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Topological spin liquids can be described by topological gauge theories with global symmetry. Due to the

presence of both nontrivial bulk deconfined gauge fluxes and global symmetry, topological spin liquids are

examples of the so-called “Symmetry Enriched Topological phases” (SET). In this paper, we find that, in some

twisted versions of topological gauge theories (with discrete Abelian gauge group Gg), implementing a global

symmetry (denoted by Gs) is anomalous although symmetry charge carried by topological point-like excitations

is normally fractionalized and classified by the second cohomology group. To demonstrate the anomaly, we fully

gauge the global symmetry, rendering a new gauge theory that is not gauge invariant. Therefore, the SET order

of the ground state is anomalous, which cannot exist in 3D system alone. Such anomalous state construction

generalizes the “2D surface topological order” to 3D. A concrete example with Gg = Z2 × Z4 and Gs = Z2 is

calculated.

Electron spins in quantum spin liquids (QSL) point in

many different directions simultaneously1. It results in ab-

sence of any conventional ordered patterns (e.g., spin den-

sity waves). Despite featureless patterns of orders, topologi-

cal QSLs in two dimensions may host emergent excitations—

anyons. Braiding them mutually leads to a set of braiding

statistics data. However, practically, it is very challenging to

perform such braiding experiments. For QSLs that respect a

certain symmetry, there are conventional experiments to diag-

nose them since the quantum numbers carried by anyons may

couple to injected objects (e.g., neutrons in neutron scattering

experiments). As a result, it is of theoretical interest to explore

how symmetry enriches QSLs, which may help us design and

guide experiments on characterizing two-dimensional QSLs.

This line of thinking motivated the theoretical development of

“symmetry-enriched topological phases” (SET)2.

SETs are long-range entangled quantum matters where bulk

fractionalized excitations (due to the existence of topologi-

cal order) may carry fractionalized quantum number of some

global symmetry. In two dimensions (2D), the mathematical

framework of SET phases has been established3 (see, e.g., a

recent review4). However, discussions of 3D SET phases are

rare. On the experimental side, there are several realistic pro-

posals of Z2 spin liquids, such as the so-called Kitaev spin

liquid state in the lattices of β- and γ-Li2IrO3 type5–11. If

an unbroken spin symmetry is considered, the ground state

should exhibit an SET order. Theoretically, some attempts

have been made, such as Ref.12–20.

Description of an SET phase requires the knowledge of

bulk topological order. Although a full knowledge of 3D topo-

logical orders is lacking, there is a subset that can be stud-

ied analytically. In the subset, all topological orders are de-

scribed by twisted gauge theories21 of a discrete gauge group

Gg = ZN1
×ZN2

× · · · . In the field-theoretic expression, the

action is given by:

S =i
∑

I

NI

2π

ˆ

bI ∧ daI + i
∑

IJK

qIJK

4π2

ˆ

aI ∧ aJ ∧ daK

+ i
∑

IJKL

tIJKL

8π3

ˆ

aI ∧ aJ ∧ aK ∧ aL , (1)

where {qIJK} and {tIJKL} are two sets of coefficients which

are quantized and compactified. {bI} and {aI} are a set

of 2-form and 1-form gauge fields, respectively. Recently

a lot of progress has been made based on these topological

terms in gauge theories as well as SPTs (symmetry-protected

topological phases)20–34. All gauge theories are uniquely la-

beled by the coefficients {q, t} and one-to-one correspond

to Dijkgraaf-Witten lattice model35 and cohomology group:

H4(Gg,U(1)) =
∏

I<J(ZNIJ
)2 ×

∏

I<J<K(ZNIJK
)2 ×

∏

I<J<K<L ZNIJKL
,where NIJ,... is the greatest common

divisor of NI , NJ , · · · . When all q’s and t’s are turned off,

the theory reduces to the usual (i.e., untwisted) gauge theory

that is described by the BF term (∼ bI ∧ daI ) only.

Recently, Ref.24 provided a potentially feasible and sys-

tematic approach to classification and characterization of 3D

SETs whose topological orders are described by twisted gauge

theories (1). On-site unitary Abelian symmetry group Gs =
ZK1

×ZK2
×· · · orGs = U(1)×ZK1

×· · · were considered24.

Later, a systematic classification of SETs was obtained25.

There is an interesting phenomenon. In some cases, only the

untwisted gauge theory can have SET orders after symmetry is

imposed, while twisted ones do not have SET orders. The un-

derlying mechanism and the physical explanation are still un-

known. In this paper, we aim to study this problem in details

and prove that some twisted gauge theories may be incompat-

ible with a given global symmetry Gg due to the presence of

an anomaly. Thus, the underlying topological QSLs are not

realizable. In order to show the anomaly, we fully gauge the

global symmetry and obtain a new gauge theory. In latter, we

find that gauge invariance is manifestly violated, leading to

gauge anomaly. We explain the anomaly through a concrete

example: Gg = Z2 × Z4 and Gs = Z2.

We start with the following action of a twisted gauge theory

with gauge group Gg = Z2 × Z4:

S =

ˆ

i
2

2π
b1 ∧ da1 +

ˆ

i
4

2π
b2 ∧ da2

+

ˆ

i
q

4π2
a1 ∧ a2 ∧ da2 , (2)

where the first and second terms are the usual BF terms that
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determine the gauge group Gg . The last term is the twisted

term that couples two discrete gauge theories together. The

coefficient q is not arbitrary. Instead, it is quantized and peri-

odically identified:

q = 0 mod 8 or q = 4 mod 8 . (3)

Therefore, for the twisted term incorporated in Eq. (2), there

are two choices of topologically distinct coefficients, which

corresponds to two different twisted gauge theories with Gg =
Z2 ×Z4. In fact, there are in total (N12)

2 distinct gauge theo-

ries where N12 is the greatest common divisor of N1 and N2.

They are labeled uniquely by a pair of integers (q, q̄). Here,

q̄ is the coefficient of the twisted term a2a1da1 that is not

included in the action (2). In other words, the action (2) cor-

responds to a set of twisted gauge theories labeled by (q, 0).
The quantization and periodicity of the two integers are given

by:

q = k
N1N2

N12

, k ∈ ZN12
, (4)

q̄ = k′
N1N2

N12

, k′ ∈ ZN12
. (5)

In the following, let us consider non-zero q = 4 mod 8 (N1 =
2, N2 = 4) and vanishing q̄ = 0.

The general derivation of Eqs. (4,5) can be found in24

The key observation is that the gauge transformations of this

twisted gauge theory are defined in an unusual way:

aI −→ aI + dχI , (6)

bI −→ bI + dV I −
q

2πN I
ǫIJ3χJda2 , (7)

where ǫ123 = −ǫ213 = 1. It is clear that the usual gauge trans-

formations of bI are modified through adding a q-dependent

term. As usual, the gauge parameters χI and V I satisfy the

following conditions:

1

2π

ˆ

M1

dχI ∈ Z,
1

2π

ˆ

M2

dV I ∈ Z . (8)

By requiring that the Dirac quantization conditions of bI are

unbroken, i.e.,

1

2π

ˆ

M3

dbI ∈ Z , (9)

the coefficients q, q̄ should be properly quantized. On the

other hand, the periodicity is due to a hidden shift symmetry

that compactifies the domains.

To assign symmetry, e.g., Gs = Z2, we add the following

coupling term as an example:

Scoupling =

ˆ

i
1

2π
b2 ∧ dA (10)

where A is the external (background) gauge field that is sub-

ject to the following constraint:

ˆ

L

A = 0,±π,±2π, · · · , (11)

for any spacetime loops L. In Scoupling , A minimally couples

to the topological current:

J =
1

2π
⋆ db2 (12)

Physically, this 1-form current represents the particle current

in the Z4 gauge theory [see the second term in Eq. (2)]. The

coupling term (10) means that all Z4 gauge charge excitations

carry Z2 symmetry charge while Z2 gauge charge excitations

are not charged under Z2 symmetry. To be much clearer, we

may introduce quasiparticle current j of the Z4 gauge group,

which minimally couples to a2:

Sexcitation =

ˆ

ij ∧ ⋆a2 +

ˆ

iΣ ∧ ⋆b2 + · · · , (13)

where Σ is 2-form current variable for loop excitations in

the Z4 gauge theory. · · · denotes excitations in the Z2

gauge theory. Note that all omitted excitations do not cou-

ple to a2. We may further integrate over b2 in the action

S + Scoupling + Sexcitation. Then, a2 can be formally re-

solved by a2 = −π
2

∗d

∆̂
Σ− 1

4
A , where the Laplacian operator

∆̂ ≡ ∗d ∗ d. Plugging this expression into the first term of

Eq. (13), we obtain the following effective action about exci-

tations in the presence of symmetry twist:

−i
1

4

ˆ

A ∧ ⋆j + i
2π

4

ˆ

j ∧ d−1Σ . (14)

In this effective action, the second term characterizes the Z4

topological order with charge-loop braiding phase ei
π

2 . Math-

ematically, this is a Hopf term and represents the long-range

Aharonov-Bohm statistical interaction between gauge fluxes

and particles. d−1 := d

∆̂
. The first term of this effective action

indicates that the unit Z4 gauge charge excitation carries 1/4
symmetry charge of the symmetry group Z2. However, we

must be more careful to achieve the conclusion of symmetry-

fractionalization.

It is generically possible that a fractional charge may be in-

distinguishable from an integer charge. Mathematically, the

symmetry-fractionalization is classified by the second coho-

mology group: H2(Z2,Z4) = Z2, which implies that there

are two sets of topologically distinct patterns of symmetry

fractionalization on Z4 gauge charge excitations:

· · · ∼ −
1

4
∼
1

4
∼

3

4
∼ · · ·

· · · ∼ −1 ∼ −
1

2
∼0 ∼

1

2
∼ 1 ∼ · · ·

Therefore, in the present case, half-charge is indistinguishable

from integer charge. Fortunately, 1/4 charge is still distin-

guishable from integer charge. Physically, this phenomenon

can be simply understood via the thought experiment in which

Z2 symmetry flux is inserted and a unit Z4 gauge charge ex-

citation moves around the symmetry flux. Due to the possi-

ble attachment of gauge flux onto symmetry flux, the experi-

mental data (i.e., Aharonov-Bohm phase) have ambiguity that

leads to the above two set of patterns of fractionalized charge.
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It seems that there is no obvious anomaly in the patterns

of symmetry-fractionalization. So far so good. In order to

examine whether or not a global symmetry is imposed in an

anomaly-free way, we fully gauge the global symmetry. If

the resulting new gauge theory is well-defined (e.g., at least

gauge invariant), the symmetry implementation is anomaly-

free. Otherwise, symmetry implementation is anomalous and

the resulting new gauge theory admits gauge anomaly. In the

following, we present the details of the gauging process. The

action is given by:

S =

ˆ

i
2

2π
b1 ∧ da1 +

ˆ

i
4

2π
b2 ∧ da2

+

ˆ

i
q

4π2
a1 ∧ a2 ∧ da2 +

ˆ

i
1

2π
b2 ∧ dA

+

ˆ

i
2

2π
B ∧ dA , (15)

where gauge field A is now considered as a dynamical gauge

field rather than background gauge field. B is another dynam-

ical 2-form gauge field that enforces the Z2 gauge fluxes of

A as shown in Eq. (11). The action can be rewritten as the

following form:

S =

ˆ

i
1

2π

(

B b2 b1
)





2 0 0
1 4 0
0 0 2









A
a2

a1





+

ˆ

i
q

4π2
a1 ∧ a2 ∧ da2 (16)

with q = 4 mod 8. Since now all gauge fields in the action

are fully dynamical, one can apply general linear transforma-

tions GL(3,Z)×GL(3,Z) on two-form and one-form gauge

fields independently in order to send the above theory to its

canonical form:

W =





1 −1 0
−1 2 0
0 0 1



 , (17)

Ω =





1 0 0
4 1 0
0 0 1



 , (18)

W





2 0 0
1 4 0
0 0 2



ΩT =





1 0 0
0 8 0
0 0 2



 . (19)

In the new basis, we have three 2-form gauge fields:

B1, B2, B3 and three 1-form gauge fields: A1, A2, A3. They

are related to the original variables (b1, b2, B and a1, a2, A)

via:





B
b2

b1



 = WT





B3

B2

B1



 , (20)





A
a2

a1



 = ΩT





A3

A2

A1



 (21)

As a result, the twisted term in Eq. (16) is transformed to:

Stwist =

ˆ

i
q

4π2
A2 ∧ A1 ∧ dA1 (22)

Together with the BF term in the canonical form, we obtain

the total action in the new basis:

S =

ˆ

i
8

2π
B2 ∧ dA2 +

ˆ

i
2

2π
B1 ∧ dA1

+

ˆ

i
q

4π2
A2 ∧ A1 ∧ dA1 (23)

where we have omitted the trivial term: i
´

1

2π
B3 ∧ dA3.

Therefore, the resulting new gauge theory is a Z2 ×Z8 gauge

theory with a twisted term. According to Eqs. (4,5), the co-

efficient q should be quantized as: either q = 8 mod 16 or

q = 0 mod 16 such that the new gauge theory is gauge in-

variant. However, the initial value of q before gauging is

q = 4 mod 8 that fits neither 8 mod 16 nor 0 mod 16. In

other words, one cannot find integers k, k′, k′′ such that either

4 + 8k = 16k′ or 4 + 8k = 8 + 16k′′ holds. Therefore, after

gauging, we find that gauge invariance is manifestly broken in

the new gauge theory, indicating a gauge anomaly.

We conclude that:

• The SET phase (i.e., topological QSL) described by the

action (15) is anomalous. It cannot exist alone in 3+1D.

• The new gauge theory described by the action (23) has

gauge anomaly. It cannot exist alone in 3+1D.

Recalling that in 2+1D Abelian Chern-Simons theory on a

spin manifold the coefficient (i.e. level) is quantized at integer

k, represented by the notationU(1)k. However, on the surface

of a 3D gauged topological insulator, the Chern-Simons term

of the background gauge field has an anomalous half-level.

In the present case, we may denote the twisted gauge theory

(23) by (Z2 × Z8)q where q takes value 4 mod 8 that is half

of the normal one 8 mod 16. In Ref.36,37, 2D anomalous SETs

are studied. Espeically, in Ref.37, 2D anomalous SETs (i.e.,

“surface topological order”) withGg = Z2 andGs = G1×G2

are considered, where gaugingG1 necessarily breaks G2. Our

results demonstrate anomaly in SETs in 3D with Gg = Z2 ×
Z4 and Gs = Z2. In Ref.37, such 2D anomalous SETs are

conjectured as a boundary of 3D SPTs. Here, we conjecture

that:

• The anomalous SET phase described by the action (15)

may appear as a boundary state of a (4+1)D bulk SPT

phase.

• The anomalous gauge theory described by the action

(23) may appear as a boundary state of a (4+1)D gauge

theory (topological order state).

It will be interesting to construct such higher dimensional

topological quantum field theories, which is left to future

work. It will also be interesting to study the anomaly by the

Dijkgraaf-Witten lattice model realization of the action (15).

We expect the findings on anomaly will further shed lights on
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constraints on low-energy theory of topological QSLs in three

dimensions.
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