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Coulomb interactions famously drive three dimensional quadratic band crossing semimetals into
a non-Fermi liquid phase of matter. In a previous work, Phys. Rev. B 95, 205106 (2017), the effect
of disorder on this non-Fermi liquid phase was investigated, assuming that the bandstructure was
isotropic, assuming that the conduction and valence bands had the same band mass, and assuming
that the disorder preserved exact time-reversal symmetry and statistical isotropy. It was shown
that the non-Fermi liquid fixed point is unstable to disorder, and that a runaway flow to strong
disorder occurs. In this work, we extend that analysis by relaxing the assumption of time-reversal
symmetry and allowing the electron and hole masses to differ (but continuing to assume isotropy of
the low energy bandstructure). We first incorporate time-reversal symmetry breaking disorder, and
demonstrate that there do not appear any new fixed points. Moreover, while the system continues
to flow to strong disorder, time-reversal-symmetry-breaking disorder grows asymptotically more
slowly than time-reversal-symmetry-preserving disorder, which we therefore expect should dominate
the strong-coupling phase. We then allow for unequal electron and hole masses. We show that
whereas asymmetry in the two masses is irrelevant in the clean system, it is relevant in the presence
of disorder, such that the ‘effective masses’ of the conduction and valence bands should become
sharply distinct in the low-energy limit. We calculate the RG flow equations for the disordered
interacting system with unequal band masses, and demonstrate that the problem exhibits a runaway
flow to strong disorder. Along the runaway flow, time-reversal-symmetry-preserving disorder grows
asymptotically more rapidly than both time-reversal-symmetry-breaking disorder and the Coulomb

interaction.

I. INTRODUCTION

In 1971 Abrikosov studied isotropic three dimensional
systems with quadratic band crossings using a renor-

I and

malization group calculation in 4 — ¢ dimensions
argued that Coulomb interactions could stabilize a non-
Fermi liquid phase. Interest in this problem has re-
cently been revived 2% because of its relevance for
pyrochlore iridates. However, theoretical explorations
have largely been confined to the clean (disorder-free)
problem, whereas realistic materials are always disor-
dered to some degree. The interplay of disorder with
Coulomb interactions in three dimensional quadratic
band crossings is a particularly rich problem, since both

disorder and Coulomb interactions are relevant with the

same scaling dimension, and thus should be treated on

an equal footing.

In two recent works 78 the interplay of disorder and
Coulomb interactions was investigated, assuming (a)
exact time-reversal symmetry (b) equal band masses
for the electron and hole bands and (c) isotropy. It
was shown that disorder is a relevant perturbation to
Abrikosov’s non-Fermi liquid fixed point, and that the
disordered problem undergoes a runaway flow to strong
disorder, the implications of which were discussed at
length in Ref. 8. In this work, we extend the analy-
sis (working with the renormalization group scheme of
Ref. 8) to incorporate time-reversal symmetry breaking
disorder (which may arise physically from e.g. magnetic

impurities), and allowing also for unequal band masses



of the conduction and valence bands. We have used the
powerful technique of dimensional regularization, which
has been succesfully used in many problems involving
non-fermi liquids®'°.

This paper is structured as follows. In Sec. II we
introduce the basic model and renormalization group
scheme. In Sec. III we calculate the interplay of inter-
actions and disorder, including time-reversal symmetry
breaking ‘tensor’ disorder which was ignored in previ-
ous analyses. We show that no new fixed points appear,
and the problem continues to flow to strong disorder.
We further show that time-reversal symmetry breaking
disorder grows asymptotically more slowly than time-
reversal symmetry preserving disorder as the problem
flows to strong disorder. In Sec. IV we further relax the
assumption of equal electron and hole masses. We find
that asymmetry in the masses is a relevant perturbation
to the disordered system, and comes to dominate the low
energy physics. We find this result surprising, because
such asymmetry is irrelevant in the clean system?!. (For
another setting where such asymmetry affects disorder
physics, see Ref. 11). The interplay of disorder and in-
teractions must thus be re-analyzed in the presence of
unequal masses - a task we perform. Our analysis of the
B functions, and discussion of the results, are presented
in Sec. V. The appendices contain technical results em-
ployed in the derivations, but which are inessential to

the flow of the argument.

II. MODEL

We consider a model for three-dimensional quadratic
band crossings, where the low energy bands form a
four-dimensional representation of the lattice symme-
try group®. Then the k - p Hamiltonian for the non-
interacting system, in the absence of disorder, takes the

where the T',’s are the rank four irreducible represen-
tations of the Clifford algebra relation {T'q, Ty} = 2dap
in the Euclidean space.
tation {4, B} = AB + BA for denoting the anticom-

mutator.

We have used the usual no-

There are N = 5 such matrices, which are
related to the familiar gamma matrices from the Dirac
equation (plus the matrix conventionally denoted as 7s),
but with the Euclidean metric {T'y, T} = 204 instead
of the Minkowski metric {I'y, 'y} = 2(—1,+1,+1,+1).
Using various Clifford algebra relations, as shown in
Appendix A. In d = 3, the space of 4 x 4 Hermitian
matrices is spanned by the identity matrix, the five
4 x 4 Gamma matrices I', and the ten distinct matrices
| i [Ty, T'p]. Furthermore, the dg (k)’s are the [ = 2
spherical harmonics, which have the following structure:

do(k) = V3ky k. ,
V3 (ki — k)

di(k) = 3k, k.,

d3(k) = V3koky, da(k)= 5 ,

. 2k2 — k2 — k2

e )
The isotropic Qk—;, term with no spinor structure makes

the band mass of the conduction and valence bands

This is an irrelevant perturbation in the
7,8

unequal.
clean system', and was ignored in previous analyses
We consider a setting with Ny independent flavours of

fermions.

A. Action

The full action was derived in Ref. 8, and takes the

form:
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Here the Coulomb interaction V(q) = q% has been writ-
ten in momentum space, and § = (1,2,...,Ny) (same
Note that disor-

der has been taken to be diagonal in the flavor space.

with ¢’) denotes the flavour index.

The disorder terms, parametrized by the constants W,
(a = 0,1,2), represent short-range-correlated disorder
The disorder is
treated in the replica formalism with replica indices 1, j,

with and without spinor structure.

with n replicas. The limit n — 0 has to be taken at
the end of the computation. The sums over a range
over all the five independent 4 x 4 non-identity Hermi-
tian matrices 'y in the spinor space, while the sums
over (a,b) range over all the ten independent matrices
Iyp. Here Wy represents a random chemical potential,
and Ws represents magnetic disorder, which breaks time
reversal symmetry. Meanwhile, W; represents ‘vector’
disorder (e.g. strain) which preserves all the symme-
tries of the problem (apart from translation symmetry).
For a further discussion of the different disorder types,
see Ref.8. Furthermore, the short-ranged interactions
have been neglected as they are less relevant in an RG
sense, compared to either the long-ranged (Coulomb)

interactions or short-range-correlated disorder.

The Hamiltonian in Eq. (1), in the absence of the 2’“—;,
term, has been considered in the presence of “scalar”
(disorder vertex contains no gamma matrix) and “vec-
tor” (disorder vertex contains one gamma matrix) disor-
der terms, in the absence and presence of the Coulomb
interaction, in Ref. 8. In Sec. IIT of the present work
we generalize the analysis to include time reversal sym-
metry breaking ‘tensor’ disorder (W5 # 0). Meanwhile,
the 2’“—;, term was dropped in Ref. 8 as it is irrelevant
in the k - p Hamiltonian in the presence of Coulomb

(

interactions'? for the clean system. In Sec. IV we re-
introduce this term, and analyze the interplay of all
kinds of disorder and Coulomb interactions allowing for
unequal band masses.

B. Scaling dimensions and RG scheme

The canonical scaling dimensions are given by:
[#71] = 1 and [r~!] = 2z (dynamical critical exponent).
From the invariance of the bare action, we find that
[¢¢] = d/2 and [m] = [m/] = 2 — z in d spatial dimen-
sions, where z = 2 at tree level. For the Coulomb and

disorder terms, we get:

[} ]=24+2—d Wol=22—d—2n,, (4)

where we have allowed for the anomalous exponents
[ ] = dto, [V Ta 9] = debpy and [1€ Doy 9] =
d+n2. The anomalous exponents are zero at the Gaus-
sian fixed point, and hence all the W,’s have the same
tree-level scaling. Since both the Coulomb interactions
and disorder are relevant at tree level with the same
exponent, at least at the Gaussian fixed point about
which the perturbation is being carried out, they must
be treated on an equal footing.

Our RG scheme involves a continuation to d =4 — ¢
spatial dimensions. In d = 4, the Coulomb interaction
and disorder are marginal at tree level, and controlled
calculations may be carried out at small €. (Of course,
a description of the physical situation in d = 3 requires
a continuation to ¢ = 1, which could be problematic?).
However, the extension to four dimensions employed in

the classic analysis of Abrikosov! is unsuitable for two



reasons. Firstly, it greatly expands the number of I’
matrices in the problem, leading to the introduction of
disorder types that have no analog in the physical prob-
lem in d = 3. Furthermore, Abrikosov’s dimensional
continuation changes the representation of time rever-
sal from T? = —1 (in d = 3) to T? = +1 (in d = 4),
which is also a potentially serious change where disorder
physics is concerned. (For a more in-depth discussion of
issues with Abrikosov’s continuation, see Ref. 8).

Thus we employ instead the RG scheme developed by
Moon et a. In this RG scheme, the radial momentum
integrals are performed with respect to a d = 4 — ¢ di-
mensional measure f (”2;%, but the I' matrix structure
is as in d = 3, and the angular integrals are performed
only over the three-dimensional sphere parametrized by
the polar and azimuthal angles (6, ). Nevertheless, the
overall angular integral of an isotropic function fQ -1is
taken to be 272 (as is appropriate for the total solid
angle in d = 4), and the angular integrals are normal-
ized accordingly. Therefore, the angular integrations are

performed with respect to the measure

/dS(...)E;/Owdﬁ/:ﬂdgasine(...), (5)

where the 7/2 is inserted for the sake of normalization.
For more details on this renormalization scheme, see®2.
For performing the angular integrals, we will use the

notation

dafi) = 209 ()

such that

2 7T26ab

/dsda(k):m /dScfla(k)db(k): ~ - (D

We note that |d(k)|? = 4&;2.

We will consider RG flows by considering the one-
loop corrections coming from the diagrams shown in
Figs 1 and 2. We will employ the momentum-shell RG
and take Ayy = A e™!, where Ayy (Ar) is the UV
(IR) cut-off for the energy /momentum integrals and [ is
the logarithmic length scale. We will use the one-loop
functions, that dictate the flow of the parameters with
increasing [. Furthermore, in our RG scheme we will

hold m fixed, i.e. m does not flow such that

dm

=0, 8)

FIG. 1.

to the Green’s function with each solid line representing the

These two diagrams determine the O(e) correction

bare Green’s function. A dashed line may represent either
a disorder or the Coulomb interaction. If the dashed line
represents disorder, then it connects two fermion lines at the
same point in real space, but they may have different time
and replica indices. For disorder interaction, the diagram
(b) is then proportional to the number of replica flavours
n, and vanishes upon taking the replica limit n — 0. If
the dashed line represents the Coulomb interaction, then it
connects two fermions with the same time index and same

replica index, but with different spatial positions.

ZS BCS
5 Hap

(a) (b)

HZS'

aff

(c) (d)

FIG. 2.
the four-fermion vertices (either disorder or interaction) and
are denoted by ZS, BCS, ZS’ and VC, respectively, following

the convention of Ref. 12. Each solid line represents the

These diagrams determine the O(g) correction to

bare Green function. A dashed line may represent either a
disorder or the Coulomb interaction. Note that unlike the
7S, BCS, and ZS' diagrams, the VC diagrams are generically

not symmetric under interchange of indices, i.e. I‘Xg #* FXQC

This is simply a choice. Any scale dependence of m
is absorbed into a scale dependence of v, such that v

acquires an anomalous dimension, but m remains fixed.



III. INCLUDING TIME-REVERSAL
SYMMETRY BREAKING DISORDER

In this section we incorporate time-reversal symme-
try breaking disorder, while continuing to assume equal
In the

> term, the bare Green’s function for

masses for the conduction and valence bands.
absence of the 2

each fermionic ﬂavour is given by:

- 1 _diw+dk)-T
Gl = Z T T - Er e

here |d(k)|? = (£)2.

o On occasions, to lighten the no-

The Abrikosov
|

tation, we will use dx to denote d(k).

fixed point for the clean system is given by:

15 b m e>
= — where © = .
2(4+15N}c)7 8¢

(10)

All diagrams not involving W5 lines were computed
n®. Our immediate challenge is to augment that anal-

ysis with time-reversal symmetry breaking disorder,
Wy #0

A. Addition of the W; vertex to the

non-interacting problem

The loop corrections to the disorder lines themselves
come from the fully connected contractions of

S =5 [drarararateate S (wE S0z @S )z of DT 0 v

,9,k,1,§

+ W2 @8 T )T 8 T )T (i TEe)T (0 Thuf)n

+2Wo Wa (65 w67 (8 ) (wd TE )T (v T ol
+ W S T )T (S T, )7 (u T, m) S @WE T f)T

1"

1"

+2Wo W (! 067 (68 08T (' T T (T u)T
20 W (T )7 (S T )T (0 T w7 (uf Tl ]

where repeated I'-matrix indices are as usual summed
over, and we have kept track of the replica indices on
I' matrices. We note that we must incorporate a # b
(¢ # d) for the sum over T'yp (T'q) matrices as we should

consider only the independent terms.

1. Fermion self-energy

The correction to the one-loop fermion self-energy

from tensor disorder is given by:
dd
by k)=2
Wa (wv ) WQ/ (2 7T)
iwm? W N (N —1)hn (AA%)
N 22

In the presence of the tensor disorder, the dynamical

ab G( ) ab

(12)

(11)

(

exponent is thus modified to:

2 N(N-1)W.
z=2+m—2[Wo+NW1+(7)2}
s 2
Ao+ N 4+ NOV=D2
—24 22 - 2 (13)
2
where
2y,
AQ—WQmQ for a =0,1,2. (14)

2. ZS diagrams

These are zero.



8. VC diagrams

vC
F12

2m)2
A VC with two tensor (W3) lines, emerging from 8 (2m)

distinct contractions, and after setting the external fre- ) dk Iy (dk ) Fj) I (dk ) Fj) I
= 4W, W T, /
quency w = 0, leads to: (2m)d k4
_ Wi W, T4 T, F; I ch r, n Ayv
F;/Q(j 2N7T2 AIR
(2m)? _ i, (2-N)T, T3, T3 T, In <AUV)
S AN N 2N 12 A
, d?k Tea (dk ' Fj) o (dk ' Fj) I g .
— W2 ;b/ : ! _ WaWa (N —1)(N —2) (N —4) T4 T] a8)
oS ems g - ANT? ’
_ WL, T, F?f I Fﬁf Iy In <AUV> where we have used Eq. (A4). This gives the correction
INT2 Arr 5/\1:,%)\1&[.
_ WE(N -4, T oy
_ W3 (N 4)2](\7szT22 ON +16) T, I, ! L3 v (e ) (de T T
- - + ab L =4Wo W4 T
= INT? e (15 (2m)? 2 “”/ (2m)4 4
W Wi T, T T4, T% T In (’Xg)
using Eq. (A3). The correction is thus given by d\y = QJQVW? 4
(N—4)(N?~9N+16) NI Wi W (N —4)°1, 17,1 (19)
2N 2N ’
using Eq. (A6). The correction from this term is jAg =
(VD )\ Mgl
N 1120
ve dp, T/, (di-T9) (di - T9) T
Tr d%k cd k k cd
02 — AW, Wy . B z8' di
(2m)2 (2m) A 4 CS and ZS' diagrams
_ WoWo T, T3 TS T, In <AUV)
2
2N7T( ) AIR HQBQCS
WoWo N (N — 1)1
= - o : (16)  (2m)2
o [t [T (dic- D7) 1) [0 (dic-17) 1,
=2 (2m)d k4 ’
This gives the correction d\g = WAO Ao L. -
1155
(2m)?
N YR T AT
5 e [ G - |
(2m)z ~ 270 ab / (2m)d et (20)
Wy Wo T, F? ri X F;} Ay Adding these together, we get:
e () s | g
- +
W Wa(N = 4T, T, ay  @m?Emp
2N 7 B W3 In (11\\% ) Lo Ty e (Fid L4y, + 17,15 FZd)
N 4N 72
using Eq. (A6). The contribution from this term is _I/V22 (N —1)!

_ 21
therefore Ay = % Ao A2l 82 ’ (21)



which corrects the scalar disorder term. The correction This corrects the vector and tensor disorder terms, and

for this is dA\g = w A3l the corresponding corrections are given by: d0\; =
2ND N Ap L and GAg = L Ao Ao L.

g g

(2m)*> = (2m)?

d —4 ) R )
—4W0W2/%a<b[ ;b(dk.rl)}
x [rib (dk : rj) + (({k : rf) Fib}

Wo Wa Ayv s J
= n<AIR > 1Ty (19,15 + 1913,
az#b, f

= PO RN T
a<b

(22)
|

I I, [T (e ()] e () e ) )

a<b,c

WiWeIn (4ee) S> T, TiT (TETY T, + 19, T TY) Wy Wal[2N (N~ 1)+ 3(N St My STl
/ abre, s _ izh
4N 72 N 2N 2
(23)

(

where we have used Eq. (A7). This corrects all the Using Tables I and II, the RG equations for the disorder
three disorder terms (scalar, vector and tensor), and  couplings are thus given by:

the corresponding corrections are given by: d)\g =

2(N =DM dal, o\ = DN 00 and 60Xy =

% A1 Al

5.  RG equations

The tree-level scaling dimension of the disorder term
is(2z—d) = 5+)\0+N)\1+W, where e = 4 —d.
J

dA N —1)!
dlo {s+2)\0+2(N+1)>\1+N(N—1))\2}>\0+2(N—1)>\1/\2+%>\§, (24)
d\i 200+ (2N2 = N +2) Ay + (BN? — 4N + 1) X, Ao+2(N—=1) X
ﬂ —{54‘ N ])\14* N Ao, (25)
d\y (2N —3) X (4N? — 16N +41) A (N3 —7N? + 26N — 32) A3
s N N 2+ N ' (26)

(

Analysis of these equations 1is deferred to Sec. II1 C and IIID.



Coupling )\0 )\1 )\2 u
Ao o =1 |6\ = 77““2@0:11 Sho = MNP0 22! 0
A ho=NXMl| 6\ = (N72]\)] X oM\ = _(N—l)(N—22)](VN—4))\1 Aol S\ = 2(N—]1V)/\1ul
[ 2 ) _ 2 2 -
Az _ (N—4agagl [OA2 = W dal | gy, = & D 213N+16)A2l dry = 12z
N
u Su=Xoul ou= N ul 5U:W 0
TABLE I. Contributions to the g-functions from the VC diagrams without the ;Ti, term. Here, A\, = Zm;Wa, u = g 326,
and [ is the RG flow parameter. Terms not involving W5 are taken from Ref. 8.
Coupling Ao A1 A2 u
oA = 28 N0
o Sh = L A%l SXo =2Xo A1l ! N esEh g
2 = 5 Ao A2l
0o =2(N —1) A1 A2,
A1 |included in (Ao, A1) cell| A = =2 AT oa = 250N N0, [0
6d2 = 5% A1 A2l
Ao included in (Ao, A2) cell|included in (A1, A2) cell oo = @ A2 0
u 0 0 0 0]

TABLE II. Sum of contributions to the S-functions from the BCS and ZS’ diagrams without the oo 2/ term, using the same

conventions as Table I.

Coupling | Ao | A1 | A2 U 2. VC diagrams
)\0 0(0|0 5)\0:—4Nf)\0u
A1 0/0]0 0 .
The Coulomb correction to the W5 vertex takes the
A2 0101]0 0
form:
u 0(0|0] 0u=—2N;u?

TABLE III. Contributions to the B-functions from the ZS F;’CC
diagram, with the same notation as in Tables I and II. The

dodtp [+ (dp-T9) | T3, [iw+ (dp - T9) |

results are valid for the cases with and without the 2}“—;, term. _ 2W, e? Fflb /
c @m)t 2 (w2 14,7
:_2W2€2F2bx2ﬂ'2/d&}dpp3_w r, QNF;F] FJ
2 )d+1 2
‘ @m) P’ (Wz + 41;72)
2 _ (N=4)p'

_ 27 Wo e? Ffzb / d(ﬂdpp3 (w — 4Am2N Fjb
d 27a
¢ @m? p <w2 + 4’1;)

B. Addition of the W, vertex in the presence of

Coulomb interactions _ Wo e2 Ffzb Fib dpm
272 ¢ Np
21 j A . .
- Wame Ty oy In (AUX) _ Weme?T,, Tyl
1. ZS diagram 2m2cN 272¢N o)

Here we have used Eqgs. (7) and(A4). The above gives
: _ 4Xul
The ZS diagram with one Coulomb line and one W, & correction dz = =2

line attached vanishes upon tracing over spinor indices. The tensor disorder correction to the Coulomb vertex



is given by:
Ve _ e? XFVC:_m262WgN(N—1)l
c2 2cq? Wy 02 2cq?m? ’
(28)

using Eq. (16). This gives the correction as du =
m2Weu N(N=1)l _ dpuN(N-1)l
2 - 2

nus sign has to be taken into account.

, where an additional mi-

3. BCS and ZS’ diagrams

These make a vanishing contribution, for reasons dis-
cussed in Ref. 8.

C. RG equations

In the presence of Coulomb interactions, the dynam-

ical critical exponent is given by:

+>\0+N)\1+w787u

z=2 )
2 15

(29)

m62

8m2c”

where u =

Using Tables I, IT and I1I, the full set of the RG equa-

tions for the disorder couplings as well as u is given by:

dA 60N} + 16 N —1)!

d—loz[5+2/\0+2(N+1))\1+N(N—1)A2—%})\0+2(N—1)/\1)\2+%)\§, (30)

d\ N-1 8 2X0+ (2N? =N +2) A\ + (BN?2 —4N + 1) Xy Ao+ 2(N—=1) X

dl_{5+2”< N _15>+ N }Aﬁ N Ao
(31)

d\ 16u  4u+ (2N —3) A 4N? — 16N +41) A N3 —7TN? + 26N — 32) A3

J:{E—J—F u - ( )0+( )1}/\2_1_( )27 (32)

dl 15 N 2N N

du Ao+ Ny + MDA gy,

af{s+3x 5 —1—5—2Nfu}u (33)

Let us examine these equations. First, note that
Ao = 0 is a fixed point - if the action has time-reversal
symmetry, the RG flow does not break it. Thus the flow
from Ref. 8 is contained in the Ay = 0 subspace of the
above equations. Note also that Egs. (32) and (33) are
sign non-changing, i.e. the § function is proportional
to the variable itself. As a result, if Ay and u start out
positive, they must remain non-negative. We will take
non-negativity of Ao and u for granted in the follow-
ing discussion. Moreover, for Ay = 0, the flow reduces
to that analyzed in Ref. 8. Since we are interested in

searching for new physics, we assume positivity of \o.

Now conditioned on positive Ay, we can see by in-
spection that \; cannot change sign as long as \g is
non-negative, whereas A\¢ cannot change sign as long as
A1 is non-negative. Thus, if A\g and A\ start out positive,
they can never become negative. Additionally, note that
if either Ag or \; (or both) start out zero, then they will

be driven positive by As. We thus conclude that we may
restrict our attention to regions of positive A\g, A\; and
A2, and non-negative u.

Finally, note that for N = 5, and conditioned on the
positivity of the A,’s and non-negativity of w, the g
function for A; is strictly positive. This A\; must undergo
a runaway flow to strong disorder. As such, there is no
new fixed point at finite disorder emerging as a result of
introducing Ao, and the result, as in Ref. 8, is a runaway
flow to strong disorder.

D. Strong-coupling trajectories

From Eq. (31), we find that \; has a strictly positive
B function, i.e., it is monotonically increasing under the
RG flow. Therefore, we may view this as an RG time!?
such that we reparametrize the flows of Ao and u in

terms of A;. This gives us:
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dho T (60Nf+16)u1 Ao  2(N—=1)X X (N —1)1)3
d)\lz_5+2/\o+2(N+1)>\1+N(N—1)>\2—15}%1 z T (34)
dhy [ 16u 4u+(2N—3))\0+(4N2—16N+41)/\1}ﬁ (N3—7N2+26N—32)/\§ (35)
d\i 15 N 2N 2N N2 ’
du r Ao+ N+ W 8u u
LI — S 2Ny g
il 2 15 Py (36)
[
where % is obtained from Eq. (31). is eventually unimportant, and we can simply~look at
Observing that )\% — 0 under the RG flow, in the the flow of ratios of couplings, viz. A\g = %” Ao = ﬁ—f
trajectories towards strong coupling this ‘tree level’ term and u = i—j The flows are then dictated by:
J
dXo < < (60N;+16)a7 Ao . 2(N—1)Aa (N —=1)!\3
~=Ro+ 220 F2(N+1) + N (N = 1)k - L0 20 RNE
dln A\ ot 0 F2(N+1)+N( ) A2 15 denjL den 2den (37)
da 54 [_ 164  4a+ (2N —3) \o N (AN? — 16N + 41) } A | (NF—T7N? 426N —32) A3 (38)
dinx, 7 15 N 2N den Nden ’
dii Xo+ N4+ MN=DR2 gy i
~—u+ |3 2 — — —2Nsu|— 39
dln it 3% > 5 2V g (39)
where
(N—=1 8\ 2X+(2N2-N+2)+(BN2—4N+1)X A+2(N—1) Ay <
and we have set - to zero. given by:
For Ay = 0 these reduce to the flow equations . .
from®. In that work two fixed points (5\0,5\2 = 0,q) d 5{‘0 53‘0
were identified: the vector disorder only fixed point dln\; 0Aa o ~ M| oA | (42)
(0, 0, 0), and the ‘scalar disorder dominated fixed point’ ou (A5 A3, %7) U
(9.38516, 0, 0). The former was unstable while the lat-
ter one was stable when the flow was restricted to the where
subspace of Ay = 0.
—0.657005 —1.63601 —2.92807
‘What about non-zero A5? We have verified that there
. . . 0 —0.374747 0 for I,
is no new fixed point at non-zero Ay for any integer
Ny > 11ie. the only fixed points are in the Ay = 0 M= 0 0 —0.29875
subspace 0.276596 0.851064 0
0 —0.351064 0 for ¥ .
F1 = (9.38516, 0, 0), F = (0, 0, 0), (41) 0 0 —0.202128
(43)

corresponding to (Aj, A5, @*). The linearized flow equa-

tions in the vicinity of a fixed point, for Ny = 2, are

The eigenvalues of M for these three fixed points are
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FIG. 3. Quadratic band touching with m/m’ = 0.75.

given by:

(—0.657005, —0.374747, —0.298748)
and (—0.351064,0.276596, —0.202128)  (44)

Another
way to see this is to simply linearize the flow equation
for \o about the fixed points in the Ao
- it is straightforward to verify that ;\2 is an irrelevant

respectively, which shows that F; is stable.

= 0 subspace

perturbation, and so the flow to strong coupling is still
controlled by the fixed trajectory &, along which tensor
disorder and Coulomb interactions vanish.

We therefore conclude that time-reversal symmetry
breaking ‘tensor’ disorder is #rrelevant in the sense
that although it grows under renormalization group, its
growth is asymptotically slower than the growth of time-
reversal preserving scalar and vector disorder, such that
the ratio of time-reversal breaking disorder strength to
time-reversal preserving disorder strength flows to zero
This is the

first main result of our work, and leads us to conjecture

as the problem flows to strong disorder.

that the strong disorder physics should be dominated by
time-reversal symmetry preserving disorder. Of course
a rigorous treatment of the strong disorder physics is
beyond the scope of a perturbative treatment in weak

disorder as is employed in this work.

IV. UNEQUAL BAND MASSES

Thus far we have assumed that the conduction and
valence bands have equal band mass. In this section

we relax this assumption (while continuing to assume

11

isotropicity). Specifically, we incorporate a scalar 2’“—;,
term in the bandstructure Hamilltonian, such that the

bare Green’s function becomes

jw— £ 1+ dk)-T
Go(w, k) = L~ g+ A

—(iw— £2)" +1d)2

2m/’

(45)

Now the two bands touching quadratically have different
‘curvatures’ as shown in Fig. 3. Note that we require
m’ > m in order to be describing a quadratic band
touching problem. For m’ < m both bands ‘curve’ the
same way, and for m’ = m one of the bands becomes
perfectly flat, and neither of these cases is of interest to
us here. Asymmetry of the band masses was shown to
be irrelevant in the clean system'. However, we aim here

to reassess its importance in the presence of disorder.

A. Renormalization of the band-mass asymmetry

In the clean system, the self-energy coming from the

Coulomb interaction takes the form:

Y(w, k)

d0diy [iw+i0- 59 4 dk +a)-T| V(g)
B 7/ 27rd‘*‘1

_ (i / dQ d%q
T (27)d+1
where by shifting the integration variable €2, we find that
me?d(k)-T In (/[\\ﬂ)}

15 m2c IR
as in the case with equal band masses. Hence, the one-

zw+zQ (k+q ) +|d(k + q)2

[ZQ +dk+q) -T|V(g)
2 +ldk+q)?

(46)

it gives the same correction of [f

loop renormalized Green’s function becomes

2 2
IR me
G ——zw—l—ﬁ-i-d(k) F<1+152 l)
k2 dk)-T
= . 47
D TRy Ty 47
The requirement of Eq. (8) gives z = 2 — 8%, Since

[m'] = 2 — z, we find that [m

0 at tree-level to 8—" at one-loop level i.e.

'] has thus changed from
it becomes
irrelevant, as antlclpated in'. If we define the ratio r,,, =
2 to parametrize the strength of band mass asymmetry
(rm = 0 when electron and hole masses are equal), then
we conclude that that [r,,,] = —[m/] = 2 — 2 < 0 in the

clean system, i.e. r,, flows to zero under RG.



Does disorder change this result? The self-energy con-

tribution from the disorder terms is given by:
Y(w, k)
d’p d’p
:2 W —_— G 2 W A N FaG ) Fa

d
+2 W2 / Mrab G(wa k) Fab

(2m)d
—[Wo+ N W + W}
m2m/ A2 iwm?2m'? (m2+m'2) In (/}\ﬂ)
% { UV IR }
4 (m? —m’?) w2 72 (m2 — m'2)?

(48)

The first term does not have any w or k dependence
and hence is just a chemical potential renormalization,
which should be ignored assuming we have the necessary
correction to keep the system at the band-crossing point.
Invariance of [m] under the RG thus yields a dynamical

exponent

m2m/2 (mz +m/2) [Wo CNWy+ N(NEI)WQ}
z =2+

72 (m? — m’2)?

m'? (m? + m'?) [)\o + N\ + LN;UAQ}

9 (m2 _ m’2)2

=2+
(49)

Now we have z > 2, such that the band mass asymmetry
term becomes relevant under RG, in sharp contrast to
the clean interacting case.

What happens with both disorder and interactions?
In this case we have

(1472 [ho + Nay + M2

(k+q)?

2m/’

"We cannot push the RG beyond r,, = 1.
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and [r,,] = —|m/] = z — 2, where recall r,, = m/m’
is zero for equal band masses. Now note that the in-
teraction tries to make the band mass asymmetry irrel-
evant, but disorder makes it relevant - and recall also
that disorder grows asymptotically more rapidly than
interaction under the RG. We therefore conclude that
as the problem flows to strong disorder, the strength of
band mass asymmetry r,, must grow. Eventually, there
arises a scale where r,,(I) = 1. At this scale, one of the
bands becomes flat, there arises a singularity in the den-
sity of states, and the whole RG scheme breaks down.
Neverthe-
less, the prediction that band mass asymmetry should
be relevant in the presence of disorder (whereas it was
irrelevant in the clean system) is a non-trivial (and ex-
perimentally measurable) prediction of the RG, which

should be apparent in e.g. ARPES experiments.

B. Recomputing S functions with unequal band

masses

In this section we recompute the S functions with
unequal electron and hole masses, still assuming m’ >
m i.e. 7, < 1. This requires a re-evaluation of the
integrals for all the constituent diagrams (but not a re-

evaluation of combinatorial pre-factors or signs).

1. Clean system

We begin with the clean system. For the diagram
emerging from the contractions of the product of two
Coulomb terms with the ZS topology, we obtain the
contribution:

z=2+ _ 87u
2(1—7r2,)° 15"
(50)
J
2N [e2\? A’k dw {iw
HZS — _ f - Tr /
cc (q) q4 <2C> [

We choose q to lie along the z axis, without any loss

of generality. Dropping the terms that will vanish upon

+dk+q) T} {iw— £ +dk) T} }

e {-(w- %)2 +lde+ )P} { = (0= 25)° + a2 | |

(

performing the angular integrals, and performing the w

integral by the method of residues, we get



d(k + q)| + |d(k)|
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%5 (q) =

_8me/2€2 / dk
2

c2q

Since the above integral manifestly vanishes for q = 0,
we can obtain the divergent part from the leading order
term in g after Taylor expanding in small ¢, as follows:

8Npe? [ d¥k 3mq?
Z3 _ oVf q
Hcc (q) - / (27T)d 4k‘4

This has the same form as in the case with equal

o sin’f,  (52)

band masses and gives the same correction of ;—26 —
e’ [1 - me Ny l] As shown in Appendix B, the re-

2¢ 472c

maining diagrams (VC, ZS’, BCS) do not have any di-

vergent contribution and thus the band mass asymmetry
does not affect the RG flows of the clean system.

2.  Disordered non-interacting system

A VC diagram with two scalar (Wp) lines can emerge
in 8 distinct ways; including factors from (11) we find a

correction to the scalar vertex from
I
. k2 j
—4W / ( 2

d . 2
P [ (i — 520" + ]
R ;

[l ) ]

:4W5/ (gjr];d | (o= si) +

k2 \2 gt 12
2m’2) + 4m2:|
QW2 m2m/2 (m2 + m'? A
=50 ( 5 )ln( UV). (53)
™ (m? —m'?) Ar
For the rest of the non-vanishing VC, BCS and ZS’
diagrams we have to use the integral:

—(iw—

dik s m?m't n (5
I:/(27T)d_k4 kA 2:22 2 _ y2)2 7
( 4m/? +4m2) g (m m )
(54)

which appears as a prefactor for each. This can be

2

implemented by replacing m? — m?pu, where p =

m/4
(m2—m'?)?

case with equal electron and hole masses.

= (1_i2 i in the answers obtained for the

2m)? 4 (|d(k + q)| + |d(k))* m2 + (¢% + 2k gcos §)?

( d(k +q) - d(k)
|

(

3. Disordered interacting problem

We now consider diagrams with mixed interaction and
disorder lines. We start with the ZS diagram with one
scalar disorder and one Coulomb line (all other ZS dia-

grams vanish upon taking the trace). We have

2cq? me€2W0 ln(//\\%;»

ZS
% = —2 W, x S

7S __
Hcc -

e2 ’
(55)
which is same as the case with equal band masses.

The Coulomb

correction to a W disorder vertex vanishes (Iy.C = 0)

We now consider vertex corrections.

as before. The Coulomb correction to the W7 vertex
takes the form:
4 W, e? i / dw d%
_ [ =
2¢ 27 (2m)4

FYCC = G(W’ p) Fg G(W’ p)

2 \2 4
. . . N-—-2
_262 Wi I I /dw ddp - (’Lwi Zfrﬂ) + 5 4I;n2
N c 2m (2m)d 2 2
( ) p2 |:_ (’Lw - p2/2 + 4p42:|

2 W, Fj/dﬂ dlp w?+ N2
arae ) 2r (2m)d pz[

2
C 4
w? + 4I:n2:|
which is the same expression as in the equal mass case.
Similarly, the Coulomb correction to the Ws vertex also
gives the same result as in Eq. 27.

Finally, we have:

7

2,14 2 A
e _ e2TYC B _m m'*e* Wy In (ﬁ) 57
O 2eWy (m2 —m?cg?n?
A
e _ _ eTYC _m2 m/* Ne2 W In (ﬁ)
T 2eq?W, (m? —m?2)?cq@n?
(58)
and
pve e2TYC m?me2Wy N (N —1)In (?\%)
T 2eWo 2(m2 —m?)? cq? 2

(59)
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Coupling Ao A1 A2 U
oo [0xo= (1+r2)uXdl|ox = Y22 pdo il 6xo = ME=D 1 x Aa 0
A Sho=Nproal | 6x =27 31 [ox = - E=DEDN=D )3 3o 1][ox = 20D ), ul
—O(N°=
No | 6= Mot uag Aol |63 = O x ap1| 6ag = RO ey T g = A gl
U ou = proul du=Npuiul 6u:wliz\2ul 0
TABLE IV. Contributions to the S-functions from the VC diagrams with the Qk—:l, term. Here, Ao = 27”;2“/“, u = 8";3267

_ 1
H= o)y

and [ is the RG flow parameter.

ZS' and BCS diagrams with mixed disorder and in-
teraction lines do not produce logarithmically divergent

corrections, for the reasons identified in Ref. 8.

C. RG equations

Firstly, we recall that in the presence of Coulomb in-

teractions and disorder, the dynamical critical exponent

Using tables III, V and IV, we can write down the

full set of the RG equations for the disorder couplings

k’2

557 bterm. ‘We note

as well as u, when we include the
that

is given by:
5 (1+7’,2,L)[)\0+N/\1+w 8’(1,
e 2(1—12)> T
(60)
|
d\ N(N-1)(24+72)puX 60N, + 16
d—loz[s+2(1+r3n)mo+(2+2N+Nr?n)m1+ ( )(2 rm iz f;g )47 %
N —1)!

sl -na+ T, (61)
d\ N -1 22+ N72)pXo+ (N —1) (r2, N2+ 6N —2) u X
71:|:€+2u 7& + ( + rm)/’(‘ O+( )(Tm + ),UQ
dl N 15 2N

2— N +72 N2 +2N?) )\ Xo+2(N —1) A

- N L a2 (N 1220, (62)
dAQ_[ 16u+4u+(2N+N7‘?n—3)u)\0 (AN? 4+ 2N2 72 — 16N +41) p Ay
a 1715 N i IN

N{48 —2N(7T—N)+ N (N —1)rZ} — 48

+ ON :U/\Q}/\Qa (63)
du 2y L Ao+ N M gy,
E—[E—l—(?ri—rm)x 3 u—ﬁ—QNfu]u, (64)
drm _ [(1 +72) o+ Moy + XDy su), )
a 2(1-r2)" 1Bl

These equations reduce to the equations for equal

electron and hole mass when we take r,,, — 0 and p — 1.

Now let us discuss the fixed point structure of the

above equations. Firstly, note that the 8 functions for



15

Coupling Ao A1 A2 U
SA = 282D N Aol
A SA1 =+ gl SXo=2pXo Al N |0
0 1= N HA 0 Ao A1 6/\2:%/;)\0)\21
5A() =2 N*l)pklkzl,
A1 |included in (Ao, A1) cell| A = 38=2 23y oA = 2= M (|0
5)\2 = % y /\1 )\2 l
A2 |included in (Ao, A2) cell|included in (A1, Ao) cell|  dXo = E52 a3t |lo]
u 0 0 0 0
TABLE V. Sum of contributions to the B-functions from the BCS and ZS’ diagrams with the 2’“—:1, term, using the same

conventions as Table I'V.

Ao and u are proportional to the variables themselves,
and so these variables cannot change sign, nor can they
be generated ‘from nothing’ under RG. If they start out
positive, they must remain positive forever. Next, note
that (given the non-negativity of A3), it follows from
arguments analogous to those advanced in the case with
equal masses that \g and A\; cannot become negative,
if they start out with non-negative initial values. We
thus conclude that all four couplings A; 2 3 and u must

be non-negative.

Now note that for non-negative couplings, with N =5
and 0 < r,, < 1, the beta function for A\; is strictly
positive, so that A1 must grow without limit i.e. there
is not any finite disorder fixed point of the perturbative
RG, even after we allow for unequal band masses. Thus

the band mass asymmetric problem also flows to strong

Finally, a consideration of the equation for r,, with
growing \;,u leads to the conclusion that there is no
fixed point at 0 < r,,, < 1. The only fixed point for this
equation is at r,,, = 0, and this fixed point is unstable in
the presence of disorder (as has been discussed). Thus,
rm increases without limit under perturbative RG (al-
though the RG scheme itself starts to break down when
rm — 1, at which point one of the two bands becomes

flat, and the co-efficient p becomes singular).

D. Strong-coupling trajectories

From Eq. (62), we find that \; has a strictly positive
B function, i.e., it is monotonically increasing under the
RG flow. Therefore, we may view this as an RG time
such that we reparametrize the flows of Ao+1, v and 7y,

disorder. in terms of A\;. This gives us:
dho _ 2 2 N(N=1)(2+72)purs  (60N;+16)u Ao
dTl_[e+2(1+rm)u/\o+(2+2N+Nrm)ﬂ>\1+ 5 - = ]%
(N-D! 1pr
+{2(N—1)A1+ . AQ} 2, (66)
dl
Ao _ [ C16u  Au+ (2N +N72 —3) o N (4N2 4 2N272 — 16N +41) p )
dX\1 15 N 2N
N{52—2N(7T—N)+ N (N —1)r%} —64 A2
" 2N “AQ} o (67)
du 2 )\0+N/\1+M Su u
Tl —— —2N —
d\ [5"_ (3+Tm) X B K 15 f“} %7 (68)
drfm B [(1 +7"72n) {)\0 + N\ + 7N(N;1)A2} B 87u} Tm (69)
A\ 2(1—r2) 15] 2



where 931 is obtained from Eq. (62).
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is eventually unimportant, and we can simply look at

Observing that f—l — 0 under the RG flow, in the the flow of ratios of couplings, viz. Ao = %)’ Ao = %
trajectories towards strong coupling this ‘tree level’ term and u = i—f The flows are then dictated by:
J
d)\o N (N — 1)' ~ ,UJS\Q
~=Xo+ [2(N -1 Aol
dln X, o+ |2 R e
- N(N—=1)(2+72)purs  (60N;+16)@7 A
+ {2(1-1—7"31)#)\0-1-(24-2]\74-]\77',211)/14- (N -1 @+ri) e (60N + )“} 0 (70)
2 15 den’
da 5o { 164  4d+ (2N + N2 —=3) ko N (AN? +2N?72 — 16N +41) p
dlnx, 7 15 N 2N
N{52—2N(7T—=N)+N(N-1)r2} =64 -1 Ay
UL A ] , 71
* 2N A2 den’ (1)
N(N—-1)X 5
" ~+{(3+7“72n)></\0+N+42 2f2u_%_2Nfa}ﬂ (72)
dln ), Y den’ ’
(12 ) {Roan XEDR2 Y,
drm { 2(1-r3.)? _ ﬁ} m (73)
dln ), den’ ’
where Stable fixed points as a function of r,
den’

o (N-1 8
—CU\TN T 15

+2(2+Nr,2n),u5\0+(N71) (T',?nN2+6N72),U/5\2

2N
+(2—N+r3nN2+2N2)u Mo+ 2(N—=1) X
N N

(74)

and we have set & to zero.
For any integer Ny > 1, we obtain the following non-

negative fixed points:
F) = (9.38516, 0, 0, 0), F, = (0, 0, 0, 0), (75)

corresponding to (5\8, 5\3, a*, ). These are the same
fixed points that were obtained in the case with equal
band masses. It follows from our earlier analysis that
F) is stable in the (A, A5, 4*) subspace, whereas F; is
unstable. However, both fixed points are unstable in
the 7, direction.

We have also calculated the fixed points in the ra-
tio space as functions of r,, (treating r, as a fixed
rather than flowing parameter) in order to illuminate

how the asymmetry in band masses affects the RG flow.

MS\(),

FIG. 4. Behaviour of the scalar-vector disorder ratio as a

function of r.,, at the stable fixed point of the ratio space.

The nature of the fixed points are still of the form
(A5,0,0), (0,0,0), with a positive Aj. The first fixed
point is stable, while the second one is unstable. The
behaviour of A} as a function of 7, is shown in Fig. 4.
This gives us a sense of how the flow in the coupling
space changes as band mass asymmetry becomes strong.
Importantly, while the ratio of scalar to vector disorder
changes (so that scalar disorder becomes more impor-
tant as the band mass asymmetry becomes strong), ten-
sor disorder and the long range interaction continue to



grow asymptotically more slowly than scalar and vec-
tor disorder, and may continue to be ignored in a first

approximation.

V. ANALYSIS AND DISCUSSION

We have analyzed the interplay of short-range
disorder and Coulomb interactions about quadratic
band crossings in three dimensions, using a pertur-
bative renormalization group procedure. Unlike ear-
lier work”®, we have not restricted ourselves to time-
reversal symmetry preserving disorder, nor have we as-
sumed that the conduction and valence bands have
equal mass. (Time reversal symmetry breaking disor-
der may come physically from e.g. magnetic impuri-
ties). We have shown that the full problem, including
all types of disorder as well as unequal band masses,
does not admit any non-trivial stable fixed points at
weak coupling, and exhibits a runaway flow to strong
disorder. Along the flow to strong disorder, time-
reversal-symmetry-preserving disorder grows asymptot-
ically faster than time-reversal-symmetry-breaking dis-
order and the Coulomb interaction. Thus, we conjec-
ture that at a first pass, both time-reversal-symmetry-
breaking disorder and Coulomb interactions may be ne-
glected in describing the strong-coupling phase, and
only time-reversal-preserving disorder needs to be taken
into account. In this respect, the general problem that
we study herein ‘flows’ into the simpler problem tack-
led in Ref. 8, and the discussion therein regarding the
strong-coupling phase may be carried over mutatis mu-
tandis, and two phases (a diffusive metal and a local-
ized phase) may be predicted. The critical point be-
tween the localized and diffusive phases would serve
as an interesting test bed for a many body localiza-
tion transition, insofar as the bare Hamiltonian is in-
teracting, even if disorder is more relevant than the
interaction. Of course, arguments about the strong-
coupling regime based on extrapolation from weak cou-
pling must be treated with caution, and a careful dis-
cussion of the strong-coupling physics would require
construction of the appropriate sigma model. Further-
more, even if time-reversal-symmetry-breaking disorder
is asymptotically weaker than time-reversal-symmetry-

J
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preserving disorder, it may still have important effects
by changing the symmetry class of the problem. Nev-
ertheless, our results do suggest that in describing the
strong-coupling phase, it should be sufficient to start
with an analysis of the effects of strong time-reversal-
symmetry-preserving disorder, and then to incorpo-
rate time-reversal-symmetry-breaking disorder and the
Coulomb interaction as perturbations. Construction of
such a description of the strong-coupling phase would

be an interesting challenge for future work.

Remarkably, our analysis also reveals that whereas
band mass asymmetry is relevant in the presence of dis-
order. This is in sharp contrast to the situation that ap-
pears in clean systems', where asymmetry of the band
masses is irrelevant. This distinction between clean and
dirty systems constitutes the most important prediction
of our work - we predict that whereas in clean systems
the conduction and valence bands should have the same
mass in the scaling limit, in dirty systems they should
have very different masses (see e.g. Fig. 3), and indeed
in the low energy limit one of the two bands should
become asymptotically flat. This is a non-trivial pre-
diction of our analysis, which could be directly probed
in, e.g., ARPES experiments, and would provide a di-
rect experimental diagnostic of whether disorder physics
dominates a particular sample, or whether the sample
may be treated as ‘effectively clean.” Experimental in-
vestigations of such systems are just starting'?. We
hope that our work will prove useful in guiding experi-

ments, as they seek to explore this novel regime.
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Appendix A: Clifford algebra and various identities

In this appendix, we list various identities which follow from the Clifford algebra. First, for N gamma matrices
Iy (a=1,2,...,N), we have

S r.ry=N. (A1)

Other relations that have been used in various computations in the main text are:

Z 1—‘ab Fab = w ) (A2)
a<b

ch 1_‘a =21 (6ac Fd - 5ad Fc) + Fa ch 5 (A3)
ch Fa, ch = wra ) (A4)
T Ty = (N —4)Tap. (A5)

Since N =5 for the current problem, we can use the relation:

r
rabrf:Ffrab:i(éafrb—abfra)—w#. (A6)

Hence we have:

> Ti Ty L (TIT) TS, + 15, T 1Y)

a<b,c, f
i (1 Td J g 3Ffzbrijj J 1J
= —2(N - )Y O Ty (DT + 1915 ) + > e (11, + 19, TY)
a,b a<b,c
i 9F2brib
:4N(N_1)_6(N_1)ZFQFQ+ZT. (A7)
a a<b

Appendix B: Vanishing divergent contributions from the VC, BCS, ZS’ diagrams in the clean system with
2

% term

For the clean system with equal electron and hole masses, it was shown in Ref. 8 that the VC, BCS, and ZS’

diagrams give no divergent contribution. Here we verify that the above statement holds even in the presence of the
k2
2m/
The vertex correction with two Coulomb lines has a relative minus sign compared to ZS and takes the form:

term.

k.2
o [dedih fiw— 9" +dk+a)- T} {iw — # +dk) -T)
2 2 2\ 2 2 '
cq k?{—(m—“‘;Tq)) +\d(k+q)l2}{—(z‘w—k—)2+|d(k)|2}

4
FB/OC x — 26 S /dwddk G(W7P)G(W7P+Q)

4

(B1)

X

2m/’

We choose q to lie along the z axis, without any loss of generality. Dropping the terms that will vanish upon

performing the angular integrals, and performing the w integral by the method of residues, we get

o e [k d(+ @) + |d(o) dic +q) - d(k)
r :/ k24(|d(k—|—Q)|+d(k)|)2m’2+(q2+2chose)2(d(k+Q)||d(k)| ). )
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Since the above integral manifestly vanishes for ¢ = 0, we can obtain the possible divergent part from the leading

order term in q after Taylor expanding in small ¢, as follows:

Iy o ff/ﬁd3ﬁ$1, (B3)
which diverges as 1/¢? i.e produces a correction to the Coulomb line, but only a constant correction (since there is
no log divergence). Thus, this diagram does not contribute the the 8 functions of the clean system.

The ZS’ and BCS diagrams correspond to the ladder and twisted ladder diagram topologies (“Cooperon” and
“diffuson”). Denoting the incoming momenta by k; and ks, and the outgoing momenta by ki + q and ko — q, we
note that for extracting the possible divergent part, although the external momenta k; and k, can be set to zero,
the momentum transfer q cannot be, as it is needed to split a high order pole in the integrand coming from the
doubled Coulomb line'®. However, we can choose q to lie along the z axis, without any loss of generality. The sum

of these two diagrams with two Coulomb lines gives (note the overall minus sign with respect to ZS):

dw dk
T 4+ TIBCS o ! / Pl =g R [0 k) + G-, k) (B4)
. k
O(_e4/ dw dk [ {iw-— (+q) +dk+q) T} {iv— 5, +dk) T}
K |k —qf?

{—Gw—%%ﬁ)+uw+qw}{—@w—£%)+w&m}
{iw— 20 +dk) T {iw+ £ +d(k) - T} }
{—(m—;j;,)zﬂd( J2H = (iw+ £5)" + a2}

(B5)
The first term, after expanding in small ¢, gives
3m¢? sin’0
t ox —et [ dip— " B6
! / 4k8 (B6)
which does not produce a log divergent correction to the Coulomb line. The second term can be written as:
. k2 . k2
ty o 4/ dw d'k {W—erd k) T} {iw+ 507 +d(k) T}
2 —ql? . k2 . k2 \2
Bl =aP f —(iw— 2)" +1dP} { - (1w + £5)" + law) P}
2
dw dk 2 4 M) dk
0(64/k2 |k ‘2 - - 47;7,2“122 O(—e4m//m, (B?)
— k 2 _ 2 L4 —
4 (w2 + iTnz m”/’; )) + ng 4
which again does not produce a log divergent correction to the Coulomb line.
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