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Recent years have seen the development of two types of non-local extensions to the single-site
dynamical mean field theory. On one hand, cluster approximations, such as the dynamical cluster
approximation, recover short-range momentum-dependent correlations non-perturbatively. On the
other hand, diagrammatic extensions, such as the dual fermion theory, recover long ranged cor-
rections perturbatively. The correct treatment of both strong short-ranged and weak long-ranged
correlations within the same framework is therefore expected to lead to a quick convergence of re-
sults, and offers the potential of obtaining smooth self-energies in non-perturbative regimes of phase
space. In this paper, we present an exact cluster dual fermion method based on an expansion around
the dynamical cluster approximation. Unlike previous formulations, our method does not employ a
coarse graining approximation to the interaction, which we show to be the leading source of error
at high temperature, and converges to the exact result independent of the size of the underlying
cluster. We illustrate the power of the method with results for the second-order cluster dual fermion
approximation to the single-particle self-energies and double occupancies.

I. INTRODUCTION

The complexity of the exact numerical solution of
fermionic lattice model systems such as the two-
dimensional Hubbard model1 is generally believed to
scale exponentially as a function of system size. There
is therefore a need for approximations that capture the
salient aspects of these models while remaining computa-
tionally affordable, such that routine simulations of large
parameter spaces can be performed.

In particular, there is a need for reliable approxi-
mations to single- and two-particle response functions
for ‘correlated’ systems at intermediate-to-large interac-
tion strengths and at finite temperature, as these cor-
respond to the quantities measured in experiments such
as angle-resolved photoemission spectroscopy,2 scanning
tunneling microscopy,3 electronic Raman scattering,4 nu-
clear magnetic resonance,5 or resonant inelastic X-ray
scattering.6 In this regime, electronic correlations tend
to be long ranged, non-perturbative, and strongly mo-
mentum dependent.1

The dynamical mean field approximation (DMFT),7–10

originally developed as an exact theory for the Hubbard
model in the infinite dimensional limit, has evolved into
a popular approximation for simulating strongly corre-
lated lattice models. It is based on the realization that,
if correlations and interactions are approximated as local
in space, the numerically intractable lattice system can
be mapped onto an effective impurity embedded in a self-
consistently determined medium. The impurity problem
can then be solved efficiently using numerical impurity
solver algorithms.11 However, the approximation of a lo-
cal self-energy is often severe, and momentum dependent
effects such as the pseudogap state or d-wave supercon-
ductivity in the Hubbard model12 are missed entirely.

Two types of extensions to address these shortcomings
have been proposed. On one hand, cluster methods13

(formulated in real space, such as the cellular dynam-

ical mean field theory14,15, or in k-space, such as the
dynamical cluster approximation16–18 (DCA)) systemat-
ically enlarge the size of the impurity or ‘cluster’ and
recover the exact solution in the infinite cluster size
limit.1,19–22 These methods are particularly well adapted
to study parameter regimes with strong short-ranged cor-
relations but generally miss correlations on length scales
beyond the cluster size. On the other hand, methods that
combine perturbative diagrammatic expansions with a
non-perturbative solution of a confined problem, such as
the Dual Fermion (DF) method,23 the dynamical ver-
tex approximation,24 trilex,25 quadrilex26 or – in the
case of non-local interactions – the self-energy embedding
theory,27,28 dual bosons,29 or EDMFT+GW,30,31 typi-
cally capture some correlations on all length scales but
neglect diagrams that may be important in a strongly
correlated regime. While several of these extensions can
in principle be made exact by varying a control param-
eter (such as cluster size or the perturbation expansion
order), the convergence to the exact limit deep in the
correlated regime is often too slow to be practical.

The combination of cluster methods with diagram-
matic extensions is therefore desirable, as the exact
treatment of short-range correlation in combination with
a diagrammatic treatment of long-range correlations
promises a faster convergence to the thermodynamic
limit. Two such methods have been presented before:
the combination of the DF method with real-space cluster
dynamical mean field theory32 and exact diagonalization
of isolated clusters33; and a combination of the k-space
dynamical cluster approximation with the DF method.34

In this paper we show that the method presented in
Ref. 34 contains an additional coarse-graining approxi-
mation and becomes exact only in the limit of cluster size
Nc → ∞ in which the underlying DCA cluster method
converges itself and dual fermion corrections disappear,
whereas the methods of Refs. 32 and 33 become pro-
hibitively expensive for large clusters. We then present
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a momentum-space dual fermion cluster method which
utilizes an exact mapping to the dual fermion variables,
avoiding the coarse graining approximation. We show
that the coarse graining approximation used in Ref. 34 is
the dominant approximation in practice, and that it can
be avoided by breaking translational symmetry in the so-
lution of the dual fermion problem, leading to a method
that is exact for any cluster size.

Our results for self-energies and double occupancies of
the Hubbard model obtained on four-site clusters show
that there is a substantial improvement of dual fermion
cluster results over single site DF results, both in single-
particle and in two-particle quantities. We also demon-
strate that basing the method on a translationally in-
variant impurity problem leads to a manageable scaling
of the impurity vertex functions, offering the possibility
to perform simulations on clusters large enough to exhibit
a clear pseudogap and superconducting state.

The remainder of this paper is organized as follows: In
Sec. II we introduce the the model, derive the dynam-
ical cluster dual fermion method of Ref. 34, and show
how the coarse graining approximation can be avoided
by breaking translational invariance. In Sec. III we show
results from our method and compare them to various
other methods, including finite cluster DCA and DF; We
conclude and summarize in Sec. IV.

II. METHOD

In this paper, we limit ourselves to studying the Hub-
bard model on a two-dimensional square lattice with
nearest neighbor hopping t, chemical potential µ, and
on-site interaction U ,

H =
∑
〈ij〉σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ − µ
∑
iσ

c†iσciσ. (1)

The operators c
(†)
i annihilate (create) a particle at lattice

site i, and ni = c†i ci denotes the particle number at site
i.

To start the derivation of cluster methods, we ap-
proximate the infinite lattice problem by a finite (but
large) number of sites Ntot, which we divide into V clus-
ters of size Nc each, such that Ntot = V Nc. We will
refer to the lattice formed by the V clusters as the
‘super-lattice’. The position i of a coordinate in the
original lattice is then given as the pair of I, ĩ, where
ĩ = x̃1, · · · , x̃V denotes the position of a cluster in the
lattice and I = X1, · · · ,XNc labels sites within each clus-

ter, such that i = ĩ + I.13 Eq. 1 then reads:

H =
∑
〈Ĩi,J̃j〉σ

tI+̃i,J+j̃c
†
I+̃iσ

cJ+j̃σ+

+U
∑
Ĩi

c†
I+̃i↑cI+̃i↑c

†
I+̃i↓cI+̃i↓ − µ

∑
Ĩiσ

c†
I+̃iσ

cI+̃iσ. (2)

The corresponding reciprocal k-space is split into Nc cells
labeled by momentum K with V momenta k̃ inside each
cell. Operators in reciprocal space and in real space are
related by the Fourier transforms

cI+̃i,σ =
1√
V Nc

∑
K,k̃

cK+k̃,σe
i(K+k̃)(I+̃i); (3a)

c†
I+̃i,σ

=
1√
V Nc

∑
K,k̃

c†
K+k̃,σ

e−i(K+k̃)(I+̃i); (3b)

cK+k̃,σ =
1√
V Nc

∑
I,̃i

cI+̃i,σe
−i(K+k̃)(I+̃i); (3c)

c†
K+k̃,σ

=
1√
V Nc

∑
I,̃i

c†
I+̃i,σ

ei(K+k̃)(I+̃i). (3d)

Fourier transforming the Hamiltonian of Eq. 2 to recip-
rocal k-space according to Eq. 3 results in

H =
∑
Kk̃σ

εK+k̃c
†
K+k̃,σ

cK+k̃,σ − µ
∑
Kk̃σ

c†
K+k̃,σ

cK+k̃,σ+

+
U

N2
c V

2

∑
K1K2K3K4

k̃1k̃2k̃3k̃4

c†
K1+k̃1↑

cK2+k̃2↑c
†
K3+k̃3↓

cK4+k̃4↓Λ,

(4)

where εK+k̃ =
∑
Ĩi,J̃j

tI+̃i,J+j̃e
i(K+k̃)(I+̃i−J−j̃) is the lattice

dispersion and

Λ =
∑
I,̃i

e−i(K1+k̃1+K3+k̃3−K2−k̃2−K4−k̃4)(I+̃i) (5)

is the “Laue function”13 which stems from the Fourier
transform defined in Eq. 3 and guarantees momentum
conservation of the interaction.

For the derivation of the DF formalism (presented in
Sec. II A) it is convenient to switch to an action formula-
tion and Grassmann variables. The action corresponding
to Eq. 4 can be expressed as

S = S(int)+

+
∑
k̃

∫
dτ
∑
Kσ

c∗
K+k̃,σ

(τ)
(
(∂τ − µ) + εK+k̃

)
cK+k̃,σ(τ),

(6)

where cK+k̃,σ (τ) is a fermionic Grassmann variable, and

S(int) is the interacting part of the Hubbard action, de-
fined as

S(int) =
U

N2
c V

2

∑
k̃1k̃2k̃3k̃4

∫
dτ

∑
K1K2K3K4

c∗
K1+k̃1↑

(τ)cK2+k̃2↑(τ)×

× c∗
K3+k̃3↓

(τ)cK4+k̃4↓(τ)Λ. (7)
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Next, we employ a Fourier transform from imaginary time τ to Matsubara frequency wn = (2n+ 1)πT , with

cωn,K+k̃,σ =
1√
β

∫
cK+k̃,σ(τ)e−iτωndτ ; (8a)

c∗
ωn,K+k̃,σ

=
1√
β

∫
c∗
K+k̃,σ

(τ)eiτωndτ. (8b)

The resulting Hubbard model action in reciprocal space
and Matsubara frequencies then reads

S = −
∑
nKk̃σ

c∗
ωn,K+k̃,σ

(iωn + µ− εK+k̃)cωn,K+k̃,σ+

+
U

N2
c V

2β

∑
n,m,l

K1K2K3K4

k̃1k̃2k̃3k̃4

c∗
ωn,K1+k̃1,↑

cωn+Ωl,K2+k̃2,↑c
∗
ωm+Ωl,K3+k̃3,↓

cωm,K4+k̃4,↓Λ, (9)

with bosonic transfer frequency Ωn = 2nπ
β . Eq. 9 is the

starting point for the cluster DF derivations presented in
following sections.

A. Dual Fermion method

In this section, we give a short overview of the single
site DF method.23 A detailed discussion of the formalism
can be found in Ref. 35. The DF method aims to use
DMFT as a starting point and reintroduce all non-local
correlation effects via a diagrammatic perturbation series
around DMFT.

The construction of the DF approximation is typically
done in two steps. First, a DMFT impurity model that
describes local correlations is constructed and solved self-
consistently using numerical impurity solvers.11 Second,
at the cost of the introduction of new fermionic opera-
tors, a perturbation theory of the original lattice model in
terms of local quantities is formulated. In this construc-
tion, the DMFT is a zeroth-order approximation, and
non-local correlations are obtained by a diagrammatic
perturbation series of the DF problem. The DF method
utilizes a formally exact mapping from the original lattice
problem to so-called ‘dual’ variables, and is formulated
in terms of a hierarchy of (two-particle, three-particle,
etc) impurity vertices and modified ‘dual’ propagators.
In practical implementation of the DF method, the hier-
archy of impurity vertices is then usually truncated to the
two-particle vertex, and only second order or ladder-type
diagrams of the perturbation series are considered.

The dual fermion method has provided important in-
sights to electron correlation effects in the Hubbard
model35–38 and in disordered lattice systems.39 It has also
found applications in the study of the Falicov-Kimball
model,40–42 where the equations can be solved exactly.

Unfortunately, strong non-local fluctuations, such as
those present near half-filling in the two-dimensional
Hubbard model, render the local DMFT approximation
less suitable as a starting point for DF perturbation ex-
pansion. For this reason, starting points that include
non-local correlations32 are needed to get an accurate
representation of the model system at low DF expansion
order. Developing such a starting point is the topic of
the present paper.

B. DCA method and DCA approximation

Both Ref. 34 and our momentum-space cluster DF
method employ the DCA as a zeroth order approxima-
tion around which the DF perturbation expansion is per-
formed. In this section, we briefly review dynamical clus-
ter approximation itself. While we only outlined the main
ideas used in the DCA construction, a more detailed de-
scription of the DCA method can be found in Ref. 13.

DCA is based on an approximation of the infinite, in-
tractable lattice model by a periodic cluster of size Nc
embedded in a self-consistently determined host defined
by hybridization function ∆ωnK. Conceptually, this is
done by partitioning the lattice with N sites into clusters
containing Nc sites which, in reciprocal space, is equiva-
lent to the division of the Brillouin zone of the underlying
lattice into clusters with Nc cells centered at the recip-
rocal sub-lattice vectors K. The clusters are subject to
periodic boundary conditions.

In its construction, the DCA employs two approxima-
tions. First, DCA assumes that the self-energy of the
original lattice and of the cluster are related by Σ(k, ω) ≈
Σc(K, ω), where Σ(k, ω) denotes the lattice self-energy

and Σc(K, ω) the cluster self-energy, and k = K + k̃.
In other words, the self-energy is assumed to be con-
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stant within each cluster ‘cell’. Second, DCA assumes
that each cluster is indistinguishable in the super-lattice
and that momentum is only conserved within the clus-
ter. This is equivalent to the approximation of momen-
tum conservation at each vertex by neglecting the phase

factors eik̃̃i and eik̃I, respectively, in Eq. 5. This second
approximation, sometimes called the ‘coarse-graining’ of
the interaction term, results in replacing the Hubbard
model Laue function (ensuring momentum conservation
on a lattice) with the DCA Laue function

Λ ≈ ΛDCA =
∑
I

e−i(K1+K3−K2−K4)I (10)

(which ensures momentum conservation within a
cluster).13,43

The standard DCA derivation then approximates Eq. 9
by a cluster action of the form13

Sc = −
∑
nKσ

c∗ωn,K,σG
0
c(ωn)−1cωn,K,σ + S

(c)
int. (11)

In this equation, S
(c)
int is the interacting part of the cluster

action defined as

S
(c)
int =

U

N2
c β

∑
n,m,l

K1K2K3K4

c∗ωn,K1,↑cωn+Ωl,K2,↑×

× c∗ωm+Ωl,K3,↓cωm,K4,↓ΛDCA, (12)

and G0
c(K, ωn) = (iωn + µ − ε̄K − ∆ωnK)−1 is the

bare cluster Green’s function, with level energies ε̄K and
hybridization function ∆ωnK chosen such that Σ(k) =
Σc(K).13 A solution is typically obtained iteratively,
starting from some initial guess for ∆ωnK, until the con-
vergence criterion Σ(k) = Σc(K) is satisfied.

C. DCA dual fermion methods

In this section, we derive two cluster dual fermion
methods that use the dynamical cluster approximation
as a starting point. In Sec. II C 1 we show that, if the
Laue function approximations of Sec. II B is kept, the ap-
proximate method of Ref. 34 is obtained. Subsequently,
in Sec. II C 2, we show how our momentum-space cluster
DF method avoids this approximation.

DCA dual fermion methods aim to perform a dual
fermion expansion around cluster problems solved by the
dynamical cluster approximation. To this end, Eq. 9
is expressed in terms of DCA cluster actions, Eq. 11,
with additional inter-cluster correction terms to system-
atically recover the approximations introduced within the
DCA framework.

1. DCA dual fermions with Laue approximation

As we have shown in Sec. II B, in addition to restrict-
ing the self-energy dependence to the cluster momenta

Σ(K, ωn) only, the DCA utilizes the coarse-graining of
the interaction term approximation, resulting in neglect-

ing of eik̃̃i and eik̃I phase factors in the lattice Laue func-
tion. In this section, we show a method that will allow the
construction of a fully momentum dependent self energy
Σ(k, ωn). However, the DF mapping used will remain ap-
proximate. In particular, we will include the phase factor

eik̃̃i, but keep the approximation for the phase factor eik̃I

to have cluster momentum conservation inside the clus-
ter.

To start the construction, we rewrite the lattice action,
Eq. 9, in terms of a sum of DCA cluster actions with ad-
ditional non-local correction terms. To make the clusters
translationally invariant, we set eik̃I = 1 in the lattice
Laue function, Eq. 5, resulting in

Λ ≈
∑
I,̃i

e−i(K1+K3−K2−K4)Ie−i(k̃1+k̃3−k̃2−k̃4 )̃i =

=ΛDCA
∑
ĩ

e−i(k̃1+k̃3−k̃2−k̃4 )̃i. (13)

This allows us to define the annihilation operator at (real-

space) cluster position ĩ and (cluster reciprocal coordi-
nate) K using Eq. 3 to approximate the interacting part
of the lattice action while keeping the kinetic part exact

cK,̃i,σ =
1√
Nc

∑
I

cI+̃i,σe
−iKI, (14)

and to rewrite the lattice action of Eq. 9 as

S = −
∑
nKk̃σ

c∗
ωn,K+k̃,σ

(iωn + µ− εK+k̃)cωn,K+k̃,σ+

+
∑
ĩ

S
(̃i)
int, (15)

where S
(̃i)
int is the interacting part of the action

S
(̃i)
int =

U

N2
c β

∑
n,m,l

K1K2K3K4

c∗
ωn,K1 ,̃i,↑

cωn+Ωl,K2 ,̃i,↑×

× c∗
ωm+Ωl,K3 ,̃i,↓

cωm,K4 ,̃i,↓ΛDCA, (16)

which is equivalent to the definition of the interacting
part of the DCA effective action of. Eq. 12 for each clus-
ter at position ĩ in the super-lattice.

Following the DF construction, now we can map ap-
proximated lattice action, Eq. 15, to a set of DCA clus-
ter actions, Eq. 11, with additional inter-cluster correc-
tions. For this we add and subtract

∑
nKĩσ

c∗
ωn,K,̃i,σ

(ε̄K +
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∆ωnK)cωn,K,̃i,σ into the lattice action of Eq. 15,

S = −
∑
nKk̃σ

c∗
ωn,K+k̃,σ

(
iωn + µ− εK+k̃

)
cωn,K+k̃,σ+

+
∑
ĩ

S
(̃i)
int +

∑
nKĩσ

c∗
ωn,K,̃i,σ

(ε̄K + ∆ωnK)cωn,K,̃i,σ−

−
∑
nKĩσ

c∗
ωn,K,̃i,σ

(ε̄K + ∆ωnK)cωn,K,̃i,σ. (17)

Since the cluster patch density obeys∑̃
i

c∗
ωn,K,̃i,σ

cωn,K,̃i,σ =
∑̃
k

c∗
ωn,K+k̃,σ

cωn,K+k̃,σ, we can

transform the last term in the super-lattice reciprocal
space:

S = −
∑
nKĩσ

c∗
ωn,K,̃i,σ

(iωn + µ− ε̄K −∆ωnK) cωn,K,̃i,σ+

+
∑
ĩ

S
(̃i)
int −

∑
nKk̃σ

c∗
ωn,K+k̃,σ

(∆ωnK+

+ ε̄K − εK+k̃)cωn,K+k̃,σ. (18)

Or

S =
∑
ĩ

S (̃i)
c (19)

−
∑
nKk̃σ

c∗
ωn,K+k̃,σ

(∆ωnK + ε̄K − εK+k̃)cωn,K+k̃,σ.

So far, we have rewritten our lattice action in terms of

the set of cluster actions S
(̃i)
c plus the last terms, which

describe the coupling between the super-sites.
Next, we introduce the dual fermion variables (ξ∗, ξ)

by performing a Hubbard-Stratonovich transformation in
the last term for each inter-cluster momenta k̃, choosing
α = {ωn,K, k̃}, β = {ωn,K′, k̃}, aαβ = [(∆ωnK + ε̄K −
εK+k̃)δKK′ ]

−1 and b as an arbitrary function of ωn, K
and σ:

ec
∗
αa
−1
αβcβ =

1

det(bαaαβbβ)

∫
e−ξ

∗
αbαaαβbβξβ+ξ∗αbαcα+c∗αbαξαD[ξ∗, ξ], (20)

such that

S =
∑
ĩ

S (̃i)
c +

∑
Kk̃

ξ∗
Kk̃
bK

1

(∆ωnK + ε̄K − εK+k̃)
bKξKk̃−

−
∑
Kk̃

(ξ∗
Kk̃
bKcKk̃ + c∗

Kk̃
bKξKk̃). (21)

Here K = {ωnKσ} is composite index for shorthand

notation, and we choose b(K) = −G(c)
K

−1
. Since b(K)

is independent of k̃ we can Fourier transform the last
term in above Eq. to the super-lattice real space,
i.e.

∑
Kk̃(ξ∗

Kk̃
bKcKk̃ + c∗

Kk̃
bKξKk̃) =

∑
K ĩ(ξ

∗
K ĩ
bKcK ĩ +

c∗
K ĩ
bKξK ĩ). Eq. 21 then reads

S =
∑
ĩ

S (̃i)
c −

∑
K ĩ

(ξ∗
ĩK
bKcK ĩ + c∗

K ĩ
bKξK ĩ)+

+
∑
Kk̃

ξ∗
Kk̃
bK

1

(∆ωnK + ε̄K − εK+k̃)
bKξKk̃. (22)

This allows us to complete the mapping to the DF
lattice by integrating out the lattice fermionic Grassmann
variables c∗

K ĩ
, cK ĩ for each super-lattice site ĩ separately:∫

e−S
(̃i)
c e
−
∑
K

(
ξ∗
K ĩ
G

(c)
K

−1
cK ĩ+c

∗
K ĩ
G

(c)
K

−1
ξK ĩ

)
D
[
c∗
ĩ
, c̃i
]

=

=Zc

〈
e
−
∑
K

(
ξ∗
K ĩ
G

(c)
K

−1
cK ĩ+c

∗
K ĩ
G

(c)
K

−1
ξK ĩ

)〉
c

, (23)

where 〈. . .〉c corresponds to averaging in terms of DCA
cluster action. The original lattice action problem can
then be expressed using only dual operators and cluster
observables:

S [ξ∗, ξ] =
∑

n,K+k̃,σ

ξ∗
ωn,K+k̃,σ

G
(c)
K

−1
×

×((∆ωnK + ε̄K − εK+k̃))−1G
(c)
K

−1
ξωn,K+k̃,σ+

+
∑
ĩ

(∑
nKσ

ξ∗
ωn,K,̃i,σ

G
(c)
K

−1
ξωn,K,̃i,σ + V

[
ξ∗
ĩ
, ξ̃i
])

=

= −
∑
nKk̃σ

ξ∗
ωn,K+k̃,σ

G̃
(0)

ωnKk̃σ

−1ξωn,K+k̃,σ +
∑
ĩ

V
[
ξ∗
ĩ
, ξ̃i
]
.

(24)

Here G̃
(0)

ωnKk̃σ
= − G

(c)
K G

(c)
K

G
(c)
K +(∆ωnK+ε̄K−εK+k̃)−1

is a bare dual

Green’s function, and V [ξ∗
ĩ
, ξ̃i] is the dual interaction

term

V
[
ξ∗
ĩ
, ξ̃i
]

=

∞∑
n=2

(−1)n−1

(n!)2

∑
K1...K2n

γ
(2n)
c,K1...K2n

×

×[

n−1∏
m=0

ξ∗
ĩ,Kmn+1

ξ̃i,Kmn+2
]δ∑

i∈oddKi,
∑
j∈evenKj

. (25)

Here γ
(2n)
c is the antisymmetrized n−particle reducible

cluster vertex function. This derivation matches the pre-
viously published results.34 Note, however, that it intrin-
sically relies on the approximation to Λ, Eq. 13. While
this approximation becomes exact in the limit ofNc →∞
(where DCA becomes exact and all dual fermion correc-
tions disappear), the method is approximate for any fi-
nite cluster size. This is very different from single site
dual fermions or the real-space cluster methods, which
recover the exact result provided that all dual correc-
tions are summed. In Sec. III, we will show that – at
least for the parameter regime studied – the effect of this
Laue approximation is considerable.
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2. Momentum-Space Cluster Dual Fermion Method

In this section we present a cluster DF method which
avoids the approximation to the Laue function. As a con-
sequence, the dual fermion mapping will be exact for any
cluster size, meaning that if all dual fermion diagrams to
all orders are summed, the exact result will be recov-
ered independent of the quality of the underlying DCA
approximation.

To preserve the lattice momentum conservation and
express the lattice action of Eq. 7 in terms of DCA cluster
actions, we separately define Fourier transforms for intra-

(I) and inter (̃i)-cluster momenta:

cI,̃i,σ =
1√
V

∑
k̃

cI,k̃,σe
ik̃̃i; (26a)

cI,̃i,σ =
1√
Nc

∑
K

cK,̃i,σe
iKI; (26b)

cK,k̃,σ =
1√
V

∑
ĩ

cK,̃i,σe
−ik̃̃i; (26c)

cK,k̃,σ =
1√
Nc

∑
I

cI,k̃,σe
−iKI. (26d)

In this case the lattice action is

S = −
∑
n,k̃

∑
KK′σ

c∗
ωn,K,k̃,σ

(
(iωn + µ)δKK′ − ε̂KK′k̃

)
cωn,K′,k̃,σ+

+
U

NcV β

∑
n,m,l

k̃k̃′q̃

∑
KK′Q

c∗
ωn,K,k̃,↑

cωn+Ωl,K+Q,k̃+q̃,↑c
∗
ωm+Ωl,K′+Q,k̃′+q̃,↓cωm,K′,k̃′,↓. (27)

Here ε̂KK′k̃ is the reciprocal space representation of the
hopping term. This hopping term becomes non-diagonal
in reciprocal cluster vectorsK andK ′ due to the breaking
of the translational invariance.

ε̂KK′k̃ =
1

Nc

∑
IJ̃ĩj

tI+̃i,J+j̃e
i(KI−K′J+k̃(̃i−j̃)). (28)

In order to express our lattice action in terms of the
translationally invariant DCA cluster action, first we
need to express interaction term in super-lattice real-
space as

U

NcV β

∑
n,m,l

k̃k̃′q̃

∑
KK′Q

c∗
ωn,K,k̃,↑

cωn+Ωl,K+Q,k̃+q̃,↑×

×c∗
ωm+Ωl,K′+Q,k̃′+q̃,↓cωm,K′,k̃′,↓ =

=
U

Ncβ

∑
n,m,l

ĩ

∑
KK′Q

c∗
ωn,K,̃i,↑

cωn+Ωl,K+Q,̃i,↑×

×c∗
ωm+Ωl,K′+Q,̃i,↓cωm,K′ ,̃i,↓. (29)

To express Eq. 27 in terms of the DCA cluster action
of Eq. 11, we now add and subtract

∑
n,Kĩσ

c∗
ωn,K,̃i,σ

(ε̄K +

∆ωnK)cωn,K,̃i,σ into lattice action term:

S = −
∑
n

K,K′

k̃,σ

c∗
ωn,K,k̃,σ

(
(iωn + µ)δKK′ − ε̂KK′k̃

)
cωn,K′,k̃,σ+

+
∑
ĩ

S
(̃i)
int +

∑
nKĩσ

c∗
ωn,K,̃i,σ

(ε̄K + ∆ωnK)cωn,K,̃i,σ−

−
∑
nKĩσ

c∗
ωn,K,̃i,σ

(ε̄K + ∆ωnK)cωn,K,̃i,σ. (30)

Since the DCA cluster quantities ε̄K and ∆ωn,K are inde-
pendent of cluster position in the super lattice, we trans-
form the last term into super-lattice reciprocal space (k̃):

S = −
∑
nKĩσ

c∗
ωn,K,̃i,σ

(iωn + µ− ε̄K −∆ωnK) cωn,K,̃i,σ+

+
∑
ĩ

S
(̃i)
int−

−
∑

nKK′k̃σ

c∗
ωn,K,k̃,σ

((∆ωnK + ε̄K)δKK′ − ε̂KK′k̃)cωn,K′,k̃,σ.

(31)

Or, using the Eq. 11 for the cluster action,

S =
∑
ĩ

S (̃i)
c −

−
∑

nKK′k̃σ

c∗
ωn,K,k̃,σ

((∆ωnK + ε̄K)δKK′ − ε̂KK′k̃)cωn,K′,k̃,σ.

(32)
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Next, we introduce dual fermions via a Hubbard-
Stratonovich transformation, Eq. 20, choosing aαβ =
(∆ωnK+ ε̄K− ε̂KK′k̃)−1, and b as an arbitrary function of
ωn, K and σ. This expresses the lattice action in terms
of the cluster action and dual Grassman variables:

S =
∑
ĩ

S (̃i)
c +

+
∑
KK′k̃

ξ∗
K,k̃

bK((∆ωnK + ε̄K)δKK′ − ε̂KK′k̃)−1bK′ξK′,k̃−

−
∑
Kk̃

(ξ∗
K,k̃

bKcK,k̃ + c∗
K,k̃

bKξK,k̃) =

=
∑
ĩ

S (̃i)
c −

∑
K ĩ

(ξ∗
K,̃i
bKcK,̃i + c∗

K,̃i
bKξK,̃i)+

+
∑
KK′k̃

ξ∗
K,k̃

bK((∆ωnK + ε̄K)δKK′ − ε̂KK′k̃)−1bK′ξK′,k̃,

(33)

where K and K ′ have been introduced as shorthand no-
tation for K = {K, ωn, σ} and K ′ = {K′, ωn, σ} respec-
tively.

Considering the first two terms in the last equation, we
can now complete the mapping to the DF lattice by inte-
grating out the lattice fermion Grassmann variables for
each super-lattice site ĩ separately and express the orig-
inal lattice action via dual fermion Grassmann variables

ξ∗ and ξ only, choosing b = −G(c)
K

−1
:

S [ξ∗, ξ] =
∑

nKK′k̃σ

ξ∗
ωn,K,k̃,σ

×

×G(c)
K

−1 [
((∆ωnK + ε̄K)δKK′ − ε̂KK′k̃)

]−1
G

(c)
K′

−1
ξωn,K′,k̃,σ+

+
∑
ĩ

(∑
nKσ

ξ∗
ωn,K,̃i,σ

G
(c)
K

−1
ξωn,K,̃i,σ + V

[
ξ∗
ĩ
, ξ̃i
])

=

=−
∑

nKK′k̃σ

ξ∗
ωn,K,k̃,σ

G̃
(0)

ωnKK′k̃σ

−1ξωn,K′,k̃,σ+

+
∑
ĩ

V
[
ξ∗
ĩ
, ξ̃i
]
, (34)

where G̃
(0)

ωnKK′k̃σ
= −G(c)

K [G
(c)
K′ + ((∆ωnK + ε̄K)δKK′ −

ε̂KK′k̃)−1]−1G
(c)
K′ is a bare dual Green’s function and the

dual potential, V [ξ∗
ĩ
, ξ̃i], remains the same as in Eq. 25.

Detailed derivations of the dual fermion potential con-
struction are given in the supplement.44

Once the DF perturbation expansion around the DCA
problem is performed, it yields correction to the DCA
self-energy. The relation between the dual self-energy
Σ̃KK′k̃ and the lattice self-energy ΣKK′k̃ is the (see Sup-
plementary material for the detailed derivation)44

ΣKK′k̃ = Σ
(c)
K δK,K′ +

(
1 + ΣKK′k̃G

(c)
K′

)−1

Σ̃KK′k̃, (35)

where Σ
(c)
K is the DCA cluster self-energy.

Since in an exact solution of the dual equations we
recover the exact, translationally invariant lattice self-
energy, we can now transform ΣKK′k̃ into real space sep-
arately for intra- and inter-cluster momenta and then
perform a regular Fourier transform to obtain the lattice
self-energy

ΣI,J,k̃ =
1

N2
c

∑
KK′

ΣKK′k̃e
−i(IK−JK′); (36)

Σk = ΣK+k̃ =
∑
I,J

ΣI,J,k̃e
i(I−J)(K+k̃). (37)

As is evident from Eq. 28 and Eq. 34, the cluster dis-

persion ε̂KK′k̃ and the dual quantities G̃
(0)

ωnKK′k̃σ
and

Σ̃KK′k̃ are not translationally invariant in cluster mo-
menta. The method can therefore be considered as a
hybrid between the dual fermion expansion of cluster
DMFT32 (where both cluster and DF quantities break
translational symmetry) and the DCA DF method of
Ref. 34 and Sec. II C 1, where neither does, at the cost of
introducing an additional approximation to momentum
conservation.

In practice, an approximate solution of the dual
fermion equations (e.g. by only considering low-order
or ladder diagrams, or by neglecting any higher order
vertices) will result in offdiagonal elements, which can be
used to assess the quality of the dual fermion solution.

Similar to the original DF method and the CDMFT DF
expansion of Ref. 32 but unlike the method of Ref. 34, our
momentum space cluster DF method presented in this
section recovers the exact solution if all dual diagrams
are summed up to all orders, irrespective of the quality
of the underlying DCA solution or the size of the under-
lying cluster. However, if the underlying DCA solution
already captures the salient aspects of the solution, dual
corrections are expected to be small and perturbative,
such that the dual series converges quickly.

In the following, we briefly describe the numerical pro-
cedure we use to perform the momentum-space cluster
DF analysis, as well as the numerical scaling. The calcu-
lation of this approximation consists of four parts. First,
we obtain the converged DCA solution of the problem.
Second, we extract the DCA vertex from the DCA four-
point correlation function; Third, we perform the DF
perturbation expansion and obtain the dual self-energies.
Finally, we calculate the lattice self-energies. The numer-
ically expensive part is the second part, where a strongly
correlated many-body problem needs to be solved, typi-
cally using quantum Monte Carlo methods, and a vertex
function has to be extracted. Away from certain high-
symmetry points, all cluster solvers scale exponentially in
system size, making access to large cluster sizes difficult.
Measuring the two-particle vertex functions for enough
frequencies that reliable dual fermion calculations can be
performed, and for all momenta triples in the cluster,
dominates the time to solution. Reducing the scaling
from O(N4

c ) for a translational symmetry breaking clus-
ter to O(N3

c ) for a DCA cluster is therefore a crucial per-
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a)

+

b)
+ . . . + + . . .

c)

+ . . . + + . . . +

Figure 1. The diagram types for the dual self-energy with
major contribution. The white squares and hexagons corre-
spond to two- and three-particle impurity vertex respectively.
Lines correspond to the bare dual Green’s function.

formance advantage that makes calculations on clusters
beyond four sites possible. The cost of the translational
symmetry breaking of the DF equations introduced in
Sec. II C 2, in comparison to the translationally invariant
formalism of Sec. II C 1, and the necessity to work with

G̃
(0)

ωnKK′k̃σ
and Σ̃KK′k̃ is negligible.

The exact dual fermion equations contain not just two-
particle but general n-particle DCA cluster vertex func-
tions. Computing these is achieved by a two-dimensional
fast Fourier transform of complexity O(N2

c log(N2
c )), fol-

lowing by the assembly of vertex function for each unique
momentum point at a complexity of O(N2n−1

c ). The
overall computational cost of a DCA cluster n-particle
vertex function scales therefore as O(N2n−1

c ). Each dia-
grammatic order with n-particle vertex functions gives an
additional order of O(Nn−1

c ) numerical complexity. The
memory complexity is order of O(N2n−1

c ) for both DCA
and DCA DF methods. This illustrates why this method
is advantageous to the dual fermion expansion around
real-space cluster DMFT, which scales with O(N2n

c )
complexity for memory requirements and an additional
O(N2n

c ) of computational complexity at each diagram-
matic order. In practice, with present-day algorithms,
only two- and three-particle vertices can be computed
for clusters of Nc ≤ 8, and only two-particle vertices for
clusters with size Nc ≤ 16.

III. RESULTS

In this section we present results from the methods
discussed in the preceding sections. In particular, we
present results obtained by the single-site DF method,23

by DCA of clusters of size Nc = 4 and Nc = 64, and
by the two cluster DF methods described in this paper:
DCA DF of Sec. II C 1 and momentum-space cluster DF
method of Sec. II C 2 We choose a single set of parame-
ters; U/t = 4.0, T/t = 0.5 and half-filling. In this regime,
the self-energy shows momentum dependence that can
be resolved accurately by large cluster DCA and several
other numerical methods.45,46 Data for this point is also
available in the Hubbard model benchmark.1

Our DCA code uses the continuous-time auxiliary
field11,47,48 (CT-AUX) method with an adaptation of
nonequidistant fast Fourier transforms49,50 to compute
vertex functions. The implementation is based on the
core libraries51 of the open source ALPS52 package; self-
consistent ladder single-site DF calculations were per-
formed by open-source OpenDF code.53

In our cluster DF analysis, we employed three different
flavors of the dual fermion approximation; all of them are
in common use. First, a second-order summation of the
dual diagram. In this approach, all terms to second order
in the cluster impurity two-particle vertex are included,
but both higher order terms with two-particle vertices
and any contribution from higher order vertices (three-
particle, four-particle, etc) are neglected. The dual self-
energy diagram of this method is illustrated in Fig. 1a.
Second, we employed a ladder summation of the dual
particle-hole ladder, which contains an infinite number
of diagrams of two-particle vertex functions but neglects
some of the diagrams with three (or more) two-particle
vertices as well as any diagram with higher order ver-
tices. These diagrams are illustrated in Fig. 1b. Finally,
we computed the three-particle vertex (a quantity of five
momenta and frequencies) and the lowest order contri-
bution from this diagram. For an illustration see Fig. 1c.

A. Dual Fermions with DCA Laue approximation

Fig. 2 shows results from 64-site DCA, 4-site DCA,
single-site dual fermions in the ladder and second-order
approximation, and 4-site DCA DF with the Laue ap-
proximation as originally derived in Ref. 34 and described
in Sec. II C 1. Shown are the real ReΣ(ω0) and imaginary
ImΣ(ω0) parts of the Matsubara self-energy at the low-
est Matsubara frequency ω0 = πT i. At this point the
data exhibit the largest momentum variation. The large
cluster DCA result (Nc = 64, open square symbols) is es-
sentially a coarse-grained version of the exact self-energy,
and single-site DF and DCA for 64 sites agree reasonably
well for the real part of the self-energy.

There is a small deviation of the single-site ladder DF
results from the Nc = 64 cluster results in the imagi-
nary part of self-energy. It is caused, as shown by Ribic
et al. 54 , by three- and more particle correlations, in par-
ticular by the diagram shown in Fig. 1.c. The DCA
approximation for Nc = 4 shows qualitatively similar
trends, but the rough k-space discretization does not
allow to resolve details of the self-energies. Methods
like cumulant, self-energy, or Green’s function interpola-
tion could be used to obtain smoother data.18,55–57 Four-
site ladder DF (based on the four-site DCA results) of
Sec. II C 1 show only small deviations from the 4-site
DCA results, and while these results exhibit some ad-
ditional features (see in particular the real part near X
point), the accuracy of the solution, as compared to the
large cluster results, is generally worse than what is found
in the single-site dual fermion approximation. Thus, we
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Figure 2. Comparison of the real (top panel) and imaginary
(bottom panel) part of the self-energy at the lowest Matsub-
ara frequency obtained from the different approaches. Red
line with open diamonds: 4-site DCA cluster ladder DF ap-
proximation with the Laue approximation of Sec. II C 1 (DCA
DF, DCA Laue, Ladder). Blue line with closed circles: single-
site Ladder DF. Orange line: single-site second order DF.
Dashed green line: Nc = 4 DCA. Dashed gray line: Nc = 64
DCA.

find that for Nc = 4 the cluster DF method with Laue
approximation of Sec. II C 1 does not provide significant
corrections to the DCA results.

B. Approximations in DCA DF

The lack of precision of the results in Fig. 2, obtained
by the DCA DF method with Laue approximation of
Sec II C 1, is due to at least one of the three approxima-
tions performed in that version of cluster dual fermions.
First, the truncation of the dual self-energy Σ̃ to an infi-
nite series of bare ladder diagrams. Second, the neglect
of diagrams with higher order vertices. And third, the
approximation of the Laue function.

For the parameters considered, the difference between
geometrically summed ladder and second-order diagrams
is small. This is shown in Fig. 3 as the difference between
the red (long dashed) and (solid) blue lines. Two-particle

diagrams that are neither of second-order nor contained
in the ladder series may in principle contribute. However,
our experience with diagrammatic Monte Carlo for dual
fermions58 (for later related work see also Ref. 59) shows
that in that case, deviations between ladder and second
order results are usually visible. This leads us to believe
that the majority of the discrepancy comes from a source
other than diagrams with two-particle vertices.

The grey (short-dashed) line in Fig. 3 shows that con-
tributions of the leading order three-particle vertex dia-
gram (of Fig. 1.c) are also small. With techniques de-
scribed in Ref. 54, it has recently become possible to
compute these corrections. Calculations employ a CT-
AUX47 solver with sub-matrix updates48, using a two-
particle formalism developed for Raman50, NMR60, and
other susceptibility measurements.61 While such calcula-
tions are still very expensive and only possible for clus-
ters up to size 8, they are accurate enough to exclude
3-particle vertex contributions as the dominant correc-
tion to the exact result.

This implies that, at least for the small cluster stud-
ied here, the Laue approximation is the dominant source
of deviations of the method of Sec. II C 1 from the ex-
act result. This can be explained by the fact that DCA
Laue approximation neglects the inter-cluster momen-
tum transfer, thereby truncating the correlation length.
Since anti-ferromagnetic fluctuations in this weak cou-
pling regime are rather long ranged, this approximation
does not recover them accurately.

Γ Μ Χ Γ
-0.7

-0.6

-0.5

Im
 Σ

(ω
 )

4-site DCA DF, DCA Laue, ladder
4-site DCA DF, DCA Laue, 2nd order
4-site DCA DF, DCA Laue, Ladder + 3P vertices

0

Figure 3. Comparison of the different diagram topologies con-
tribution into the imaginary part of the self-energy at the
lowest Matsubara frequency. Solid blue line corresponds to
4-site DCA cluster ladder DF results with the DCA Laue ap-
proximation, the short dashed gray line shows additional cor-
rections by including three particle vertex function, the long
dashed red line corresponds to 2nd-order DF with the DCA
Laue approximation.



10

C. Approximation-free Dual fermion DCA results

Section II C 2 describes our formulation of DCA dual
fermions, which avoids the Laue approximation alto-
gether, at the cost of breaking translational invariance.
Thus, if all diagrams to infinite order are summed, the
method converges to the exact result.

To apply this method to the four-site cluster we start
from the definition of the non-interacting Hamiltonian.
Since the dispersion is no longer diagonal in the cluster
reciprocal space, we first introduce the cluster hopping
matrix in real-space cluster indices I,J and momentum-
space superlattice indices k̃:

tIJ,k̃ = t


0 1 + e−2ik̃x 1 + e−2ik̃y 0

1 + e2ik̃x 0 0 1 + e−2ik̃y

1 + e2ik̃y 0 0 1 + e−2ik̃x

0 1 + e2ik̃y 1 + e2ik̃x 0

 .

(38)

Here, k̃x, k̃y are the longitudinal and transverse part of

the momentum vector k̃ respectively. The lattice disper-
sion can now be determined by Fourier transform of the
hopping matrix (38) and is used to construct the bare
dual Green’s function matrix. Using Eq. 34 we construct
the perturbation series to compute the dual self-energy
to second order. We then obtain the lattice self-energy
using Eq. 35 and Eq. 37,respectively. The size of the
off-diagonal components of the self-energy ΣKK′k̃ (which
would be zero if all diagrams were summed to all orders)
is less than 0.5% of the average diagonal element.

Fig. 4 shows the results obtained with our method of
Sec. II C 2 in addition to results from the methods shown
in Fig. 2. Our momentum space DCA DF results are ob-
tained for the second order approximation to the dual
fermion self-energy for of Fig. 1.a and use a minimal
cluster of size Nc = 4 as the DCA solution. Even at
the second order approximation, our cluster dual fermion
method of Sec. II C 2 improves significantly on the 4-
site cluster DCA results. In particular, the imaginary
part of the local self-energy is substantially modified and
much closer to the large cluster (Nc = 64) result. This
shows that basing the DF approximation on an expan-
sion around a cluster, which has a better representation
of short range physics than a single site, makes it possible
to efficiently capture correlations that would otherwise
only be contained in higher-order vertex corrections.

In Fig. 5, we show the results for the double occupancy
from our momentum space cluster DF DCA method of
Sec. II C 2 and compare them with single-site DF (2nd or-
der) results, results from the method of Sec. II C 1, and
data from Ref. 1. The double occupancy is a two-particle
quantity and directly related to the interaction energy.
DCA extrapolated to the thermodynamic limit from a
large number of clusters (dashed line) are the best refer-
ence results available and are, within error bars, consis-
tent with DiagMC.1

Γ       Μ      Χ       Γ
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0.1

0.2
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64-site DCA
4-site DCA
4-site DCA DF, 2nd order 
DF, 2nd order
4-site DCA DF, DCA Laue, 2nd order

U = 4.0t
 T = 0.5t

0

Γ Μ Χ Γ

-0.7

-0.6

-0.5

Im
 Σ

(ω
 ) 0

Figure 4. Comparison of the real (top panel) and imaginary
(bottom panel) parts of the self-energy at the lowest Mat-
subara frequency. Solid red line: 4-site DCA cluster second
order Dual Fermion approximation. Solid blue line: single-
site second order Dual Fermions. Solid orange line: 4-site
DCA cluster second order Dual Fermion approximation with
the DCA Laue approximation. Dashed green line: 4-site DCA
results. Dashed gray line: 64-site DCA results.

At the second order approximation shown here, DCA
DF of Sec. II C 2 improves the single-site DF results by
a factor of three and the 4-site DCA data by a factor of
two. The remaining discrepancy indicates that system
exhibits non-local non-perturbative correlations beyond
those nearest neighbor correlations captured by the 4-
site DCA cluster. Larger clusters and/or additional dual
fermion diagrams will be needed to obtain systematic
convergence to the exact result.

IV. CONCLUSIONS

In this paper, we present a momentum-space cluster
dual fermion expansion which uses the dynamical cluster
approximation as a starting point. Our method is free of
approximations, as it is based on exact mapping from the
original lattice model to the DF system, and converges
to the exact result if all diagrams in the dual fermion
perturbation series are summed to infinite order. As a
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Figure 5. Comparison of the double occupancy 〈nini〉 calcu-
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Laue approximation (orange diamond) and data from the 2D
Hubbard benchmark,1 the dashed black line corresponds to
DCA results extrapolated to thermodynamic limit. The sym-
bol size for the DCA results corresponds to the stochastic
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proof of principle, we show results for the second-order
DF self-energy around a four-site DCA cluster at the
half-filling and demonstrate that this method is in good
agreement with reference data, and in particular provides
large non-local corrections to the imaginary part of the
self-energy. The avoidance of the Laue approximation
leads to a smooth convergence of the dual self-energies.

While we restrict our calculations to second-order per-
turbation theory in the DF diagrams, methods such as

diagrammatic Monte Carlo58 could be applied to recover
contributions from higher order diagrams. Whether it
is more advantageous in practice to consider these con-
tributions or to extend the simulations to larger cluster
sizes is currently under investigation.

Our DF dual fermion perturbation theory builds
a bridge between cluster methods (which are non-
perturbative and contain all short-range correlations)
and DF methods (which are based on a perturbative sum-
mation of the non-local corrections). It will find appli-
cations wherever the underlying DCA approximation re-
veals a strong momentum dependence of the self-energy.
The capability of the DF formalism to yield continuous
k-dependence for the self-energies and the vertices at af-
fordable numerical cost will allow to make connections to
experimentally measured k-dependent phenomena such
as transport and optical conductivities, where the dis-
crete momentum structure of the DCA leads to disconti-
nuities in the vertex correction terms.62 It will also allow
to study the evolution of Fermi surfaces and the competi-
tion between long-wavelength phenomena (such as anti-
ferromagnetic nesting) with the strong short-range corre-
lations that seem to be responsible for the pseudogap63,64

and superconductivity12 in the two-dimensional Hubbard
model.
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T. M. Henderson, C. A. Jiménez-Hoyos, E. Kozik, X.-W.
Liu, A. J. Millis, N. V. Prokof’ev, M. Qin, G. E. Scuseria,
H. Shi, B. V. Svistunov, L. F. Tocchio, I. S. Tupitsyn, S. R.
White, S. Zhang, B.-X. Zheng, Z. Zhu, and E. Gull (Si-
mons Collaboration on the Many-Electron Problem), Phys.
Rev. X 5, 041041 (2015).

2 A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod.
Phys. 75, 473 (2003).

3 O. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and
C. Renner, Rev. Mod. Phys. 79, 353 (2007).

4 L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P.
Hill, and J. van den Brink, Rev. Mod. Phys. 83, 705
(2011).

5 T. P. Devereaux and R. Hackl, Rev. Mod. Phys. 79, 175
(2007).

6 A. Kotani and S. Shin, Rev. Mod. Phys. 73, 203 (2001).
7 W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324

(1989).
8 M. Jarrell, Phys. Rev. Lett. 69, 168 (1992).
9 A. Georges and W. Krauth, Phys. Rev. Lett. 69, 1240

(1992).

10 A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Rev. Mod. Phys. 68, 13 (1996).

11 E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov,
M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349
(2011).

12 E. Gull, O. Parcollet, and A. J. Millis, Phys. Rev. Lett.
110, 216405 (2013).

13 T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Rev.
Mod. Phys. 77, 1027 (2005).

14 A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 62,
R9283 (2000).

15 G. Kotliar, S. Y. Savrasov, G. Pálsson, and G. Biroli,
Phys. Rev. Lett. 87, 186401 (2001).

16 M. H. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell, T. Pr-
uschke, and H. R. Krishnamurthy, Phys. Rev. B 58, R7475
(1998).

17 M. H. Hettler, M. Mukherjee, M. Jarrell, and H. R. Kr-
ishnamurthy, Phys. Rev. B 61, 12739 (2000).

18 P. Staar, T. Maier, and T. C. Schulthess, Phys. Rev. B
88, 115101 (2013).

19 S. Fuchs, E. Gull, L. Pollet, E. Burovski, E. Kozik, T. Pr-
uschke, and M. Troyer, Phys. Rev. Lett. 106, 030401
(2011).

http://dx.doi.org/10.1103/PhysRevX.5.041041
http://dx.doi.org/10.1103/PhysRevX.5.041041
http://dx.doi.org/10.1103/RevModPhys.75.473
http://dx.doi.org/10.1103/RevModPhys.75.473
http://dx.doi.org/ 10.1103/RevModPhys.79.353
http://dx.doi.org/10.1103/RevModPhys.83.705
http://dx.doi.org/10.1103/RevModPhys.83.705
http://dx.doi.org/10.1103/RevModPhys.79.175
http://dx.doi.org/10.1103/RevModPhys.79.175
http://dx.doi.org/10.1103/RevModPhys.73.203
http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1103/PhysRevLett.69.168
http://dx.doi.org/10.1103/PhysRevLett.69.1240
http://dx.doi.org/10.1103/PhysRevLett.69.1240
http://dx.doi.org/ 10.1103/RevModPhys.68.13
http://dx.doi.org/ 10.1103/RevModPhys.83.349
http://dx.doi.org/ 10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/PhysRevLett.110.216405
http://dx.doi.org/10.1103/PhysRevLett.110.216405
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/PhysRevB.62.R9283
http://dx.doi.org/10.1103/PhysRevB.62.R9283
http://dx.doi.org/10.1103/PhysRevLett.87.186401
http://dx.doi.org/10.1103/PhysRevB.58.R7475
http://dx.doi.org/10.1103/PhysRevB.58.R7475
http://dx.doi.org/10.1103/PhysRevB.61.12739
http://dx.doi.org/10.1103/PhysRevB.88.115101
http://dx.doi.org/10.1103/PhysRevB.88.115101
http://dx.doi.org/ 10.1103/PhysRevLett.106.030401
http://dx.doi.org/ 10.1103/PhysRevLett.106.030401


12

20 J. P. F. LeBlanc and E. Gull, Phys. Rev. B 88, 155108
(2013).

21 T. A. Maier, M. Jarrell, T. C. Schulthess, P. R. C. Kent,
and J. B. White, Phys. Rev. Lett. 95, 237001 (2005).

22 P. R. C. Kent, M. Jarrell, T. A. Maier, and T. Pruschke,
Phys. Rev. B 72, 060411 (2005).

23 A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein,
Phys. Rev. B 77, 033101 (2008).

24 A. Toschi, A. A. Katanin, and K. Held, Phys. Rev. B 75,
045118 (2007).

25 T. Ayral and O. Parcollet, Phys. Rev. B 92, 115109 (2015).
26 T. Ayral and O. Parcollet, Phys. Rev. B 94, 075159 (2016).
27 A. A. Kananenka, E. Gull, and D. Zgid, Phys. Rev. B 91,

121111 (2015).
28 D. Zgid and E. Gull, New Journal of Physics 19, 023047

(2017).
29 A. Rubtsov, M. Katsnelson, and A. Lichtenstein, Annals

of Physics 327, 1320 (2012).
30 P. Sun and G. Kotliar, Phys. Rev. B 66, 085120 (2002).
31 S. Biermann, F. Aryasetiawan, and A. Georges, Phys. Rev.

Lett. 90, 086402 (2003).
32 H. Hafermann, S. Brener, A. N. Rubtsov, M. I. Katsnelson,

and A. I. Lichtenstein, JETP Letters 86, 677 (2008).
33 H. Hafermann, C. Jung, S. Brener, M. I. Katsnelson, A. N.

Rubtsov, and A. I. Lichtenstein, EPL (Europhysics Let-
ters) 85, 27007 (2009).

34 S.-X. Yang, H. Fotso, H. Hafermann, K.-M. Tam,
J. Moreno, T. Pruschke, and M. Jarrell, Phys. Rev. B
84, 155106 (2011).

35 A. N. Rubtsov, M. I. Katsnelson, A. I. Lichtenstein, and
A. Georges, Phys. Rev. B 79, 045133 (2009).

36 H. Hafermann, G. Li, A. N. Rubtsov, M. I. Katsnelson,
A. I. Lichtenstein, and H. Monien, Phys. Rev. Lett. 102,
206401 (2009).

37 D. Hirschmeier, H. Hafermann, E. Gull, A. I. Lichtenstein,
and A. E. Antipov, Phys. Rev. B 92, 144409 (2015).

38 J. Otsuki, H. Hafermann, and A. I. Lichtenstein, Phys.
Rev. B 90, 235132 (2014).

39 H. Terletska, S.-X. Yang, Z. Y. Meng, J. Moreno, and
M. Jarrell, Phys. Rev. B 87, 134208 (2013).

40 A. E. Antipov, E. Gull, and S. Kirchner, Phys. Rev. Lett.
112, 226401 (2014).

41 T. Ribic, G. Rohringer, and K. Held, Phys. Rev. B 95,
155130 (2017).

42 T. Ribic, G. Rohringer, and K. Held, Phys. Rev. B 93,
195105 (2016).

43 Note that in Eq. 5, for any α component of cluster mo-
menta Kα = 2πlα

a
and the corresponding component of

the super-lattice real-space vector ĩα = amα, where a is
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