outline of the proof of Theorem 3 including the
restriction of filling, and the numerical verification of the
theorems are presented in Appendix B.
In summary, in this section we have presented three

theorems for the validity of the natural inequality for
spinless and spinful cases, respectively. Although the
proofs of the sufficient conditions for strict version of
the natural inequality (see Appendix A,B) are some-
what more involved, the basic idea behind the proofs
is the same as in that for Theorem 1. That is, bosons
have a strictly lower ground-state energy than fermions,
when the hopping amplitudes are non-negative and an
exchange of particles is allowed.

III. UNIFIED UNDERSTANDING OF

FRUSTRATION AND DIAMAGNETIC

INEQUALITY

The role played by frustration is of central importance
in the proofs of the theorems. The terminology “frustra-
tion” is often used for antiferromagnetically interacting
spin system on geometrically frustrated lattices, such as
triangular, kagome and pyrochlore lattices. When there
is no global state of the system that minimizes every
antiferromagnetic interaction, there is some frustration.
More generally, frustration may be applicable to a system
with competing interactions, when the ground state does
not minimize individual interaction simultaneously15.
To see that the sign of hopping amplitudes tjk in a

many-boson system is related to frustration, it is illumi-
nating to map the hard-core boson problem to a spin-
1/2 quantum spin system16. The mapping is based on
the equivalence between hard-core boson operators and
spin-1/2 operators:

S+
j ∼ b†j , S−

j ∼ bj , Sz
j ∼ b†jbj −

1

2
. (10)

It is then easy to see that a hopping term for hard-core
bosons maps to an in-plane exchange interaction:

−tjk
(

b†jbk + b†kbj

)

∼ J⊥
jk

(

Sx
j S

x
k + Sy

j S
y
k

)

, (11)

where J⊥
jk = −2tjk. Thus the nonnegative tjk corre-

sponds to ferromagnetic exchange interaction, in terms
of the spin system. When all the exchange couplings
are ferromagnetic, there is no frustration. Namely, every
in-plane exchange interaction energy can be minimized
simultaneously by aligning all the spins to the same di-
rection in the xy-plane. Going back to the original prob-
lem of quantum particles, the direction of the spins in the
xy-plane corresponds to the quantal phase of particles at
each site. If all the hopping amplitudes are nonnegative,
every hopping term can be simultaneously minimized by
choosing a uniform phase throughout the system. In this
sense, bosons with nonnegative hopping amplitudes are
unfrustrated with respect to their quantal phase.

Let us now consider the case of fermions. Since Fermi
statistics brings in negative signs even if all the hop-
pings tjk are nonnegative, it would be natural to expect
that Fermi statistics leads to some kind of frustration.
However, it is difficult to formulate this based on the
above mapping to an S = 1/2 spin system. To un-
derstand the frustration induced by Fermi statistics in
many-particle systems, we introduce an alternative map-
ping of the many-body Hamiltonian into a single-particle
tight-binding model. That is, we identify each of the
many-body occupation number basis states |Φa〉 with a
site on a fictitious lattice. If two occupation number ba-
sis states |Φa〉 and |Φb〉 are connected by Hamiltonian,
〈Φb|H|Φa〉 6= 0, there is a link connecting sites a and b in
the fictitious lattice. If we can start from an initial state,
and return back to the same state by successive applica-
tions of the Hamiltonian (2), there is a loop in the ficti-
tious lattice. For bosons, there is no extra phase in the
loop. In other words, the fictitious lattice for hard-core
bosons is flux free. Therefore, there is no frustration for
bosons because there is a constructive interference among
all the paths. In contrast, for fermions, in the original
many-body problem, if two particles are exchanged and
the system returns back to the initial state, the system
acquires an extra π phase. The minus sign introduced
by Fermi statics is relevant to sign structure17. Upon
the mapping to the single-particle problem, this is equiv-
alent to the presence of a π-flux in the corresponding
loop in the fictitious lattice. This can be interpreted as
frustration, which causes destructive interferences among
different paths.
For a single-particle tight-binding model, introduction

of a flux always raises or does not change the ground-
state energy, which is known as diamagnetic inequality18.
The first half of Theorem 1, which states the non-strict
inequality, may be then regarded as a corollary of the
diamagnetic inequality. On the other hand, the latter
half of the Theorem 1 concerning the strict inequality
does not, to our knowledge, follow from known results
on the diamagnetic inequality. In fact, the arguments in
the proof of Theorem 1 can be applied to a strict version
of the diamagnetic inequality on general lattices. The
general result can be summarized as follows.

Theorem 4. (General diamagnetic inequality and its
strict version)
Let us consider a single particle on a finite lattice Ξ,

with the eigenequation

−
∑

β∈Ξ

ταβψβ = Eψα. (12)

In general, ταβ is complex, with ταβ = τ∗βα. The ground-
state energy E0 for a given set of the hopping amplitudes
{ταβ} satisfies

E0({τ ′αβ ≡ |ταβ |}) ≤ E0({ταβ}). (13)

Furthermore, the strict inequality,

E0({τ ′αβ ≡ |ταβ |}) < E0({ταβ}) (14)



6

holds, provided that the lattice Ξ is connected and there
is at least one loop which contains a nonvanishing flux.
A sequence of sites {α0, α1, α2, . . . , αn}, which satisfies
αl 6= αl+1, ταlαl+1

6= 0 and αn = α0 is called a loop. The
loop contains a nonvanishing flux when the product

τα0α1
τα1α2

τα2α3
. . . ταn−1αn

(15)

is not positive (either negative or not real).

The non-strict version is the standard diamagnetic in-
equality18,19. However, the strict inequality obtained
here appears new, also in the general context of diamag-
netic inequality. The detailed proof of Theorem 4 can be
found in Appendix C.

Mapping of the original quantum many-particle prob-
lem to the single-particle problem on a fictitious lattice
provides a unified understanding of frustration of quantal
phase. When there is a nonvanishing flux in the original
many-particle problem, we observed that there is a frus-
tration among local quantal phases, which we call hop-
ping frustration. On the other hand, when the particles
in the original problem are fermions, there is also a frus-
tration among quantal phases introduced by the Fermi
statistics, which we name statistical frustration. In the
original many-particle problem, the statistical frustration
appears rather different from the hopping frustration.
However, upon mapping to the single-particle problem on
the fictitious lattice, both hopping frustration and statis-
tical frustration are represented by a nonvanishing flux
in the fictitious lattice. This provides a unified under-
standing of hopping and statistical frustrations.

A system of many bosons with only nonnegative hop-
ping amplitudes tjk are free of frustration. Introduction
of any frustration into such a system, for example mag-
netic flux (hopping frustration), is expected not to de-
crease the ground-state energy. This is a lattice version
of Simon’s universal diamagnetism of bosons19. However,
in many-fermion system, where the statistical frustration
exists, the effect of introducing hopping frustration is a
nontrivial problem. In such a case, the ground-state en-
ergy may or may not decrease, depending on the system
in the question. That is, diamagnetism is not univer-
sal in spinless fermion systems. Correspondingly, the or-
bital magnetism of fermions can be either paramagnetic
or diamagnetic, depending on the model20. Considering
each of the frustrations introduces a particular pattern
of magnetic flux in the fictitious lattice, it is certainly
possible that in some cases the hopping frustration may
(partially) cancel the effect of statistical frustration, so
that the introduction of the hopping frustration actu-
ally decreases the ground-state energy. This reveals the
fact that the natural inequality could be violated by the
introduction of hopping frustration. Some concrete ex-
amples, in which the natural inequality is violated, are
demonstrated in the following Section.

IV. VIOLATION OF THE NATURAL

INEQUALITY

In the following, we discuss how the natural inequality
can be violated. Theorems 1 and 2 leave the possibility
of violation of the inequality in the presence of a hop-
ping frustration, that is, by choosing negative or complex
hopping amplitudes tjk. However, the hopping frustra-
tion is a necessary but not sufficient condition to reverse
the natural inequality. We will demonstrate that the vi-
olation of natural inequality indeed happens in several
frustrated systems. For simplicity, we limit ourselves to
the comparison between spinless fermions and hard-core
bosons, with no interaction other than the hard-core con-
straint. The case with density-density interaction will be
discussed at the end of this section.

A. Particles on a ring

We start with the best understood and solvable model
in one dimension:

H = −
N
∑

j=1

(c†jcj+1 +H.c.). (16)

The hard-core boson version of this model, which is
equivalent to the spin-1/2 XY chain, can be mapped
to free fermions on a ring by Jordan-Wigner transfor-
mation21,22. Thus energy eigenvalue problem of hard-
core bosons and fermions on a ring are almost the same,
except for the subtle difference in the boundary condi-
tion. For the periodic or antiperiodic boundary condi-
tions cN+1 ≡ ±c1, the Jordan-Wigner fermions f̃j obey

the boundary condition f̃N+1 = ∓eiπM f̃1, where M is
the number of Jordan-Wigner fermions (equals to the
number of bosons). If M is assumed as even, it implies
that hard-core bosons with the periodic (antiperiodic)
boundary condition is mapped to free fermions with the
antiperiodic (periodic, respectively) boundary condition.
Now let us discuss the dependence of the ground-state

energy on the boundary condition. Assuming M = N/2
is even, the ground-state energy density (ground-state
energy per site) is given as

ǫ0 =
E0

N
= − 2

N

∑

k

cos k, (17)

where k is taken over all the momenta in the Fermi sea,
−π/2 ≤ k < π/2. For the periodic boundary condition
(PBC), the wavenumber k is quantized as k = 2πn/N ,
while k = π(2n + 1)/N for the antiperiodic boundary
condition (APBC), where n (−N/4 ≤ n < N/4) is an
integer.
The ground-state energy density asymptotically con-

verges, in the thermodynamic limit N → ∞, to the same
integral for either boundary condition. Nevertheless, it
does depend on the boundary condition for a finite N .
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The difference of ground-state energy is exactly calcu-
lated as

EPBC
0

N
− EAPBC

0

N
=

2[1− cos(π/N)]

N sin(π/N)
> 0, (18)

for any N > 1. The antiperiodic boundary condition
gives the lower ground-state energy. The leading order
of difference can be extracted in the limit of large N as,

EPBC
0

N
= − 2

π
+

2π

3N2
+

2π3

45N4
+O(

1

N6
) (19)

EAPBC
0

N
= − 2

π
− π

3N2
− 7π3

180N4
+O(

1

N6
), (20)

for the periodic and antiperiodic boundary conditions.
The leading term of O(1/N2) is also determined by con-
formal field theory23,24. It can be seen that the nonin-
teracting fermions on a ring have a lower ground-state
energy with the antiperiodic boundary condition.
As a result, with periodic boundary condition, hard-

core bosons have a lower ground-state energy than
fermions, in full agreement with Theorem 1. On the
other hand, the ground-state energy of hard-core bosons
is higher than that of fermions with anti-periodic bound-
ary condition. The anti-periodic boundary condition can
be understood as a result of insertion of π-flux inside
the ring. This hopping frustration cancels the statistical
frustration so that the natural inequality is violated.
This example of tight-binding model may look triv-

ial, and indeed the calculation itself has been known for
years. Nevertheless, it is very useful in highlighting the
central physics of the problem, that is, the effect of the
statistical frustration of fermions can be canceled by the
flux or hopping frustration. The present finding can also
be applied to construction of more nontrivial examples,
as we will discuss in the Sec. IVB.

B. Coupled rings

Since hard-core bosons have a higher ground-state en-
ergy than fermions on a ring containing π flux inside
the ring as proved in Sec. IVA, we can construct a se-
ries of systems where EB

0 > EF
0 , by taking many such

small rings and connecting them with weak hoppings. If
the inter-ring hoppings are weak enough, they are ex-
pected not to revert the inequality and EB

0 > EF
0 would

be kept25.
We prove rigorously that, the reversed natural inequal-

ity is indeed still kept in coupled π-flux rings, connected
by weak hoppings, even in the thermodynamic limit.
One example is π-flux octagon-square model. The lat-
tice structure is shown in Fig. 2 (a), where one unit
cell is shown in green with basis vectors ~a1 = (3, 0) and
~a2 = (0, 3). This lattice can be deformed into the (topo-
logically equivalent) 1

5 -depleted square lattice26,27, which
is known for the model of the quasi two-dimensional com-
pound CaV4O9. Thus the octagon-square lattice is also

called as deformed 1
5 -depleted square lattice. It is some-

times also called as decorated square lattice28,29. The
hopping amplitudes on thick and broken lines are de-
noted by t and t′, respectively. The Hamiltonian is given
by

H = −t
∑

〈i,j〉∈thick,oriented

eiπ/4c†icj−t′
∑

〈i,j〉∈broken

c†i cj+H.c.,

(21)
where “thick, oriented” and “broken” refer respectively
to the links drawn with arrows and those drawn as broken
lines in Fig. 2(a). We also assume t > t′ > 0.
By the choice of eiπ/4 hopping phase on the oriented

thick lines, there is a π flux in every square. Therefore,
it can be regarded as a model of coupled π-flux rings by
weak hopping t′. In order to prove EB

0 > EF
0 rigorously

in the coupled rings, we seek a lower bound for EB
0 and

an upper bound for EF
0 . If the former is higher than the

latter, the desired inequality is proved. We introduce the
positive semi-definite operators,

A = t′
∑

〈i,j〉∈Broken

(c†i + c†j)(ci + cj) ≥ 0, (22)

B = t′
∑

〈i,j〉∈Broken

(c†i − c†j)(ci − cj) ≥ 0, (23)

where A ≥ 0 means 〈Φ|A|Φ〉 ≥ 0 for any state |Φ〉.
Therefore, the Hamiltonian for fermions and bosons can
be written as

HF = H̃F −A =
∑

✸

hF
✸
−A, (24)

HB = H̃B +B =
∑

✸

hB
✸
+B, (25)

where hF
✸

= −t∑4
i=1(e

iπ/4c†ici+1 + H.c.) + t′
∑4

i=1 c
†
i ci

and hB
✸

= −t
∑4

i=1(e
iπ/4c†ici+1 + H.c.) − t′

∑4
i=1 c

†
ici,

the cluster Hamiltonians defined on a solid-line square
for fermions and bosons, respectively. Noticing h✸ com-
mutes with each other, the ground-state energy of H̃ is
simply given by the summation30:

Ẽ0 =
∑

✸i

ǫ✸i
, (26)

where Ẽ0 and ǫ✸i
are the ground-state energy of H̃ and

that of h✸i
on i-th π-flux square, respectively.

Because the operators B is positive semi-definite, the
ground-state energy of bosons satisfies

EB
0 = 〈Φ|HB|Φ〉 ≥ 〈Φ|H̃B|Φ〉 ≥ ẼB

0 =
∑

✸i

ǫB
✸i
, (27)

where |Φ〉 is assumed as the ground state of HB.
On the other hand, an upper bound of fermions can be

derived as,

EF
0 = 〈Ψ|HF|Ψ〉 ≤ 〈Ψ̃|HF|Ψ̃〉 ≤ 〈Ψ̃|H̃F|Ψ̃〉 = ẼF

0 =
∑

✸i

ǫF
✸i
,

(28)
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FIG. 2. (a) π-flux octagon-square lattice, in which a unit
cell is shown in green. (b) The lowest two bands of Hamilto-
nian (21) with t = 1, t′ = 0.1.

where |Ψ〉 and |Ψ̃〉 are the ground states of HF and H̃F,
respectively.
By exact diagonalization, we obtain the ground-state

energies ǫB,F
✸ (m) in given m particles sectors, shown in

Table I in Appendix D. The number of unit cells is as-
sumed as N . From the results of exact diagonalization, a
lower bound for bosons is given by EB

0 ≥ −2N(t + t′)

when t′/t ≤ 2 −
√
2, or EB

0 ≥ −N(
√
2t + 3t′) when

2 −
√
2 < t′/t < 1. An upper bound for fermions is

given by the ẼF
0 , which is dependent on the density pat-

tern on the whole lattice. At half filling, an upper bound
of fermions is obtained as

EF
0 ≤ −2N(

√
2t− t′). (29)

Thus, when the ratio falls in this range t′/t < (
√
2−1)/2,

we have EB
0 > EF

0 .
Instead of searching an upper bound of fermions, the

ground-state energy of fermions can be exactly calculated
at certain filling. For convenience, t is set equal to 1. In
the single particle sector, the exact dispersion relations
are obtained by Fourier transformation:

E
(1)
± = ±

√

(t′)2 + 2− 2t′
√

1− sin (3kx) sin (3ky),

E
(2)
± = ±

√

(t′)2 + 2 + 2t′
√

1− sin (3kx) sin (3ky),

where (kx, ky) is the wavenumber which belongs to the
reduced Brillouin zone −π/3 ≤ kx,y < π/3. The ground-
state energy of fermions at µ = 0, which corresponds to
the half filling, is given as

EF
0 =

∑

kx,ky

[

E
(1)
− (kx, ky) + E

(2)
− (kx, ky)

]

. (30)

Under the assumption that the lattice is of size 9L2, the
number of unit cells N equals L2. In the thermodynamic
limit L → ∞, the ground-state energy of fermions per
unit cell at half filling is given by the integral of the lowest
two bands (shown in Fig. 2 (b)) in the reduced Brillouin

zone,

EF
0

N
=−

∫ π

−π

dk̃x
2π

∫ π

−π

k̃y
2π

[

√

(t′)2 + 2 + 2t′
√

1− sin k̃x sin k̃y

+

√

(t′)2 + 2− 2t′
√

1− sin k̃x sin k̃y

]

. (31)

It is easily verified that the reversed natural inequality
holds with small ratio of t′/t, by comparison of the lower
bound of bosons and numerical integral of Eq. (31) with
given value of t′. For example when t = 1 and t′ = 0.1,
EB

0 ≥ −2.2N > EF
0 = −2.831967N . When t′ = 0.4,

EB
0 ≥ −2.8N > EF

0 = −2.885971N. The exact result is
of course consistent with the rigorous upper bound (29).
Our conjecture that the reversed inequality is kept in

the coupled π-flux rings with weak enough inter-ring hop-
ping is now verified in coupled-square lattice. Moreover,
the validity of the conjecture should not depend on the
specific lattice. As another example, a proof of the re-
versed inequality for the breathing kagome lattice at cer-
tain filling, which can be regarded as an realization of a
coupled-triangle lattice, is presented in Appendix E.

C. System with flux in 2D and 3D

As we discussed in Sec. IVA, the energy difference be-
tween bosons and fermions on a ring is due to finite-size
effect, and indeed vanishes in the thermodynamic limit.
This is rather natural, it is only the entire system as a
ring that contains π flux. As a simple extension of the
idea, here we consider the two-dimensional square lattice
in a uniform magnetic field, described by the Hamilto-
nian:

H = −
∑

〈j,k〉

(

tjkc
†
jck +H.c.

)

, (32)

where tjk = t exp(iΦjk/Φ0) and t > 0. The flux pass-
ing through every plaquette is

∑

✷
Φjk = Φ. With pe-

riodic boundary condition, the total flux is quantized as
an integral multiple of flux quantum (Φ0 = hc/e is 2π
in our unit). The magnetic field introduces frustration,
through the existence of complex hopping amplitudes tjk.
To investigate all the possible values of flux per plaque-
tte, string gauge31 is employed. The string gauge is con-
structed as follows. First we choose (the center of) an
arbitrary plaquette S as the origin, and draw an oriented
path (arrow) from the origin S to every other plaque-
tte. Each oriented path consists of straight segments con-
necting the centers of neighboring plaquettes. Once such
paths are constructed, the vector potential on each link
is set to 2πmn/N , where m is the total number of arrows
cutting the edge from the left to the right with respect
to the direction of hopping, and n is an arbitrary integer
satisfying 0 ≤ n < N . Since one of the arrows terminates
in each plaquette, the flux piercing the plaquette is then
Φ = nΦ0/N . At the origin S, where N − 1 arrows flow
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FIG. 3. The energy density difference ∆ǫ = EB
0 /N − EF

0 /N
between bosons and fermions on (a) 4×7 and (b) 5×6 square
lattices, where ne is the number of particle per site and Φ/Φ0

is the number of the flux quanta per plaquette.

from, the flux appears to be Φ = −n(N − 1)Φ0/N in-
stead. However, this is equivalent to Φ = nΦ0/N , since
the flux per plaquette is defined only modulo Φ0. In this
way, the uniform flux nΦ0/N is realized in every plaque-
tte using the string gauge, although the vector potential
is generally not uniform (translation invariant).

By exact diagonalization, the ground-state energies of
bosons and fermions are obtained with different particle
densities (ne = M/N , where M is the number of parti-
cles) and various values of flux. The relative difference of
the ground-state energies in the 4 × 7 and 5 × 6 lattices
are shown in Fig 3. Here the ground-state energy den-
sity differences between bosons and fermions is shown
color-coded in the two-dimensional parameter space of
the particle density ne and flux density Φ/Φ0. The nat-
ural inequality holds in white regions, while it is violated
in colored regions. It should be noted that the viola-
tion is not necessarily related to band topology. In fact,
in the entire region of the parameter space except for
Φ = 0, each of the single particle bands are character-
ized by a non-vanishing Chern number32. Nevertheless,

the violation of the natural inequality does not happen
everywhere. Instead, as shown in Fig. 3, the violation
is nontrivially related to particle density or filling frac-
tion. (Nontrivial dependence on the filling is also found in
other models discussed in other sections). To understand
the physical origin of the filling-dependence of the relative
ground-state energy, one can recall statistical transmuta-
tion33,34 via a flux attachment. When Φ/Φ0 = ne, the
background magnetic field can be effectively absorbed by
attaching one flux quantum to each particle, at the mean
field level ignoring quantum fluctuations. The flux at-
tachment transforms fermions into bosons and vice versa.
In this picture, along the diagonal lines in the plot where
Φ/Φ0 = ne holds, fermions and hard-core bosons in the
magnetic field is mapped respectively to hard-core bosons
and fermions in zero field. According to Theorem 1, the
hard-core bosons have a lower ground-state energy than
fermions in zero field. It is thus implied that the violation
of the natural inequality would occur along the diagonal
lines. It should be noted that the flux attachment ar-
gument is not rigorous and its range of validity is not
established. Nevertheless, it is remarkable that our nu-
merical calculation indeed reveals the strongest violation
along the diagonal lines, as expected from the naive flux
attachment argument.

The effect of filling can also be understood in a different
way: the energy levels of free electrons (without a lattice
or a periodic potential) in a uniform magnetic field are
quantized into Landau levels, which can be regarded as
completely flat bands. In the presence of the lattice, each
Landau levels are split into dispersive subbands. Nev-
ertheless, one may still regard them as descendants of
the Landau level with small dispersion. Since the main
“disadvantage” of fermions for lowering the ground-state
energy is the Pauli exclusion principle which force some
of the fermions to occupy higher-energy states, less dis-
persive bands are helpful to reverse the natural inequal-
ity.(This mechanism will be discussed more explicitly in
Sec. IVD). The filling ne = Φ/Φ0 corresponds to com-
pletely filling the lowest Landau level, and thus can be
advantageous to reverse the natural inequality.

We note in passing that, although our numerical results
in Figs. 3 appear almost particle-hole symmetric, a care-
ful examination shows that it is not exactly particle-hole
symmetric. This is because the finite-size lattices used in
our calculations are not bipartite, due to the limitation of
the system sizes in the exact diagonalization calculation;
the bipartiteness is needed for the fermion system on a
finite lattice to possess the particle-hole symmetry.

We plotted Fig. 4 to show the finite-size scalings. Fig-
ure 4 is the finite-size scaling with (N/2 − 1)Φ0/N flux
per plaquette near half filling (N/2 − 1)/N . The ex-
act half filling on finite-size lattices (N/2 particles on N
sites) and the corresponding Φ0/2 flux per plaquette are
avoided to reduce the strong finite-size effect (oscillatory
behavior) due to commensuration, while the extrapola-
tion corresponds to the half filling in the thermodynamic
limit. The extrapolation suggests that the fermions have
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FIG. 4. Finite-size scaling of ground-state energies in two-
dimensional square lattice with (N/2− 1)Φ0/N flux per pla-
quette at filling fraction (N/2 − 1)/N . The fitting func-
tions are EB

0 /N = −0.7593 + 8.973/N2 + O(N−4) for hard-
core bosons and EF

0 /N = −0.9507 + 8.043/N2 + O(N−4)
for fermions respectively. The extrapolated ground-state en-
ergy density for fermions matches well with the exact result
−0.958091 in Eq. (33).

(a) (b)

FIG. 5. (a) The square lattice with π flux in each plaquette.
The brown cross represents a cluster of 12 sites. (b) The
energy bands in the first Brillouin zone.

a lower ground-state energy in the thermodynamic limit.
Actually, we can prove8 rigorously in the following that
this is indeed the case.
As proved by Lieb35, the optimal energy minimizing

flux is π per plaquette for square lattice at half filling.
Let us discuss the square lattice with π-flux per plaque-
tte, described by the Hamiltonian (32). For convenience,
we choose the gauge so that the hopping amplitude tjk is
+1 on the black links, and −1 on the blue ones as shown
in Fig. 5 (a). By taking a 2× 2 unit cell (which is twice
as large as the minimal magnetic unit cell), the disper-
sion relation is E± = ±

√

4 + 2 cos 2kx − 2 cos 2ky, where
(kx, ky) is the wavenumber which belongs to the reduced
Brillouin zone −π/2 ≤ kx,y < π/2. The bands in the
first Brillouin zone are shown in Fig. 5 (b). Each energy
level is doubly degenerate. The ground-state energy of
fermions at zero chemical potential, which corresponds
to the half filling, is given as EF

0 =
∑

kx,ky
2E−(kx, ky) ,

where the factor 2 comes from the double degeneracy.
For the square lattice of size Lx × Ly (N = LxLy),
kx,y is respectively quantized as integral multiples of
2π/Lx,y. Thus, in the thermodynamic limit Lx,y → ∞,
the ground-state energy of the fermionic model at µ = 0
is obtained exactly as

EF
0

N
= −1

2

∫ π

−π

dk̃x
2π

∫ π

−π

dk̃y
2π

√

4 + 2 cos k̃x − 2 cos k̃y

= −0.958091. (33)

The extrapolated ground-state energy density of fermions
from finite-size scaling in Fig. 4 matches well with the
exact result.
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FIG. 6. Finite-size scaling of ground-state energies in two-
dimensional square lattice with Φ0/4 flux per plaquette at
quarter filling. The fitting functions are EB

0 /N = −0.5877 −
3.405/N2 + O(N−4) for hard-core bosons and EF

0 /N =
−0.6853 − 4.125/N2 +O(N−4) for fermions, respectively.

We consider the grand canonical ground-state energy
of bosons at the same chemical potential (µ = 0). We
rewrite the Hamiltonian H =

∑

α hα, where hα =

− 1
2

∑

〈j,k〉∈+α
(tjkc

†
jck + H.c.) is the cluster Hamiltonian

defined on a 12-site cross-shaped cluster as shown in
Fig. 5 (a). The whole lattice is covered by the brown
cross-shaped clusters with the same pattern of hopping
amplitudes within the cluster, whose centers are denoted
by the black dots. Therefore, each cluster overlaps with
4 neighboring clusters and each link appears in two dif-
ferent clusters when periodic boundary conditions are
imposed. The factor 1/2 in hα compensates this dou-
ble counting. By the Anderson’s argument30,36,37, the
ground-state energy EB

0 of HB satisfies EB
0 ≥

∑

α ǫ
α
0 ,

where ǫα0 is the ground-state energy of hα. The ground-
state energy of hα on a cluster with a given particle
number m obtained by exact diagonalization is shown
in Table II in Appendix D. The grand canonical ground-
state energy of the cross-shaped cluster is obtained as
ǫα0 = −3.609035. Assuming the number of sites in the
square lattice is N , we obtain

EB
0 /N ≥ −3.609035/4 = −0.902259 > EF

0 /N, (34)
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where N/4 is the number of clusters. Thus hard-core
bosons have a higher ground-state energy than fermions
at half filling (µ = 0), even in the thermodynamic limit,
as expected from extrapolation from finite-size scaling
and statistical transmutation argument8,33,34,38,39.
We note that the choice of cluster decomposition is

not unique for a given model. In order to prove the re-
versal of the natural inequality, an appropriate choice of
the cluster decomposition with a sufficiently high lower
bound for the ground-state energy of bosons relative to
that of fermions is necessary. Here we have discussed
the decomposition into cross-shaped clusters, which can
be handled relatively easily but is still useful for prov-
ing the reversed natural inequality. Decomposition into
larger clusters is expected to give a more precise estima-
tion of a lower bound. Similar comment also applies to
the cluster decompositions discussed in Sec. IVD.
For other values of flux per plaquette or filling fraction,

there is no rigorous proof available at present. However,
the finite-size scaling of numerical data with Φ0/4 flux
per plaquette at quarter filling, shown in Fig. 6, suggests
that fermions have a lower ground-state energy in the
thermodynamic limit.
The violation of the natural inequality in systems with

flux is not restricted to two dimensions. We have indeed
proved that the natural inequality could be reversed in
a tight-binding model on a three-dimensional pyrochlore
lattice with flux8.

D. Cluster decomposition in flat band models

In this section, we present a rigorous proof that the re-
versed natural inequality also holds in several flat-band
models, even in the thermodynamic limit. Although the
existence of a flat band is neither a necessary nor suffi-
cient condition to violate Eq. (1), it does tend to help:
when the lowest flat band is occupied by the fermions,
there is no extra energy gain due to Pauli exclusion prin-
ciple. Therefore, the inversion of the natural inequality
has a better chance to be realized in flat band models.
Here we show that the inequality (1) is indeed violated
in a few examples with flat bands, by a cluster decompo-
sition technique.
First we discuss the delta-chain model, for which the

violation of Eq. (1) was numerically found for small clus-
ters40,41. The Hamiltonian of the model can be written
in the following form42,43:

H =

N
∑

j=1

a†jaj , (35)

where the a-operator, which acts on each triangle, is de-
fined as aj = c2j−1 +

√
2c2j + c2j+1. Periodic boundary

condition is used to identify c2N+1 with c1. The Hamil-
tonian H corresponds to a model with negative hopping
amplitudes tjk (as defined in Eq. (2)), which lead to frus-
tration.

FIG. 7. An example of decomposition of the delta-chain
Hamiltonian to clusters, with p = 4 unit cells including one
decoupled site at the top of the dashed triangle.

The model in the single-particle sector has two bands.
The lower flat band with zero energy is spanned by states
annihilated by aj ’s. We note that the Hamiltonian (35)
is modified from that in Ref. 40 by a constant chemical
potential, so that the flat band has exactly zero energy.
Thus the ground-state energy of the fermionic version of
the model (35) is zero as long as the filling fraction ν
satisfies ν ≤ 1/2.
On the other hand, in general, construction of the

ground state of a system of many interacting bosons is
not straightforward even if the single-particle states are
known exactly. However, the flat band in the geomet-
rically frustrated antiferromagnet also implies the exis-
tence of non-overlapping localized zero-energy states. It
was first pointed out in Ref. 44, and was later applied to
various problems45,46. In the case of the delta chain,
the ground-state energy EB

0 of bosons is zero as long
as ν ≤ 1/4, since each boson can occupy different non-
overlapping localized zero-energy state44–46.
Now let us derive a nontrivial lower bound for EB

0 for
filling fractions ν > 1/4. We decompose the model into
clusters, each containing p unit cells:

H =

N/p−1
∑

n=0

H(p)
n +

N/p
∑

n=1

a†npanp, (36)

where H(p)
n =

∑p−1
j=1 a

†
np+janp+j is the Hamiltonian for

the solid triangles as in Fig 7. Since the second term
∑N/p

n=1 a
†
npanp, describing hoppings on dashed triangles,

is positive semidefinite, the ground-state energy ẼB
0 of

the first term H̃ =
∑N/p−1

n=0 H(p)
n satisfies ẼB

0 ≤ EB
0 . H̃ is

a sum of mutually commuting cluster Hamiltonians H(p)
n .

Thus ẼB
0 is simply given by the sum of the ground-state

energies of all clusters. The particle number within each
cluster is also conserved separately in H̃. Let us choose
p = 4 as in Fig. 7, so that the cluster contains 8 sites.
The ground-state energy in each sector with fixed particle
number m is obtained by exact diagonalization of the 8-
site cluster, which is shown in Table III in Appendix D.

We find ǫ
(4)
0 (m) ≥ ∆

(4)
DC = 0.372605 for 4 ≤ m ≤ 8, while

ǫ
(4)
0 (m) = 0 for 0 ≤ m ≤ 3.
If we consider the filling fraction in the range 3/8 <

ν ≤ 1/2, it follows from Dirichlet’s box principle that
there is at least one cluster which contains 4 or more
particles. Thus, in this range, ẼB

0 ≥ ∆
(4)
DC for any system

size N , while EF
0 = 0. Therefore, the inversion of the

ground-state energies holds also in the thermodynamic
limit.
The outcome of the above argument depends on the
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FIG. 8. The 12-site clusters of “Star of David” shape are
shown in solid lines on kagome lattice.

cluster size taken. In fact, the range of filling fraction ν
for which we have proved the violation of Eq. (1) is not
optimal. In Appendix. F, using a different technique, we
will extend the range to 1/4 < ν ≤ 1/2; the lower bound
1/4 is in fact optimal.
This method can be easily extended to other lat-

tices. For example, the standard nearest-neighbor hop-
ping model on the kagome lattice can be written as

H =
∑

α

a†△α
a△α

+
∑

α

a†▽α
a▽α

, (37)

where △α and ▽α are elementary triangles pointing up
and down, respectively, of the kagome lattice, as shown
in Fig. 8. We define a△α

≡ cα1
+ cα2

+ cα3
, where α1,2,3

refer to the three sites belonging to △α, and likewise for
a▽α

. The fermionic version of the model has three bands,
the lowest of which is a flat band at zero energy43,47,48.
Thus EF

0 = 0 when ν ≤ 1/3.
For the ground-state energy of the bosonic version, we

can use the cluster decomposition technique similar to
what we have discussed above for the delta-chain. Let us
choose the 12-site cluster of the “Star of David” shape,
which is shown by solid lines in Fig. 8. The ground-
state energy of the cluster in each sector with m parti-
cles is shown in Table IV in Appendix D. The ground-
state energy ǫcluster0 of each cluster is zero with m ≤ 3,
but is positive with m ≥ 4. Thus, invoking Dirichlet’s
box principle again, Eq. (1) is violated for filling fraction
1/4 < ν ≤ 1/3. This conclusion also holds in the ther-
modynamic limit, where the system size N is taken to
the infinity while keeping the filling fraction ν constant.

E. Extension to interacting systems

Throughout most of this paper, we limited the inter-
actions to the hard-core ones for technical simplicity:
fermions are then free, while bosons are subject only
to the hard-core interaction. Here we comment briefly
on the effect of the other possible interactions. Theo-
rems 1, 2 and 3 are actually valid even in the presence of
density-density interactions other than the hard-core in-
teraction. Introduction of additional density-density in-
teractions should not essentially modify the comparison
of the ground-state energies, as it would affect bosonic

and fermionic models in a similar manner. For example,
the interaction terms are introduced in diagonal terms in
the matrix of Hamiltonian in Theorem 1, which do not
affect the conclusion of the comparison. Therefore, in
order to understand the essence of physics in the present
problem, it would suffice to consider the hard-core inter-
actions only.
That said, in fact, one can actually prove that the in-

equality (1) is violated even in the presence of an addi-
tional density-density interactions in the one-dimensional
ring with π flux discussed in Sec. IVA. This can be seen
by noting that Jordan-Wigner transformation applies re-
gardless of the presence of density-density interactions,
and implies

EF
0 (Φ = π) = EB

0 (Φ = 0), (38)

where the number of particles is assumed to be even.
Then we see that a lattice version of Simon’s theorem19

also applies in the presence of the interaction:

EB
0 (Φ = π) ≥ EB

0 (Φ = 0), (39)

giving EB
0 (Φ = π) ≥ EF

0 (Φ = π). Furthermore, under
appropriate assumptions, it is possible to prove the strict
inequality EB

0 (Φ = π) > EF
0 (Φ = π) in the presence

of interaction, with an argument similar to the proof of
Theorems 1 and 4.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have proved that the ground-state
energy of hard-core bosons is lower than that of fermions
if there is no frustration in the hopping.
The effect of the statistical phase of fermions can then

be understood as a frustration, since it results in de-
structive quantum interferences among different paths.
In fact, the phase introduced by Fermi statistics can be
effectively described by a magnetic flux, after the map-
ping to the single-particle tight-binding model on a fic-
titious lattice which represents the Fock space. In this
sense, the non-strict version of the natural inequality is a
corollary of the lattice version of the diamagnetic inequal-
ity. On the other hand, we also proved a strict version of
the natural inequality, under certain conditions. The key
of the proof is the contribution of an exchange process
of two particles, which is exactly what demonstrates the
statistics of the particles. The argument is also applied
to prove the strict version of the diamagnetic inequality
on the lattice.
Once a magnetic flux is introduced in the original

many-particle problem, the hopping terms can be frus-
trated. The hopping frustration can partially cancel the
statistical frustration of fermions, hinting at the possi-
bility that the natural inequality can be reversed in the
presence of hopping frustration. We proved rigorously
that the natural inequality is indeed reversed in the pres-
ence of frustration, in various examples. They include
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one-dimensional π-flux ring, coupled rings in two dimen-
sions, systems with flux in 2D and 3D, flat band models
by cluster decomposition technique. Finally, we demon-
strated an example of the violation of natural inequality
with other interaction than hard-core constraint.

In this paper, we focused on the case of hard-core
bosons for simplicity. However, Theorems 1, 2 and 3 can
be readily generalized to soft-core bosons. This is be-
cause hard-core bosons can be regarded as a special limit
of more general interacting bosons. That is, we can in-
troduce the on-site interaction U

2 ni(ni−1); the hard-core
constraint can be then implemented by taking U → +∞.
The on-site interaction term is positive semi-definite for
bosons, if U ≥ 0. Thus the hard-core bosons have a
higher ground-state energy than that of soft-core bosons
at finite U . This implies the applicability of Theorems 1,
2 and 3 to the soft-core bosons.

Our analysis of the hard-core boson model also sug-
gests that the natural inequality for soft-core bosons
could be reversed by introducing the hopping frustra-
tions. However, soft-core bosons are closer to free bosons,
which never violate the natural inequality because of the
simple argument based on perfect BEC. Thus the viola-
tion would be more difficult to be realized in soft-core
bosons, compared to the hard-core bosons discussed in
this paper. Other open problems include comparison in
the presence of other degrees of freedom such as the or-
bital/flavor of particles. The non-strict version of the
theorems can be easily generalized to the case with mul-
tiple orbitals/flavors.

In this paper, we have also discussed briefly the com-
parison of the ground-state energies of spinful bosons and
fermions. The natural inequality still holds in the ab-
sence of hopping frustration. Although we did not dis-
cuss explicitly for spinful particles, the natural inequal-
ity is expected to be violated by introducing appropriate
hopping frustration.

Here it should be recalled that, physical magnetic field
not only introduces phase factors in hopping terms, but
is also coupled to the spin degrees of freedom via Zee-
man term. Thus, Zeeman term should be also taken into
account, in order to discuss a physical magnetic field ap-
plied to the system of charged particles. The Zeeman
term acts as different chemical potentials for up-spin and
down-spin particles. Thus much of the discussion in the
present paper is still applicable. For example, in the ab-
sence of hopping frustration, the natural inequality still
holds even in the presence of the Zeeman term. Once
hopping frustration is introduced, the natural inequality
can be violated. However, exactly how the violation of
the natural inequality occurs does depend on the chem-
ical potential, and on the Zeeman effect in the case of
spinful particles.

On the other hand, we also note that phase factors in
hopping terms and Zeeman coupling are two distinct ef-
fects, which in principle can be controlled independently.
In fact, for neutral cold atoms, the phase factor in hop-
pings are usually introduced as “synthetic gauge field”49,

instead of the physical magnetic field. This does not pro-
duce Zeeman coupling, making it possible to study the
effect of hopping frustrations separately from that of the
Zeeman effect.
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Appendix A: Proof of Theorem 2

Proof. Since the total number operator M =
∑

jσ njσ

and total magnetization Sz = 1/2
∑

j(nj↑ − nj↓) com-

mute with the Hamiltonian (9), one can diagonalize the
Hamiltonian in each sub-Hilbert space with fixed val-
ues of M and Sz. Each sub-Hilbert space has defi-
nite numbers of up-spin and down-spin particles. Let
|φµ〉↑ ≡ |{nµ

j↑}〉 (µ = 1, 2, · · · , u) be the occupation

number basis for up-spin particles, and |ψν〉↓ ≡ |{nν
j↓}〉

(ν = 1, 2, · · · , v) be the occupation number basis for
down-spin particles. Then, we can take the direct prod-
uct |Φa〉 = |ψν〉↓ ⊗ |φµ〉↑, where a = 1, 2, · · · , uv, as the
basis of the sub-Hilbert space mentioned above.
The Hamiltonian can be rewritten as:

H = Ht +Hint, (A1)

Ht = 1
↓ ⊗H↑

t +H↓
t ⊗ 1

↑, (A2)

where Hσ
t = −

∑

j 6=k(tjkc
†
jσckσ + H.c.). The matrix ele-

ments of the number operator njσ are the same in this
basis, for hard-core bosons and fermions. We introduce
the operator KB,F ≡ −HB,F + C1 with a constant C.
Choosing C large enough, we make all the eigenvalues
and all the diagonal matrix elements of KB,F positive.
The matrix elements of bosonic and fermionic Hamilto-
nians obey the relation:

KB
ab =

{

|KF
ab| (a 6= b)

KF
aa (a = b),

(A3)
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where the diagonal terms correspond to Hint and the off-
diagonal terms correspond toHt. The non-strict inequal-
ity is easily proved by variational principle in the same
manner employed in Proof of Theorem 1. Here, we focus
on the discussion on strict natural inequality for spinful
case with finite Uj .
With finite Uj ’s, one site can be occupied by one spin-

up particle and one spin-down particle. Thus spin-up
particles can move as spinless particles for any given
configuration of spin-down particles, and vice versa. Of
course, the interaction term Hint, which is diagonal in
this basis, is affected by the presence of particles with
opposite spins. However, as far as the irreducibility (con-
nectivity) of Hamiltonian is concerned, one can regard
the system as two independent systems of hard-core par-
ticles. As a consequence, when the lattice Λ is connected,
any pair of basis states |Φa〉B and |Φb〉B are connected
to each other by successive applications of the hopping
term in KB. Together with the property KB

ab ≥ 0, KB

satisfies the condition of the Perron-Frobenius theorem.
When the number of particles M ≥ 3, there are at
least two particles with the same spin. The condition
M ≤ 2N − 3 guarantees that there are at least two
spaces which can accommodate two particles with the
same spin. Thus, when the number of particles falls in
the range 3 ≤ M ≤ 2N − 3, we can exchange two iden-
tical particles and return back to the same state, based
on the branch structure as in Fig. 1. Therefore, when
Uj ’s are finite, the lattice is connected and has a branch
structure, and 3 ≤ M ≤ 2N − 3, two-particle exchange
always happens. As in the proof of Theorem 1 for spin-
less case, the strict inequality EB

0 < EF
0 follows from the

Perron-Frobenius theorem.

Appendix B: Remarks about the proof of Theorem 3
and discussions

The no-strict inequality remains unaffected by taking
Uj = +∞. Here, we focus on a sufficient condition for
strict natural inequality with infinite repulsion, for spin-
ful case.
With infinite on-site repulsion, the maximum number

of particles is N . The condition M ≥ 3 is to guarantee
there are at least two particles with the same spin such
that they can be exchanged. For a lattice connected by
exchange bonds, two particles on an exchange bond can
be exchanged without changing the configuration out-
side, by hopping a hole around the loop on which both
the exchange bond and the hole lie14. Hence, when the
number of particle M satisfies 3 ≤ M ≤ N − 1, two
particles with the same spin can be exchanged on an
exchange-bond lattice by successive particle hoppings.
The property that the entire lattice is connected by

exchange bonds can be verified14 in various common lat-
tices, such as triangular, square, simple cubic, fcc, or bcc
lattices, in which nearest neighbor sites are connected
by nonvanishing hopping amplitudes. Thus, the above

theorem holds for these lattices.

We also note that, Nagaoka’s ferromagnetism only ap-
plies to the system with single hole with respect to half
filling. However, this restriction is only necessary to guar-
antee that all the matrix elements are nonnegative. The
irreducibility of the Hamiltonian matrix does not require
that there is only one hole. In fact, the breakdown of
the positivity in the presence of more than one holes in
the Hubbard model with Uj = +∞ is precisely due to
the Fermi statistics of the electrons. If we consider the
“Bose-Hubbard model” with spin-1/2 bosons instead of
electrons, all the matrix elements are nonnegative in the
occupation number basis, for any number of holes. Thus
the Bose-Hubbard model with spin-1/2 bosons exhibit
ferromagnetism for any filling fraction50. This nonnega-
tivity of the matrix elements for bosons is also essential
for Theorem 3, which holds for any filling fraction.

The proofs of Theorems 1 and 2 are insensitive to the
signs of the interaction terms Vjk and Uj. Namely the
natural inequality holds no matter the interaction is re-
pulsive or attractive. The interesting aspect of the at-
tractive interaction is that it will induce Cooper pair of
fermions. In the case of spinless fermions, orbital part
of the Cooper pair wavefunction must be antisymmetric
with respect to the exchange of two fermions. This results
in an extra cost in the kinetic energy. Such a fermionic
BEC state thus has a higher ground-state energy than
its bosonic counterpart, in full agreement of Theorem 1.

In contrast, in the case of spinful fermions, with attrac-
tive interaction, fermions could pair up in the nodeless
s-channel. In this case, there is no obvious reason why the
fermions have a higher ground-state energy than bosons.
Nevertheless, according to Theorem 2, spinful fermions
still have strictly higher ground-state energy than corre-
sponding bosons, even when the pairing is in the nodeless
s-channel.

This can be interpreted physically in the following way.
If the paring of two particles is completely robust, the
problem is reduced to the identical problem of bosonic
“molecules”, whether the original particles are fermions
or bosons. Then the ground-state energies should be the
same for fermions and bosons. However, in general, the
pairing is not completely robust, and two pairs can (vir-
tually) exchange each one of their constituent particles.
The amplitude for such a process has negative sign only
for fermions, leading to the nonvanishing energy differ-
ence between fermions and bosons. The exception oc-
curs when the on-site attractive interaction between up
and down spin particles is infinite (Uj = −∞). Then
the pairs are completely robust, and no virtual exchange
of constituent particles occurs; the ground-state energies
for fermions and bosons become identical in this limit.
On the other hand, with the infinite attraction, the irre-
ducibility can not be satisfied. Because a hopping of a
molecule requires its breaking, which costs an infinite en-
ergy and is thus prohibited. This implies that the bosonic
molecules are completely localized in the model (9). Thus
the natural inequality is reduced to the trivial equality
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EB
0 = EF

0 in the limit Uj → −∞ .

FIG. 9. A 4-site lattice with four spins at half filling and
Sz = 0.
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FIG. 10. Difference of ground-state energy (∆E = EB
0 −EF

0 )
between hard-core bosons and fermions on the 4-site lattice
with a branch, in Sz = 0 sector with 4 spins. The absolute
value of energy difference decreases down to ∼ 10−8t around
|U |/t = 100.

In the following, as an example, we numerically demon-
strate above observations in spinful hard-core Bose-
Hubbard and Fermi-Hubbard models on a 4-site lattice
as shown in Fig. 9. The Hamiltonian is given by

H = −t
∑

〈i,j〉

∑

σ

(c†iσcjσ +H.c.) + U
∑

j

nj↑nj↓, (B1)

where t > 0, 〈i, j〉 denotes a pair of neighboring sites,
and the hard-core constraint njσ = 0, 1 is again imposed
for the bosons. We consider the spin-1/2 bosons and
fermions at half filling (the total number of particles per
site ν = 1) and Sz = 0. That is, on this 4-site cluster,
there are two up-spin particles and two down-spin parti-
cles. The energy difference between spinful bosons and
spinful fermions (∆E = EB

0 −EF
0 ) is shown as a function

of U = Uj in Fig. 10.
Conforming to Theorem 2, EB

0 ≤ EF
0 holds for all range

of U , independent of the sign of U . Moreover, ∆E(U) is
symmetric along U = 0 due to particle-hole symmetry of
Hubbard model at half filling ν = 151.
When U is finite, fermions have strictly higher ground-

state energy than bosons, again in agreement with the
latter half of Theorem 2. When U = +∞, on the other
hand, the particles are completely immobile at half-filling
and thus no particle-exchange occurs. The ground-state
energy is indeed exactly the same for fermions and for
bosons in this limit. Likewise, in the limit of U = −∞,
either bosons or fermions form completely robust (and

immobile) pairs, and the ground-state energies are ex-
actly the same. In the present case, this can also be un-
derstood as a consequence of the particle-hole symmetry
at half filling51, which maps U → −U .

Appendix C: Proof of Theorem 4

Proof. The proof is similar to that of Theorem 1. We can
define the matrices K, K′ by

Kαβ ≡ ταβ + Cδαβ , (C1)

K′
αβ ≡ τ ′αβ + Cδαβ , (C2)

with a sufficiently large constant C so that K and K′ is
positive definite. We then define L ≡ Kn and L′ ≡ K′n,
for the length n of the loop with a nonvanishing flux. The
positive definiteness of K and K′ implies that L and L′

are also positive definite, and thus all the diagonal matrix
elements Lαα and L′

αα are strictly positive. Similarly to
the proof of Theorem 1, L′

αβ ≥ |Lαβ | holds for any α, β.
In particular, the diagonal matrix elements of L′ and L
are expanded as

L′
α0α0

=
∑

α1,··· ,αn−1

K′
α0α1

K′
α1α2

. . .K′
αn−1α0

, (C3)

Lα0α0
=

∑

α1,··· ,αn−1

Kα0α1
Kα1α2

. . .Kαn−1α0
. (C4)

Each term in the expansion satisfies

K′
α0α1

K′
α1α2

. . .K′
αn−1α0

≥
∣

∣Kα0α1
Kα1α2

. . .Kαn−1α0

∣

∣ ,

(C5)

thanks to K′
αβ ≥ |Kαβ |. By assumption, there is a non-

vanishing contribution to Lα0α0
from the loop of length

n,

Kα0α1
Kα1α2

. . .Kαn−1α0
= τα0α1

τα1α2
. . . ταn−1α0

, (C6)

which is not positive. Here we used the fact that the off-
diagonal elements of K and τ are identical. Combining
with the contribution from its reverse loop

Kα0αn−1
Kαn−1αn−2

. . .Kα1α0
, (C7)

which is the complex conjugate of Eq. (C6), we find the
strict inequality

K′
α0α1

K′
α1α2

. . .K′
αn−1α0

+ c.c.

> Kα0α1
Kα1α2

. . .Kαn−1α0
+ c.c.. (C8)

Thus L′
α0α0

> Lα0α0
> 0. Invoking the Perron-Frobenius

theorem again, the strict diamagnetic inequality (14) is
proved.

Appendix D: supporting results of diagonalization

involved in this work

The results of numerical exact diagonalization on finite
lattices are presented here to assist the proofs in the main
text.
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m ǫF✸(m) ǫB✸(m)

1 −
√
2t+ t′ −

√
2t− t′

2 −2
√
2t+ 2t′ −2t− 2t′

3 −
√
2t+ 3t′ −

√
2t− 3t′

4 4t′ −4t′

TABLE I. The ground-state energies of fermions and hard-
core bosons on a thick-line square as shown in Fig. 2 (a),
where m is the number of particles on a π-flux square. The
results are used in the proof of π-flux octagon-square model
in Sec. IVB.

m ǫα0 (m)

0 0
1 -1.096997
2 -2.013783
3 -2.629382
4 -3.086229
5 -3.415430
6 -3.609035
7 -3.415430
8 -3.086229
9 -2.629382
10 -2.013783
11 -1.096997
12 0

TABLE II. The lowest energies of π-flux model on a 12-site
cross-shaped cluster, as shown in Fig. 5 (a). Here m is the
number of particles on the cluster. It shows that ǫα0 (m = 6)
is the lowest ground-state energy. The results are used in the
proof in Sec. IVC.

Appendix E: coupled triangles

The second example to show the natural inequal-
ity is reversed in coupled rings as in Sec. IVB is
the π-flux hexagon-triangle lattice, which is shown in
Fig. 11 (a). This is actually a breathing kagome
lattice. In the vanadium oxyfluoride compound
(NH4)2[C7H14N][V7O6F18](DQVOF), the V4+ ions re-
alize a breathing kagome lattice52, topological equivalent
to the hexagon-triangle as we discussed here. One unit
cell is shown in green in Fig. 11 (a), with basis vectors

~a1 = (0, 1) and ~a2 = (1/2,
√
3/2). The Hamiltonian is

defined as

H = −t
∑

〈i,j〉∈thick, oriented

eiπ/3c†i cj−t′
∑

〈i,j〉∈broken

c†icj+H.c.,

(E1)
where “thick, oriented” and “broken” links are specified
in Fig. 11(a). This model can be regarded as triangles
with π-flux, coupled by weak hopping t′. To obtain a
lower bound for the ground-state energy of bosons and
an upper bound for that of fermions, the Hamiltonians
are written as HF =

∑

△ hF△ −A and HB =
∑

△ hB△ +B

with the same definitions of A and B in Eqs. (22)(23),

m 1 2 3 4 5 6 7 8

ǫ
(4)
0 (m) 0 0 0 0.372605 1.838145 4.323487 8 12

TABLE III. Ground-state energy ǫ
(4)
0 (m) of the cluster Hamil-

tonian H(4)
n for delta-chain model, as shown in Fig. 7, with

m particles in a cluster. It shows the ground-state energy of
the 8-site cluster is strictly positive when there are no less
than four particles on this cluster. The results are used in
Sec. IVD.

m ǫcluster0 (m)

1 0
2 0
3 0
4 0.311475
5 0.937767
6 1.706509
7 3.365207
8 5.196963
9 7.456468
10 10.393543
11 14
12 18

TABLE IV. The lowest energies of cluster Hamiltonian
Hcluster on 12-site “Start of David” shape as shown in Fig. 8,
in sectors with different numbers of particles m. It shows the
ground-state energy of one cluster is strictly positive when
the number of particles on this cluster m ≥ 4. The results are
used in Sec. IVD.

where hF△ = −t
∑3

i=1(e
iπ/3c†i ci+1 + H.c.) + 2t′

∑3
i=1 c

†
i ci

and hB△ = −t∑3
i=1(e

iπ/3c†ici+1 + H.c.) − 2t′
∑3

i=1 c
†
ici,

the cluster Hamiltonians defined on a solid-line pointing
up triangle. Therefore, we have EB

0 ≥ ∑

△i
ǫB△i

, EF
0 ≤

∑

△i
ǫF△i

. The ground-state energies in given m-particle
sectors are displayed in Table V in Appendix D. A lower
bound for bosons is now given by EB

0 ≥ −N(t + 4t′)
when t′/t ≤ 1/2 or EB

0 ≥ −6Nt′ when 1/2 < t′/t < 1,
where N is the number of unit cells. An upper bound
for fermions is given by ẼF

0 , which also depends on the
density pattern on the whole lattice. At 2/3 filling, we
find EF

0 ≤ −2N(t − 2t′)N . According to the results of
exact diagonalization on a cluster, we find when t′/t <

m ǫF△(m) ǫB△(m)

1 −t+ 2t′ −t− 2t′

2 −2t+ 4t′ −t− 4t′

3 6t′ −6t′

TABLE V. The ground-state energies of fermions and hard-
core bosons on a thick-line up triangle as shown in Fig. 11(a),
where m is the number of particles on a triangle. The re-
sults are used in the proof of π-flux hexagon-triangle model
in Appendix E.
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π π

ππ

(a) (b)

(c)

FIG. 11. (a) π-flux hexagon-triangle lattice, in which a unit
cell is shown in green. (b) The first Brillouin zone. The basis

vectors are denoted by ~b1 and~b2. (c) Dispersions of the lowest
two bands with t = 1, t′ = 0.2.

1/8, EB
0 ≥ −N(t+ 4t′) > −2N(t− 2t′) ≥ EF

0 . Thus the
reversal of the inequality is proved.

The second approach for the ground-state energy of
fermions is based on an exact evaluation. The dispersion
relations are (t=1 is assumed):

E(1) =
1

2
(1− t′ −

√

9(t′)2 + 6t′ + 9 + 8t′Λ(~k)),

E(2) = t′ − 1,

E(3) =
1

2
(1− t′ +

√

9(t′)2 + 6t′ + 9 + 8t′Λ(~k)),

where Λ(~k) = cos k1 + cos k2 − cos k3, k1,2 = ~k · ~a1,2 and
k3 = k1−k2. The ground-state energy of fermions at 2/3
filling is given by the integral of the lowest two bands in
the Brillouin zone, which is shown in Fig. 11 (c),

EF
0 =

∑

kx,ky

[

E(1)(kx, ky) + E(2)
]

=

√
3N

2

∫∫

BZ

dkx
2π

dky
2π

[

E(1)(kx, ky) + E(2)
]

,(E2)

where kx,y ∈ BZ as shown in Fig. 11 (b). The basis vec-

tors ~b1 and ~b2 are chosen accordingly as 2π(1, −1/
√
3)

and 2π(0, 2/
√
3), respectively. The reversed natural in-

equality holds when t′ ≪ t. For example, when t = 1
and t′ = 0.1, EB

0 ≥ −1.4N > EF
0 = −2.004349N ; when

t′ = 0.2, EB
0 ≥ −1.8N > EF

0 = −2.017037N .

FIG. 12. Schematic figure of mapping to particle configura-
tions in one-dimensional chain with nearest neighbor exclu-
sion. Localized zero-energy states(valley states)are shown in
blue lines.

Appendix F: Optimal lower bound of filling fraction

of the violation in delta-chain model

Let us improve the estimate of the range of the filling
fraction, for which the violation of Eq. (1) occurs on the
delta-chain model, as discussed in Sec. IVD. Our result is
that the violation occurs, namely the reversed inequality
EB

0 > EF
0 holds, for 1/4 < ν ≤ 1/2. In fact, in this range

of filling, the ground-state energy of bosons is strictly
positive while the ground-state energy of fermions is zero.
To prove this, consider Bose-Hubbard model (without

hard-core constraint) with finite on-site U > 0 in the
enlarged Hilbert space first,

H = Hhop +Hint,

Hhop =

N
∑

j=1

a†jaj ,

Hint =
U
2

2N
∑

i=1

ni(ni − 1),

where ni = c†i ci, and [ci, c
†
j ] = δij for bosons. The defi-

nition of a-operator is the same as aj = c2j−1 +
√
2c2j +

c2j+1. The hard-core constraint can be implemented by
taking U → ∞, and this problem is reduced to equa-
tion (35) in this limit.
Obviously, the hopping term Hhop is positive semi-

definite. The on-site interaction, U term, is also positive

semi-definite because U
2 ni(ni−1) = U

2 c
†
ic

†
i cici for bosons.

As a consequence, none of the eigenvalues can be nega-
tive. Therefore, any state with EB = 0 is a ground state.
If such a ground state |ΦGS〉 exists, it satisfies

Hhop|ΦGS〉 = Hint|ΦGS〉 = 0, (F1)

namely |ΦGS〉 a simultaneous zero-energy ground state
of Hhop and Hint. Therefore, we first seek zero-energy
ground states of Hhop and Hint, separately.
Localized-electron states are discussed in the field of

flat-band ferromagnet of Fermi-Hubbard model42,43,47,53.
We can construct the localized state for bosons in a
similar way. Consider the zero-energy ground state of
Hhop first. Define b-operator as bj = c2j −

√
2c2j+1 +

c2j+2. Because b-operators commute with any a-

operator, [ai, b
†
j] = 0 for any i and j, the single-particle

flat band with EB
0 is spanned by b†j |0〉. Note that these
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states b†j|0〉 are linearly independent but not orthogonal

to each other. The zero-energy state (valley state) b†j |0〉 is
shown in Fig. 12 by blue lines. It is the first excited state
of spin-1/2 antiferromagnetic Heisenberg model near sat-
uration field, with single magnon trapped in the valley
of the delta-chain44–46. The current setup corresponds
to the magnetic field exactly at the saturation field, so
that these trapped magnons are exactly at zero energy.
The ground state of Hhop can be constructed out of b-
operators as,

|ΦB
0 〉 =

∑

{n1,··· ,nN}

f(n1, · · · , nN)(b†1)
n1(b†2)

n2 · · · (b†N )nN |0〉,

(F2)
where nj = 0, 1, 2, · · · and f(n1, · · · , nN) is the coeffi-
cient. It is easy to confirm Hhop|ΦB

0 〉 = 0, by using the

commutation relation [ai, b
†
j ] = 0.

Now we require those zero-energy ground states (F2)
of Hhop to satisfy Hint|ΦB

0 〉 = 0. This is equivalent to
require cici|ΦB

0 〉 = 0, which imposes restrictions on the
coefficients f(n1, · · · , nN). We first note that

c22j+1|ΦB
0 〉 =

∑

{n1,··· ,nN}

2nj(nj − 1)f(n1, · · · , nN )×

(b†1)
n1 · · · (b†j)nj−2 · · · (b†N )nN |0〉. (F3)

Then the linear independence of b-operators, together
with c22j+1|ΦB

0 〉 = 0, implies that f(n1, · · · , nN ) = 0 if
there exists j such that nj > 1. We thus restrict our
attention to the case where nj = 0 or 1 for all j in the
sum. We successively find

c22j |ΦB
0 〉 =

∑

{n1,··· ,nN}

2nj−1njf(n1, · · · , nN )×

(b†1)
n1 · · · (b†j−1)

nj−1−1(b†j)
nj−1 · · · (b†N )nN |0〉,

(F4)

where nj = 0 or 1 has been applied. From the lin-
ear independence of b-operators and c22j |ΦB

0 〉 = 0, we
see that f(n1, · · · , nN ) = 0 if there exists j such that
njnj−1 6= 0. This implies that, for bosons, in the con-
struction of the zero-energy ground state, b†-operators
on adjacent valleys cannot be applied on the vacuum
|0〉. Thus, the zero-energy ground states are in one-to-
one correspondence with particle configurations in one-
dimensional chain with nearest neighbor exclusion. This
mapping is schematically shown in Fig. 12. In the range
ν ≤ 1/4, we can find a particle configuration that satis-
fies the exclusion rule. However, in the case ν > 1/4 we
cannot find such configuration, implying the absence of
zero-energy state.

The zero-energy ground states remain as ground states
for any U > 0, and hence in the limit U → ∞. Since the
on-site U term is positive semi-definite, no state joins
the zero-energy sector with increasing U . Therefore, the
ground-state energy of hard-core bosons (corresponding
to infinite U) is strictly positive in the range of filling
ν > 1/4.

FIG. 13. One example of uncontractible cycle sets on hon-
eycomb lattice, which is constituted by two uncontractible
cycles.

On the other hand, for fermions, {ai, b†j} = 0 holds for
any i and j. The zero-energy state for fermions in the
range of filling fraction ν ≤ 1/2 can also be constructed
by b operators,

|ΦF
0 〉 =

∑

{n1,··· ,nN}

f(n1, · · · , nN)(b†1)
n1(b†2)

n2 · · · (b†N )nN |0〉,

(F5)
where nj = 0, 1. It is easy to confirm that this is the
zero-energy state of H because Hhop|ΦF

0 〉 = 0, and Hint

vanishes. We conclude the reversed inequality EB
0 > EF

0

holds in the range 1/4 < ν ≤ 1/2.
From the above analysis, it also follows that both

bosonic and fermionic systems have exactly zero-energy
ground states for ν ≤ 1/4. Thus the lower bound of the
range of the filling fraction for the reversed inequality to
hold, 1/4, is in fact optimal.
An argument similar to the above for delta-chain model

can be employed for kagome lattice, to extend the range
of filling fraction where the natural inequality is violated.
The zero-energy states for kagome lattice (the line graph
of honeycomb lattice) are in one-to-one correspondence
with uncontractible cycle sets on the honeycomb lattice,
as defined in Ref. 54 in terms of graph theory. An ex-
ample of uncontractible cycle sets is shown in Fig. 13.
It can then be deduced that the zero-energy states exist
for ν ≤ 1/9. The uncontractible cycle sets are given by
close-packed hard hexagons44,45,54 at the critical value
ν = 1/9, and do not exist for ν > 1/9. Therefore,
the range of filling fraction in which EB

0 > EF
0 holds

on kagome lattice, is extended to 1/9 < ν ≤ 1/3.
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