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Entanglement entropy provides a powerful characterization of two-dimensional gapped topolog-
ical phases of quantum matter, intimately tied to their description by topological quantum field
theories (TQFTs). Fracton topological orders are three-dimensional gapped topologically ordered
states of matter that lack a TQFT description. We show that three-dimensional fracton phases are
nevertheless characterized, at least partially, by universal structure in the entanglement entropy of
their ground state wave functions. We explicitly compute the entanglement entropy for two archety-
pal fracton models — the ‘X-cube model’ and ‘Haah’s code’ — and demonstrate the existence of a
non-local contribution that scales linearly in subsystem size. We show via Schrieffer-Wolff transfor-
mations that this piece of the entanglement entropy of fracton models is robust against arbitrary
local perturbations of the Hamiltonian. Finally, we argue that these results may be extended to
characterize localization-protected fracton topological order in excited states of disordered fracton
models.

I. INTRODUCTION

The study of topological order is a major theme of
modern condensed matter physics. Gapped topologi-
cally ordered states of matter are characterized by prop-
erties1–4 such as ground state degeneracy on manifolds
of non-trivial topology, the inability to distinguish dis-
tinct such ground states via local measurements, and
the existence of local excitations that cannot be created
by purely local operators, leading to fractionalization of
statistics. In two spatial dimensions there exists a fairly
complete understanding of topological order, described
via topological quantum field theory (TQFT) and related
ideas.5 However, our understanding of topological order
in three spatial dimensions remains incomplete — a la-
cuna brought into sharp relief by the development of the
fracton models6–11. These models exhibit the characteris-
tic properties of topological order, but lack a description
in terms of TQFTs. As such, they represent a new chap-
ter in the story of topological order, and have begun to
draw intensive interest12–21.

In a parallel line of development, ideas from quantum
information have been transplanted to the field of cor-
related systems, providing potent methods with which
to characterize and study complex quantum many-body
systems. Foremost among these new tools is the use of
quantum entanglement – specifically, its characterization
in terms of entanglement entropy — in developing the
understanding of topological order (see e.g. Ref. 22 for
a review). For two-dimensional gapped phases, the en-
tanglement entropy contains a universal subleading ‘con-
stant’ term23,24. This is intimately related to the TQFT
description of the topological phase and provides a partial
characterization of the nature of topological order. It is
thus natural to ask, what insights are afforded by study-
ing entanglement in fracton phases of matter? A previous
work25 has introduced certain bounds on the non-local
part of the entanglement entropy in fracton models.

In this work, we discuss the entanglement entropy in
fracton phases. We begin by reviewing some basic facts
about entanglement entropy in lattice models, and the
formalism developed to study the entanglement struc-
ture of stabilizer codes. We then explicitly calculate the
entanglement entropy for several d = 3 models, includ-
ing two paradigmatic fracton phases: the ‘X-cube model’
and ‘Haah’s code’. Both fracton phases are found to
exhibit a term of non-local origin in the entanglement
entropy that scales linearly with subsystem size, with a
coefficient that we calculate. We refer to this term as
topological entanglement entropy.

We also point out that the existence of topological en-
tanglement entropy indicates that on the boundary of
the subregion, certain non-local constraints act on the
ground state wavefunction. We explicitly identify these
constraints for the X cube model. This provides an argu-
ment that the topological entanglement entropy is robust
under arbitrary local perturbations of the Hamiltonian.
Consider a perturbation H ′ = λV , where λ is a control
parameter, and V is of unit norm and contains pertur-
bations local in real space which do not commute with
H(λ = 0). When λ 6= 0, the stabilizers are no longer
eigenoperators of the groundstate. However, for λ suffi-
ciently small that it does not induce a phase transition
as increased from zero, the new ground state is related
to the λ = 0 ground state by a unitary transformation

|Ψ(λ)〉 = U |Ψ(λ = 0)〉, (1)

where U is a local unitary operator which can in princi-
ple be constructed by adapting the method of Schrieffer-
Wolff transformations26 (see Appendix C for details).
Non-local constraints on the wavefunction cannot be al-
tered by local unitary transformations; thus the topo-
logical entanglement entropy (being of non-local origin)
must be invariant under local perturbations.

Finally we generalize this argument to excited states
of disordered fracton models, which we argue can dis-
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play localization protected fracton order, characterized
by topological entanglement entropy.

II. REVIEW OF TOPOLOGICAL
ENTANGLEMENT ENTROPY

We begin by reviewing some essential facts about en-
tanglement entropy, focusing in particular on topological
contributions and how to extract them. We will consider
a system in a topological phase, with |Ψ〉 one of its degen-
erate ground states. We divide the system into a small
subregion A and ‘everything else’ (B), and construct the
reduced density matrix ρA = TrB |Ψ〉〈Ψ|. The entangle-
ment entropy is then defined to be the von Neumann
entropy of ρA,

S = −TrρA log2 ρA, (2)

(Here and throughout, we measure logarithms in base 2
to remove unwieldy factors of ln 2.) In a gapped phase
— such as the fracton phases considered in this paper —
the entanglement entropy of a ground state is expected
to follow an ‘area law’ i.e. to be proportional at leading
order to the surface area of the subregion A. If A has
linear size R, then we may expand in powers of R, viz.

S = A1R
d−1 +A2R

d−2 + . . . (3)

where d is the spatial dimension. The leading term is
non-universal and dominated by short-distance physics.
The ‘topological’ information is contained in the sublead-
ing corrections; the challenge is to extract it.

For concreteness, let us review how this works in d = 2,
where we have

S = A1R− cγ + . . . , (4)

and the topological contribution is the constant piece,
Stopo = −cγ, with c the number of connected components
of the boundary of A. In principle it appears as though
extracting γ should be a straightforward exercise: we
should simply compute S, and extract its constant con-
tribution and identify it as topological using the scaling
form Eq. (4). In practice, however, most systems of inter-
est and all those we are concerned with in this paper are
defined on a lattice. Then subregions often have sharp
corners that can lead to non-universal constant contri-
butions in Eq. (4), assuming the entanglement cut is a
sequence of edges forming a continuous path. This com-
plicates a direct identification of Stopo from the scaling
of the bipartite entanglement entropy in Eq. (4).

However, there are prescriptions23,24 to extract topo-
logical entanglement by suitably combining the results
for a variety of bipartitions. Two such prescriptions in
two dimensions are illustrated in Fig. 1. We refer to the
type of prescription illustrated in Fig. 1(a) as an ABC
prescription, where A, B and C are three disjoint re-
gions, and the topological entanglement entropy is given

FIG. 1. Illustration of the two types of prescriptions used to
obtain the topological entanglement entropy. An ABC pre-
scription is illustrated in (a), while (b) illustrates a PQWT
prescription.

by

SABCtopo = SA+SB+SC−SAB−SBC−SAC +SABC , (5)

where AB ≡ A∪B and so on. An alternate prescription
is shown in Fig. 1(b) and referred to as a PQWT pre-
scription. In this case, the regions P , Q, W and T have
the properties that P = Q∪W and T = Q∩W , and the
topological entanglement entropy is given by

SPQWT
topo = SP − SQ − SW + ST . (6)

In both cases, these linear combinations of entropies are
chosen to ensure that the dependence on local contri-
butions from boundaries, including corner contributions,
cancels out. These topological entanglement entropies

are related to Eq. (4) by SABCtopo = −γ and SPQWT
topo = −2γ,

which can be understood by counting the number of con-
nected components in the boundaries of the various re-
gions involved.

Both ABC type and PQWT type prescriptions have
been generalized 27,28 to d = 3, and we will make use
of these generalizations in this paper. While different
geometries and topologies of the regions are possible in
these generalizations, in ABC type prescriptions we re-
quire the regions A, B and C be disjoint. In contrast, in
the PQWT type prescriptions we employ, the set theo-
retic properties P = Q ∪W and T = Q ∩W will always
be satisfied.

Much progress has been made in understanding topo-
logical order and topological entanglement in d = 2 by
linking these ideas to TQFTs. For instance, we may un-
derstand the dependence of the topological contribution
on the number of connected components of the boundary
by recognizing that Stopo reflects the additional informa-
tion obtained by counting field lines of an gauge field
constrained by a lattice analog of Gauss’s law. Entan-
glement entropy in turn can provide an important tool
for extracting TQFT data22, such as the braiding and
statistics of the fractionalized excitations29.

Far less is known about three-dimensional topological
phases, particularly in situations where there is no TQFT
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description. In this paper, we study the topological en-
tanglement entropy of fracton models that are paradig-
matic examples of these unexplored topological orders.
To do so, we leverage an approach complementary to
TQFT, namely we study zero-correlation-length Hamil-
tonians that are sums of commuting projectors, which
describe special exactly-solvable points within some topo-
logical phases. More specifically, we consider ‘stabilizer
Hamiltonians,’ where the commuting terms in the Hamil-
tonian are products of Pauli operators. Our strategy
will be to first compute entanglement entropy at solv-
able points, and then argue that the entanglement en-
tropy has a topological contribution that persists under
perturbation, using various three-dimensional generaliza-
tions of the ABC and PQWT prescriptions for obtaining
topological entanglement entropy.

III. TOPOLOGICAL ENTANGLEMENT
ENTROPY IN STABILIZER CODES

A. Entanglement entropy for stabilizer codes

We begin our analysis by reviewing the method de-
veloped in Ref. 30–32 for calculating the entanglement
entropy for the ground states of stabilizer codes, and dis-
cussing the straightforward extension to arbitrary eigen-
states. This extension will be used in Sec. VI when we
discuss localization protected fracton topological order
in excited states. We will illustrate the use of the sta-
bilizer formalism on the toric code before applying these
techniques to fracton models. Readers familiar with the
stabilizer formalism for ground-state entanglement com-
putations may wish to skip ahead to Sec. V B.

Throughout, we will consider systems of spin-1/2 de-
grees of freedom (‘qubits’) that reside on either vertices
or links of d-dimensional hypercubic lattices. The Hamil-
tonians is built solely of terms containing either X type
stabilizer operators that are products of Pauli matrices
Xi, or Z type stabilizer operators that are products of
Pauli matrices Zi. The stabilizer operators all mutually
commute, so that the Hamiltonian is exactly solvable.
By construction, both X- and Z-type stabilizers square
to the identity and hence have eigenvalues ±1.

Let us take S = {Os} to be a set of mutually commut-
ing stabilizers. Then, a state |ψ〉 is stabilized by S if it
satisfies

Os |ψ〉 = |ψ〉 , (7)

for all Os ∈ S. The set of states stabilized by S is called
a stabilizer code and is the ground state manifold of the
Hamiltonian, Hstab = −

∑
s JsOs with Js > 0. Here, we

are assuming that the Os operators are local, but, below,
we relax this assumption.

It is useful to consider the Abelian group G that is
multiplicatively generated by the stabilizers in S. We
assume that all the stabilizers in S are independent and

collectively act on exactly N spins-1/2. For open bound-
ary conditions, this is generally expected to be the case
for a maximal set of independent local stabilizers. For
periodic boundary conditions, we usually need to include
some non-local stabilizers that, for instance, wrap non-
contractible loops. Elements g ∈ G may be labeled by a
binary vector ~n = {n1, n2, . . . , n|S|}, with ni ∈ {0, 1} via

g(~n) = On1
1 On2

2 . . . O
n|S|
|S| , (8)

where |S| is the number of stabilizers in S. Note that
S is a generating set. Because G is Abelian, we may
label states in the Hilbert space by their eigenvalues of
the group elements g ∈ G.

We note that G can be viewed as a vector space over
the two-element field F2, a fact that will be useful in our
approach to numerical calculation of entanglement en-
tropy. This statement holds for any group, like G, that
is isomorphic to a product of Z2 factors. Vector addition
corresponds to multiplication of stabilizers. The zero vec-
tor corresponds to the group identity. Scalar multiplica-
tion is trivial; multiplication by 1 ∈ F2 is the identity
operation, and multiplication by 0 ∈ F2 sends any ele-
ment of g ∈ G to the identity of G. We will use both
vector space and group language to describe operations
in G, and will do this without comment when the mean-
ing is clear from the context. We note that, in vector
space language, the set S is a basis.

It remains to determine the size of the group G, that
we denote |G|. We further suppose that there is a unique
eigenstate |ψ〉 of eigenvalue +1 for all g ∈ G; if this is
not the case, then we may add elements to S until this
is so. Then, G cannot contain any pure scalar element
η 6= 1 since such an element must have an eigenvalue that
is not 1 (a scalar element is an element proportional to
the identity). We may then write the projector onto |ψ〉
as

|ψ〉〈ψ| = 1

|G|
∑
~n

g(~n). (9)

(To see this, observe using group properties that the RHS
squares to itself, i.e. is a projector, and acts as the iden-
tity on |ψ〉, whence the result Eq. (9) follows by the
uniqueness of the ground state.) Taking the trace on
both sides, we find

1 =
1

|G|
∑
~n

Trg(~n) =
1

|G|
TrI =

2N

|G|
, (10)

where we use the uniqueness of the identity I ∈ G and the
fact that any non-identity element in G is traceless; the
final step follows simply from the fact that the Hilbert
space is the tensor product of N spins-1/2. Thus, we
see that the size of G is the full dimension of the Hilbert
space, |G| = 2N .

From this and Eq. (8) we conclude that there are N
independent stabilizers in S. i.e. |S| = N . Further-
more, we see that the group G must be isomorphic to
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Z⊗N2 , the group of spin-flips on N spins (intuitively, we
may think of the ‘spin’ as the eigenvalue of the stabilizer
Os.) Therefore, we may completely label eigenstates of
Hstab in terms of irreducible representations of the spin-
flip group31. The irreps are one-dimensional and are la-

beled by a binary string ~k of length N , and defined by the

map ρ~k[g(~n)] = (−1)
~k·~n; in other words, the eigenvalue

of a group element g in state ~k is given by (−1)
~k·~n. It

then follows from standard orthogonality relations that

the density matrix of state |~k〉 can be written as

|~k〉〈~k| = P(~k) =
1

|G|
∑
~n

(−1)
~k·~ng(~n). (11)

In this notation, the ground state |ψ〉 corresponds to the

vector ~k = (0, 0, . . .).
We will now demonstrate how to compute the entangle-

ment entropy of a subregion for any such eigenstate |~k〉
of Hstab. Consider any bipartition (A,B) as described
above. Then, we see that the reduced density matrix of

subregion A in state |~k〉 is

ρA = TrB |~k〉〈~k| =
1

|G|
∑
~n

(−1)
~k·~nTrBg(~n). (12)

Any element g that is not equal to the identity on B
must contain at least one X or Z operator acting in B
and consequently will have vanishing trace in B. Thus,
the only non-zero contributions to the sum in Eq. (12)
are from operators supported only on A, i.e. equal to
the identity on B. Operators in the sum supported only
on A form a subgroup GA, with elements g(~nA), and

irreps labeled by ~kA, where we have made the obvious
generalizations of notation. Since the identity on B has
trace TrIB = 2NB where NB is the number of spins in B,
we have (using |G| = 2N = 2NA+NB ) that

ρA =
2NB

|G|
∑
nA

(−1)
~kA·~nAg(~nA) =

|GA|
2NA
P(~kA)
A . (13)

Note that the group GA only includes complete stabiliz-
ers in A, since stabilizers that ‘dangle’ across the entan-
glement cut are not equal to the identity on B. Since
Eq. (13) expresses ρA as a projector, its entanglement
entropy follows straightforwardly:

SA = NA − log2 |GA|. (14)

Thus, the computation of entanglement entropy of a
subregion A reduces to that of determining the size of
the subgroup GA ⊂ G that consists of stabilizers con-
tained entirely within A. In vector space language,
log2 |GA| = dimGA, so

SA = NA − dimGA. (15)

Viewed as an F2 vector space, GA = GZA ⊕GXA , where
GZA and GXA are vector spaces of Z and X stabilizers,
respectively. Therefore

dimGA = dimGZA + dimGXA , (16)

A

B = Ā Av

Bp

FIG. 2. Two-dimensional toric code on the square lattice.
The region enclosed by red the line is the subregion A, which
has size 2× 2 measured in edges of the lattice. Spins on links
cut by the red line lie outside A. The vertex and plaquette
terms Ap and Bv are also shown.

so that Z and X stabilizers can be treated separately in
computing SA.

B. Local and non-local stabilizers

Here, we briefly discuss some further properties of the
stabilizer group GA in connection with entanglement
entropy and topological entanglement entropy. These
properties are then used in the numerical procedure for
computing entanglement entropy described in Sec. III C.

Moreover, we show that SPQWT
topo is entirely determined by

counting non-local stabilizers, while in many cases SABCtopo

can be determined by counting local stabilizers.
Given a stabilizer Hamiltonian, we obtain a set SZloc

of local Z stabilizers, which are just the terms of the
Hamiltonian. (For simplicity of discussion we focus for
the moment on Z stabilizers; identical statements hold
for X stabilizers.) Local Z-stabilizers supported entirely
in A generate a subgroup GZA,loc ⊂ GZA. If GZA = GZA,loc,

we say that GZA is locally generated. In this case, dimGZA
can be obtained by simple counting, accounting for pos-
sible constraint equations satisfied by the local stabiliz-
ers. (A constraint is a product of local stabilizers which
evaluates to the identity, i.e.

∏
Os∈F Os = I for some

subset F ⊆ S.) In general, GZA,loc 6= GZA. If g ∈ GZA
but g /∈ GZA,loc, we call g a non-local stabilizer. In addi-

tion to dimGZA, we will be interested in the number of
independent non-local stabilizers, which is defined by

ΩZA ≡ dimGZA/G
Z
A,loc. (17)

By taking the quotient, we are counting non-local sta-
bilizers up to multiplication by local stabilizers. That
is, two non-local stabilizers in GZA that are related by a
product of local stabilizers in GZA,loc are not considered
independent in this counting. We have

dimGZA = dimGZA,loc + ΩZA. (18)
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Now we consider topological entanglement entropy
SABCtopo , obtained in an ABC type prescription as discussed
in Sec. II. We assume that the stabilizer groups GA, GB ,
GC , GAB , and so on, are all locally generated. Moreover,
we assume the generators of these groups are drawn from
a set of local stabilizers that do not obey any local con-
straints. This holds trivially for the d = 2 toric code and
Haah’s code, where the stabilizers do not obey any local
constraints. For the X-cube model, the vertex stabiliz-
ers do obey local constraints, but for suitable regions A,
B, C it is possible to use only xy plane and xz plane
vertex stabilizers, which do not obey local constraints,
as shown in Appendix A 1. Under these assumptions,
−Stopo is simply the number of independent local stabi-
lizers that have non-trivial support in each of the disjoint
regions A, B and C. The contributions of other local sta-
bilizers to SABCtopo cancel out. For instance, suppose some
local stabilizer is supported entirely in A. Then it is also
contained in AB, AC and ABC, and it contributes +1
to each of dimGA, dimGAB , dimGAC and dimGABC .
These contributions cancel in Stopo. Similarly, if a local
stabilizer has non-trivial support in both A and B, but
not C, then it is contained in both AB and ABC, and its
contribution to Stopo cancels. A more careful argument
for this result is given in Appendix B.

In contrast, SPQWT
topo , the topological entanglement en-

tropy obtained via a PQWT type prescription is deter-
mined in many cases entirely by non-local stabilizers.
Here we give a rough argument that all contributions of
local stabilizers cancel out; a more complete treatment
is given in Appendix B. First recall that P = Q ∪W =
Q ∪W ∪ T , so it is enough to consider different types of
local stabilizers supported entirely on P . Suppose a local
stabilizer is supported entirely in T , then it is contained

in all four regions, and its contribution to SPQWT
topo can-

cels. Now suppose a stabilizer is contained in Q but not
in T , then it is also contained in P but not in W , so its
contribution cancels. This covers all the possibilities for
local stabilizers. Because NP +NT = NQ+NW , we have
the result

SPQWT
topo = −ΩP + ΩQ + ΩW − ΩT + ∆PQWT , (19)

where ΩP = ΩZP + ΩXP is the total number of non-
local stabilizers in P , and similarly for the other regions.
∆PQWT is a correction associated with non-local con-
straints among local stabilizers. In Appendix B, we de-
rive Eq. (19), and show that ∆PQWT = 0 for all the
models discussed in this paper except the d = 3 toric
code.

C. Calculating the entanglement entropy

In many cases, it is possible to determine |GA| and
hence the entanglement entropy SA analytically. How-
ever, this is not always straightforward, and numerical
calculation is useful as a check on other methods and

sometimes as a primary means of determining the entan-
glement entropy. Here, we describe a numerical proce-
dure to determine dimGA = log2 |GA|. We are always
interested in the case where A is a subset of a thermody-
namically large region. Under a suitable assumption dis-
cussed below, which can be verified for particular models
of interest, dimGA does not depend on global properties
of the large region containing A.

To proceed, we choose a finite enclosing region B with
A ⊂ B. It is obvious that GZA ⊂ GZB . We make the
assumption that it is always possible to choose B so
that GZB is locally generated. This assumption implies
GZA ⊂ GZB,loc; that is, all stabilizers in A are products of
local stabilizers in B. We show in Appendix A that this
assumption holds for the stabilizer codes studied in this
paper.

Now we introduce FZB,loc, the group of formal products
of local Z stabilizers supported on B. We let M be the
number of local Z stabilizers supported entirely in B, and
denote these operators by Os (s = 1, . . . ,M). A general
product of these stabilizers is (O1)n1 . . . (OM )nM , where
ni = 0, 1. There are 2M such products, and in the group
FZB,loc, we treat them all as distinct elements, so that

FZB,loc ' Z⊗M2 . In general, two formal products in FZB,loc
can correspond to the same operator, because there can
be constraints among the local stabilizers. There is a
linear map

φZ : FZB,loc → PZB , (20)

where PZB is the group (or F2 vector space) generated
by all Z Pauli operators supported on B. The map φZ
is defined by replacing the Os in a formal product with
their expressions in terms of Pauli operators. GZB,loc is

a subspace of PZB , and moreover GZB,loc = ImφZ . If f ∈
KerφZ , then f is a formal product of stabilizers that
evaluates to the identity operator. This happens when
the stabilizers obey some constraint equations. Indeed,
the number of independent such constraints is precisely
dim KerφZ .

We note that PZB = PZB−A ⊕ PZA , where B − A is the
complement of A in B. We thus have the projection map

πB−A : PZB → PZB−A, (21)

defined by

πB−A(g) =

{
1 g ∈ PZA
g g ∈ PZB−A

. (22)

Elements in the kernel of πB−A are products of Z Pauli
operators supported entirely on A.

The last step is to consider the composition πB−A◦φZ .
Suppose f ∈ Ker(πB−A ◦ φZ), but f /∈ KerφZ . This
means that f corresponds to a non-trivial element of GZA.
We are finally able to express the number of stabilizers
in A as33

dimGZA = dim KerπB−A ◦ φZ − dim KerφZ . (23)
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Here, the last term is subtracted to avoid incorrectly
counting constraints among local stabilizers as non-trivial
elements of GZA. The linear maps φZ and πB−A can be
constructed explicitly as matrices, and numerical linear
algebra methods can then be used to compute the dimen-
sions of the kernels. Our calculations were done using
routines for linear algebra over F2 in Mathematica.

There is a minor modification of the above approach
that significantly reduces the computational effort re-
quired. We consider the subspace FZA,loc ⊂ FZB,loc, which
consists of formal products of stabilizers supported en-
tirely in A. Then, we have FZB,loc = FZA,loc ⊕ F where F
consists of formal products of stabilizers in B that either
lie completely outside A or are not fully contained in A.
Taking f ∈ F , if f ∈ KerπB−A ◦ φZ with f /∈ KerφZ ,
then φZ(f) is a non-trivial stabilizer in GZA. The number
of such stabilizers is

Ω̃ZA = dim KerπB−A ◦ φZ |F − dim KerφZ |F . (24)

It can happen that φZ(f) is a local stabilizer in GZA; this
can happen when the local stabilizers obey some local
constraints, so that some local stabilizers in GZA can be
written as a product of local stabilizers not supported
entirely in A. We let KZ

A,loc ⊂ GZA,loc be the subspace
generated by such local stabilizers in A. If the local sta-
bilizers generating GZB,loc obey no local constraints, then

Ω̃ZA = ΩZA. More generally,

ΩZA = Ω̃ZA − dimKZ
A,loc, (25)

which determines dimGZA via Eq. (18).
We use this method to compute topological entangle-

ment entropy for Haah’s code as discussed in Sec. V C.
In addition, we employ the same method to check our
results for the X-cube model in Sec. V B.

D. Simple example: topological entanglement
entropy of d = 2 toric code

To illustrate the use of the stabilizer formalism, we now
use it to compute the entanglement entropy of the d = 2
toric code model34. One qubit resides on each link of the
square lattice, and the Hamiltonian is

HTC = −
∑
v

Av −
∑
p

Bp, (26)

where Bp is the product of the four Z operators surround-
ing the plaquette p, and Av is the product of the four X
operators connected to vertex v.

We compute the entanglement entropy of a subsystem
A of size R × R, shown in Fig. 2 for R = 2. This region
contains NA = 2(R + 1)R spins. Additionally, there are
R2 plaquette terms and (R − 1)2 vertex terms confined
entirely within subregion A; these are local stabilizers
and they are all independent. Using the fact that A is

simply connected, it can be seen easily that GA is gen-
erated by the plaquette and vertex stabilizers supported
entirely in A. Moreover, these stabilizers obey no local

constraints. Therefore, |GA| = 2R
2+(R−1)2 .

Using Eq. (14), we find that the entanglement entropy
is

SA = 2(R+ 1)R−R2 − (R− 1)2 = 4R− 1. (27)

Since the boundary has length |∂A| = 4R measured in
lattice edges, we have SA = |∂A|+ Stopo, where Stopo =
−1 is the well-known topological entanglement entropy
of the two dimensional toric code. This is something of
an accident; this region has sharp corners, but the corner
contributions happen to vanish. To actually obtain Stopo,
we can break region A into three subregions A, B, C as in
Fig. 1a, and apply the ABC prescription to obtain SABCtopo

as in Eq. (5).
To illustrate features not arising in the above simple

example, we calculate SP for an annulus-shaped region
P shown in Fig. (1b). There, due to the non-trivial
topology, GP is no longer generated by local stabiliz-
ers supported entirely on P . Using the terminology of
Sec. III B, GP is generated by the local stabilizers in P ,
together with two non-local stabilizers. These are prod-
ucts of plaquette and vertex stabilizers, respectively, over
the hole in the annulus. Taking the linear size of the hole
to be R and that of the exterior edges to be 3R, we ob-
tain SP = 16R − 6 = |∂P | − 4 − 2, where the constant
−4 is non-universal and contributed by vertex terms at
four concave corners of the subsystem while the −2 re-
sults from the number of non-local plaquette and vertex
stabilizers acting on this subsystem. Although there are
non-universal parts in this entropy due to the detailed
geometry, the topological part of the entropy can be ex-
tracted by canceling all of those boundary contributions
out via the PQWT prescription in Eq. (6).

A different perspective on the topological entangle-
ment entropy, that further clarifies its robustness, is af-
forded by an understanding of the ground state wave
function of the toric code as a condensate of closed loops
of Z2 ‘electric’ field lines. Each connected component
of the entanglement surface intersects any loop an even
number of times; this topological fact provides exactly
one bit of extra information about the ground state,
thereby reducing the entanglement entropy by a univer-
sal correction of −1 for each connected component of the
entanglement surface. Similar ideas can be used to clarify
the topological entanglement entropy of other topologi-
cal orders in two dimensions by constructing their ground
states as string-net condensates24,35.

IV. TOPOLOGICAL ENTANGLEMENT
ENTROPY IN d = 3

As we have discussed, extracting the topological con-
tribution to the entanglement entropy generally requires



7

A B C

R

2R 2R

FIG. 3. Regions for a d = 3 ABC prescription to compute
topological entanglement entropy. This choice of regions picks
out a preferred axis (arrow). A is a 2R × R × R rectangular
prism, and regions B and C both have dimensions R × R ×
R. The union ABC of the three regions is a 2R × 2R × R
rectangular prism, with R the linear size along the preferred
axis.

employing a prescription designed to cancel local contri-
butions. This becomes even more important in d = 3,
where Ref. 28 argued that even for a subregion A with a
smooth boundary, in the absence of parity and continu-
ous rotation symmetry, every term in the expansion of SA
in powers of the inverse linear size R−1 acquires a local,
non-universal contribution. Continuous rotation symme-
try is absent in fracton models, and, more seriously, the
dynamics of fracton excitations leads to an expectation
that fracton topological orders lack a continuum descrip-
tion with continuous rotation symmetry. Discrete sym-
metries like parity may or may not be present in a given
solvable fracton model, but certainly need not be present
upon perturbing such a model to make it generic.

Therefore, we rely on d = 3 generalizations of the ABC
and PQWT prescriptions discussed in Sec. II. We use
two different PQWT type prescriptions27, one is illus-
trated in Fig. 4, the other in Fig. 8. A näıve extension
of the d = 2 ABC prescription (Fig. 1(a)) is shown in
Fig. 3. As noted in Ref. 28, this prescription fails to can-
cel local contributions from the two points where regions
A, B and C all meet at the top and bottom boundaries.
This implies that SABCtopo is contaminated by non-universal
contributions that are constant in R. However, we will
still employ this prescription, because in fracton mod-
els we will find a contribution to Stopo proportional to
R, which is unaffected by the uncanceled constant local
contributions. While we do not use them in this paper,
we note that Ref. 28 introduced different d = 3 ABC
prescriptions that do not suffer from this issue.

To illustrate our approach in d = 3, we briefly discuss
the calculation of topological entanglement entropy for
the d = 3 toric code, using the PQWT prescription illus-
trated in Fig. 4. The Hamiltonian is given by Eq. (26)
but on the cubic lattice, so that the vertex terms involve
six spins, and there are plaquette terms for each face of

a cubic unit cell. As found in Eq. 19, SPQWT
topo is given

(a) (b)

2R3R
RR

(c) (d)
R

R
R

R

P Q

W T

FIG. 4. Regions for a PQWT prescription with a preferred
axis denoted by arrows in d = 3 to extract topological entan-
glement entropy. Lengths are measured in terms of the lattice
distance (i.e. the number of links).

P

3R

R

FIG. 5. Nonlocal stabilizer (red square) for d = 3 toric code,
which is a product of plaquette terms in the B = P̄ subregion
and those on the boundary but only acts nontrivially on the
P subsystem.

entirely by counting non-local stabilizers in each region.
Region P has a single non-local stabilizer, which can be
constructed by taking a product of local plaquette sta-
bilizers over an xy plane surface that cuts through the
inner cube (i.e. the “hole” at the center of P ), as illus-
trated in Fig. 5. Regions Q, W and T have no non-local

stabilizers, so SPQWT
topo = −ΩP = −1. This is consis-

tent with the fact that the ground state wave function is
a loop condensate, with loops cutting the entanglement
surface an even number of times. Ref. 28 computed the
topological entanglement entropy of the d = 3 toric code
using a different prescription, which produces the same
result.
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V. TOPOLOGICAL ENTANGLEMENT
ENTROPY OF FRACTON MODELS

In this section, we compute the topological entangle-
ment entropy of fracton models. We begin (Sec. V A)
with a simple warm-up example, a stack of decoupled
two-dimensional toric code layers, which is related to the
X-cube model by a coupled-layer construction.15,16 Then
we proceed to consider the X-cube model (Sec. V B) and
Haah’s code (Sec. V C).

A. Decoupled layers of d = 2 toric codes

We consider a stack of d = 2 toric codes, with layers
spaced uniformly and arranged normal to the z axis. We
consider the “square torus” PQWT prescription shown
in Fig. 4, with topological entanglement entropy defined
by Eq. (6). The intersection of each layer with P is the
annulus-shaped region discussed in Sec. III D, which has
two non-local stabilizers. The regions Q, W and T do not
support non-local stabilizers, so the topological entangle-
ment entropy is two bits per layer. Therefore, choosing
the unit of length to be the layer spacing, and choosing
the regions P , Q, W , T to contain precisely R toric code
layers, we obtain

SPQWT
topo = −2R. (28)

In this example of decoupled layers, it is no surprise that
we obtain a R-linear term in Stopo. This term is of inter-
est because it also appears in fracton models.

We remark that slightly changing the detailed speci-
ficiation of the regions can alter the constant term in

SPQWT
topo . For instance, instead of stating the regions con-

tain precisely R layers, we could define them to extend a
distance R along the z-axis between toric code layers on
the “bottom” and “top” surfaces, and to contain these
surface layers. Then each region intersects R + 1 layers,

and we obtain SPQWT
topo = −2R−2. Note that this changes

the constant term by an even integer; it is possible that
this term does have a robust meaning modulo two. In a
generic system in the same phase as the decoupled stack
we are considering, we would not have precise control
over the number of layers intersected by these regions, so
that only the R-linear term is clearly meaningful. This
illustrates a general point that, in d = 3, one should be
cautious in ascribing any meaning to the constant term
in Stopo when an R-linear term is present.

We also consider the topological entanglement entropy
using the d = 3 ABC prescription shown in Fig. 3, with
the preferred axis along the z-axis. Considering a single
layer, this reduces to the d = 2 ABC prescription of
Fig. 1, giving a topological entanglement entropy of one
bit per layer. Again choosing the regions to intersect
precisely R layers, we have

SABCtopo = −R. (29)

The example of decoupled layers of d = 2 toric codes
is also instructive in that it illustrates the answer can de-
pend on the orientation of the entanglement cut. Indeed,
different results would be obtained for either the ABC or
PQWT prescriptions, if we choose the preferred axis to lie
in an arbitrary direction, since the number of intersect-
ing layers would be different. Although this somewhat
complicates the interpretation of Stopo, it has the advan-
tage of providing a means to identify the “natural” axes
for entanglement in this system, by rotating the orien-
tation of the preferred axis so as to obtain a maximal
answer. In fracton models, this could potentially help to
discover new coupled-layer constructions along the lines
of Refs. 15 and 16.

We also consider a stacking of decoupled toric code lay-
ers along the x, y and z directions simultaneously, as in
the coupled-layer construction of the X-cube model.15,16

In this case, we obtain the same results for topologi-
cal entropy using the two prescriptions employed above,
because these prescriptions do not capture the topolog-
ical entanglement of the layers normal to the x and y
axes. We are not aware of a single ABC or PQWT type
prescription that captures all of the topological entangle-
ment in this system in one shot. Instead, it seems to be
necessary to compute Stopo for different sets of regions
to obtain a full picture of the non-local entanglement.
A notion of ‘recoverable information’ that can be defined
for stabilizer codes offers a complementary perspective to
the one in the present paper and may achieve this goal.

B. X-cube model

We now apply the stabilizer formalism to compute our
first new result: namely, the entanglement entropy of the
X-cube model, an archetypal example of a ‘type I’ fracton
phase11. The model is defined on a cubic lattice with a
spin 1/2 variable on each link, with Hamiltonian

HXC = −
∑
v

(
A(xy)
v +A(yz)

v +A(zx)
v

)
−
∑
c

Bc, (30)

where the A-type stabilizers involve a product of four Zi
operators that surround a vertex in one of three orthog-
onal planes, and the B-type stabilizers involve a product
of twelve Xi operators around a elementary cube.

To compute the topological entanglement entropy, we
employ the construction Eq. (6), using the regions shown
in Fig. 4, and taking the preferred axis to be the z-axis.

As discussed in Sec. III B, SPQWT
topo is given by counting

non-local stabilizers via Eq. (19). It follows from Ap-
pendix A 1 that regions Q, W and T have only local
stabilizers (i.e. their stabilizer groups are locally gener-

ated), so we have SPQWT
topo = −ΩP , with ΩP the number

of non-local stabilizers in P .
To determine ΩP = ΩXP + ΩZP , we first note that a

product of cube terms over an xy plane layer cutting
through the “hole” in the center of P produces a non-
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P

3R

R
Bc

P

3R

R

Bc

Av

(a)

(b)

FIG. 6. (a)A non-local Z stabilizer (red) of the X-cube model
in region P is constructed by taking a product of vertex terms
over the “hole” in the center of P . (b) A non-local X stabilizer
(red) of the X-cube model in region P is constructed by taking
a product of cube terms over the “hole” in the center of P .

local X stabilizer, as shown in Fig. 6. There are R dif-
ferent layers, and we expect that the resulting R non-
local stabilizers are independent in the sense that they
cannot be deformed into one another by taking prod-
ucts with local stabilizers, so that ΩXP = R. The rea-
son for this expectation is that each of these non-local
stabilizers is a closed-loop string operator for a distinct
non-trivial quasi-particle excitation confined to move in
the corresponding xy plane.11,16 It should not be possi-
ble to change the particle type of a string operator by
multiplying it with local operators. We also verified that
ΩXP = R using the numerical method of Sec. III C, for
R = 2, . . . , 10. Similarly, taking a product of xy-plane
“vertex type” stabilizers over the hole in P also gives a
non-local stabilizer. There are R+1 such xy-plane layers,
giving ΩZP = R + 1, which we again verified numerically
for R = 2, . . . , 8. Therefore we find ΩP = 2R+ 1 and

SPQWT
topo = −2R− 1. (31)

We note that the R-linear term in this result is identical
to that obtained in a stack of decoupled d = 2 toric codes
along x, y and z axes; as discussed in Sec. V A, only the
layers normal to the z-axis contribute to the topological
entanglement entropy for this choice of the regions P , Q,
W , T .

As in the case of the toric code, the linear term of
this result can be understood within a loop condensate
picture. In the Z basis, configurations satisfying the ver-
tex terms of the Hamiltonian can be viewed in terms of
strings of flipped links ` with Z` = −1, where in every
{100} plane the strings form closed loops. Each {100}

plane thus gives a non-local contribution of −c to SA,
where c is the number of connected components in the
intersection of the plane with the boundary of A. Ap-

plying this simple rule to SPQWT
topo , we find that each xy

plane contributes −2, while yz and xz planes do not con-
tribute; this reproduces the −2R term obtained above.
We note that this is the same loop condensate picture
as for a stack of decoupled toric codes. In the X-cube
model, the layer-by-layer loop constraints in the ground
state wave function are not truly independent; a more
detailed analysis taking this into account would presum-

ably also reproduce the constant term in SPQWT
topo .

It is evident that, as for the case of decoupled layers of
d = 2 toric codes, the number of topological constraints
(and hence the topological entanglement entropy) will
depend on the orientation of the entanglement surface.
Our discussion here is for an entanglement surface aligned
with the symmetry axes of the problem. The entangle-
ment entropy for arbitrary orientations could be evalu-
ated using analogous methods, but we do not discuss it
further here.

We also compute the topological entanglement entropy
using the ABC prescription, with regions shown in Fig. 3.
Because regions A, B, C, AB and so on all have locally
generated stabilizer groups generated by cube stabilizers
and xy and xz plane vertex stabilizers (Appendix A 1),
following Sec. III B and Appendix B, SABCtopo is determined
by counting local stabilizers whose support is split among
all of A, B and C. The detailed geometry can be cho-
sen so that this only occurs for cube stabilizers, and the
number of these cube stabilizers is R. Therefore we find

SABCtopo = −R, (32)

where the vanishing of the constant term is presumably
unimportant, because this prescription does not cancel
all constant local contributions. We observe that the co-
efficients of the topological entanglement entropy using
both ABC and PQWT prescriptions in the X-cube model
are exactly as in the corresponding system of decoupled
toric codes. Evidently, the linear term in the topolog-
ical entanglement entropy is insensitive to the m-string
condensation that occurs going from the decoupled toric
codes to X-cube phase.16

C. Haah’s code

We now turn to Haah’s code, the archetype of a ‘type-
II’ fracton model11. This model is also defined on a cubic
lattice, but now with two spin-1/2 variables on every ver-
tex. The Z and X type stabilizer operators now consist
of products of Z and X Pauli matrices around an ele-
mentary cube with a Hamiltonian of the form

HHaah = −
∑
c

(Ac +Bc), (33)

where Ac and Bc denote the products of Z and X Pauli
operators around the vertices of a cube specified in Fig. 7.
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FIG. 7. Ac (right) and Bc (left) terms in Haah’s code, showing
our choice of coordinate axes. Each site has two spins. X and
Z denote the corresponding Pauli operators. I represents the
identity operator.

To compute the topological entanglement entropy, we
first employ the ABC prescription with regions as shown
in Fig. 3. It is shown in Appendix A 2 that the stabi-
lizer groups for regions A, B, C, AB, and so on are all
locally generated. Therefore, following the discussion of
Sec. III B, −SABCtopo is the number of local stabilizers con-
tained in ABC that have support split among all three re-
gions A,B, C. These stabilizers reside on cubes along the
axis where the three regions meet, and there are 2(R−1)
of them, where the factor of 2 accounts for counting both
X and Z stabilizers. Therefore,

SABCtopo = −2R+ 2, (34)

where only the R-linear term is expected to have any
universal meaning.

We also consider the topological entanglement entropy
captured by two different PQWT prescriptions, deter-
mined using the numerical method of Sec. III C. We first
simplify the problem using the spatial inversion symme-
try of Haah’s code, which acts non-trivially on the spins,
sending X → Z and Z → −X, and also exchanging
the two qubits on each site. If a region A is inversion-
symmetric, then ΩZA = ΩXA . On the other hand, if two
regions A and B are related to one another by inversion,
then ΩZA = ΩXB and ΩXA = ΩZB . In the PQWT prescrip-
tion of Fig. 4, regions P and T are inversion-symmetric,
while inversion exchanges Q and W . This implies

SPQWT
topo = −2ΩZP + 2ΩZQ + 2ΩZW − 2ΩZT . (35)

Our numerical calculations lead to the conclusion that
SPQWT
topo = 0 for the regions of Fig. 4. (In more detail,

we show in Appendix A 2 that the stabilizer groups for
regions Q, W and T are all locally generated, i.e. ΩZQ =

ΩZW = ΩZT = 0. Numerically, we find that ΩZP = 0 for
R = 4, . . . , 11. While ΩZP = 2 for R = 2 and ΩZP = 1 for
R = 3, this seems to be a finite-size effect.) This result
is strikingly different from SABCtopo , while the linear term
in these two entropies only differed by a factor of two for
the X-cube model. The contrast with the X-cube model
suggests that Haah’s code may not have a coupled-layer
description where the layers lie in {100} planes.

To find a different PQWT prescription that does cap-
ture some of the non-local entanglement in Haah’s code,

we note that we should not expect the non-local stabiliz-
ers of Haah’s code to be one-dimensional objects, as they
are in the X-cube model. This expectation is based on
the fact that none of the topologically charged excitations
in Haah’s code can be transported by string operators,
so we should expect that any non-local stabilizers are
higher-dimensional objects. Moreover, this expectation
is further substantiated by the fact that ΩZP = 0 for the
solid torus region of Fig. 4. This motivates us to employ
the PQWT prescription of Ref. 27, with regions shown
in Fig. 8. Here, the region P is more isotropic, allow-
ing for non-local stabilizers wrapping entirely around the
interior cube.

The regions of Fig. 8 indeed give a non-zero result for

SPQWT
topo . Our numerical results are summarized in Ta-

ble I, and we find

SPQWT
topo = −4R+ 12, (36)

based on numerical calculations up through R = 11.
This topological entanglement entropy also has aR-linear
term. It is interesting to remark that, while Haah’s code
has a well-known intricate dependence of the ground
state degeneracy on system size36, the behavior of the
topological entanglement entropy is much simpler.

TABLE I. The number of non-local stabilizers ΩZ
A as a func-

tion of R for regions A = P,Q,W, T shown in Fig. 8. The
functional forms shown are exact from R = 4 up through
R = 11 (the largest value of R for which calculations were

done). These results determine SPQWT
topo via Eq. (35).

ΩZ
P ΩZ

Q ΩZ
W ΩZ

T SPQWT
topo

6R− 7 2R 2R− 1 0 −4R+ 12

At this point it is natural to ask if the topological en-
tanglement entropy in Haah’s code may also be given
a geometrical interpretation in terms of constraints on
the structure of the ground state wavefunction, like the
loop condensate picture for toric code and X-cube mod-
els. Because isolated fractons in Haah’s code are created
at corners of fractal operators, it seems likely that the
ground state can be viewed as some kind of condensate
of fractal objects. At present, to our knowledge there is
no clearer meaning that can be given to this picture, or
whether it can shed light on non-local entanglement.

VI. LOCALIZATION-PROTECTED FRACTON
ORDER IN EXCITED STATES

Thus far, we have focused exclusively on ground states.
However, for stabilizer Hamiltonians, the entire spectrum
shares the same entanglement entropy properties as the
ground state (excited states differ only in their eigen-
values under stabilizer operators). The difference be-
tween ground states and excited states only manifests
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FIG. 8. Regions for an alternative PQWT prescription used
for Haah’s Code. Length of each edge is measured by the
number of links.

itself when the Hamiltonian is perturbed away from the
stabilizer form. The entanglement structure of ground
states is then ‘protected’ from perturbations by the en-
ergy gap (as discussed above), whereas the excited states
lack such protection. Upon perturbation, the excited
states of translationally invariant fracton models are thus
expected to thermalize17 to volume law entanglement,
in the process losing their topological order. Indeed,
if one tries to construct the unitary U of Eq. (1) using
Schrieffer-Wolff perturbation theory outside the ground
space, one finds that the perturbation theory diverges,
suggesting that U may not be a local unitary. Since
our discussion thus far relied on the existence of a lo-
cal unitary U , it has nothing further to say about the
translationally invariant case.

However, as noted by Ref. 37, this scenario could
change dramatically once we break translational invari-
ance by introducing quenched disorder: the topological
order can be protected even in excited states by local-
ization, in a manner that we now sketch. Consider a
disordered fracton Hamiltonian of the form

H = −
∑
i

JAi Ai −
∑
j

JBj Bj − λHint, (37)

where the JAi and JBj are random numbers drawn from
some distribution of width W . While the excitations
are frozen (non-propagating) for any W at the stabilizer
point, once we add small perturbations they will be able
to propagate for small W , but for sufficiently large W the
system can enter a many body localized phase38, where
excitations cannot propagate freely. In this many-body

localized phase, topological order (including fracton or-
der) can persist at non-zero energy densities — i.e., even
in highly excited states. The challenge is how to detect
this topological order. ‘Excited state degeneracy’ cannot
serve as a diagnostic, since the many body level spac-
ing in the middle of the spectrum is exponentially small
in the volume of the system and thus there is no longer
a distinction between topological and other degeneracies
in the thermodynamic limit. In Ref. 37, non-local cor-
relation functions — related to the ‘Fredenhagen-Marcu’
order parameters familiar to lattice gauge theorists —
were argued to be good diagnostics of topological order.
These diagnostics were generalized to certain fractonic
models in Ref. 39, but nevertheless such non-local cor-
relation functions can be challenging to compute. Here,
we will demonstrate that topological entanglement can
diagnose fracton topological order in excited states.

The fact that excited states in the localized regime
can support fracton topological order follows straightfor-
wardly from our preceding discussions. First note that at
λ = 0, excited states share the entanglement properties
of the ground state (including topological entanglement),
since the excited states are also eigenstates of the stabi-
lizer operators. Now note that, in the localized phase, the
unitary transformation U is local, with at most exponen-
tial tails. This follows because of the ‘mobility gap’ in
many body localized systems40 i.e. the Schrieffer-Wolff
perturbation theory has matrix elements in the numera-
tor, and matrix elements vanish between near degenerate
eigenstates. Again, the topological entanglement entropy
is non-local, and is expected to be unaffected by a local
unitary transformation, subject to the same caveats dis-
cussed in the previous section.

We also note that the dressed stabilizers are simply
the local integrals of motion or ‘lbits’ of the localized
system41,42, and these must be localized by postulate.
For a detailed construction of dressed integrals of motion
via Schrieffer-Wolff perturbation theory, showing that
these are local in the MBL regime, see Ref. 43. (For
the cognoscenti, we note that our argument here parallels
more closely the construction of l-bits via Wegner-Wilson
flow in Ref. 44).

We note that thus far we have assumed that a many
body localized phase can exist in three dimensional lat-
tice models. There is some debate about whether many
body localization can arise in spatial dimensions d > 1
with random short range correlated disorder45, because
of ‘thermalizing avalanches’ triggered by rare regions.
For truly random short range correlated disorder, our dis-
cussion applies to systems that are small enough to lack
the relevant rare regions, and perhaps also in the ther-
modynamic limit, if the argument from Ref. 45–47 can
be somehow circumvented. However, the problem may
also be sidestepped by making the disorder long range
correlated or quasiperiodic, such that the ‘rare region ob-
struction’ identified in Ref. 45 does not apply.

We therefore conclude that in disordered fracton mod-
els, fracton topological order can arise even in highly ex-
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cited states, where it may be diagnosed through a ‘topo-
logical entanglement entropy’ linear in the size of the
subsystem.

VII. CONCLUSIONS

We have explicitly computed the entanglement entropy
of two archetypal fracton models — the X-cube model
and Haah’s code — and have demonstrated the exis-
tence of a topological contribution to the entanglement
entropy that is linear in the size of the subsystem. At a
minimum, this provides a coarse characterization of frac-
ton topological phases, in that for a given system, two
states with distinct topological entanglement must be in
distinct phases. There is also an obvious extension of
this diagnostic to anisotropic models, wherein one sepa-
rately considers the scaling of entanglement entropy with
the size of subregion A in the x, y and z directions re-
spectively, thereby characterizing the topological entan-
glement with three indices. (More carefully, one would
separately consider the topological entanglement entropy
for a torus of thickness R oriented in three orthogonal
planes). In general the topological entanglement can de-
pend not just on the size of the region, but also on its
orientation, which may provide a useful means of diag-
nosing the symmetry axes of a phase by rotating the en-
tanglement surface to obtain a maximal answer.

What more information could be extracted from a
study of entanglement? In two-dimensional topologically
ordered phases, a careful analysis of the action of symme-
tries such as rotation and reflection within the manifold
of degenerate ground states can provide insights into the
fractionalized statistics of quasiparticle excitations in the
phase; whether such manipulations can shed additional
light on the properties of fracton excitations (that do not
admit a quasiparticle description) remains an open ques-
tion. It would also be interesting to study the entangle-
ment spectrum48, as this may contain more information
than is encapsulated in entanglement entropy. Finally,
the dynamics of entanglement has in other contexts (see,
e.g. Refs. 49 and 50) provided much insight into the na-
ture of thermalization and the approach to or avoidance
of equilibrium. We leave investigation of these issues to
future work.
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Note added: After this work was posted to the arXiv,
we became aware of a parallel investigation51 in which the
entanglement entropy of ground states of fracton stabi-
lizer codes was calculated, for certain bipartitions, using
a completely different method. Where our results over-
lap, they agree.

Appendix A: Regions with locally generated GA

Here, we consider the X-cube model and Haah’s code,
and show that the group of stabilizers GA is locally gen-
erated for certain regions A that we characterize. Recall
that in Sec. III C, we defined GA to be locally generated
when GA = GA,loc, i.e. when every stabilizer in A is a
product of local stabilizers.

1. X-cube model

In the X-cube model, we show that GA is locally gener-
ated for regions A obtained by taking a simply connected
region in the xy plane, and stacking this region along the
z-axis. (The choice of plane and normal stacking direc-
tion is of course arbitrary, due to cubic symmetry.) We
assume the boundary of each xy plane slice is a sequence
of edges that are contained in A and form a path in the
cubic lattice. Two examples of such regions for the d = 2
square lattice are shown in Fig. 9. We further assume
that acute corners of the slice (see Fig. 9) are sufficiently
isolated from other points on the boundary to carry out
the cleaning procedure for Z stabilizers discussed below.
A more precise statement of this assumption is given be-
low; essentially, we are assuming the boundary of the slice
is not too rough. This condition allows the slice shown
in Fig 9a, but rules out that in Fig. 9b. We refer to cubic
lattice links oriented along the x, y and z axes as x, y and
z links, respectively. In addition to spins residing on x
and y links contained in each slice, the region A contains
all z-links joining two adjacent slices.

In fact, under the assumptions given, we show an even
stronger property: GA is locally generated using only
xy-plane and xz-plane vertex stabilizers, and cube stabi-
lizers. (Alternatively, we can use xy-plane and yz-plane
vertex stabilizers.) Because there are no local constraints
among xy and xz plane vertex stabilizers, using this as
a generating set allows us to simply establish Eq. (5) in
Appendix B.

We first consider some operator X0 supported on A,
which we take to be an X-stabilizer. By definition, this
means that X0 commutes with all local Z-stabilizers, in-
cluding those not entirely supported on A. We would
like to show that X0 is a product of local X-stabilizers
supported on A, which can be accomplished by a clean-
ing procedure, where we successively multiply X0 by such
stabilizers until we obtain the identity operator. We de-
note the X-stabilizer obtained from X0 at the current
stage of the cleaning procedure by X .
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FIG. 9. Two square lattice slices that can be stacked to ob-
tain a region A of the cubic lattice. Such slices have two kinds
of corners, labeled acute and obsute in (a). Our cleaning pro-
cedure goes through as long as acute corners are sufficiently
isolated; region (a) satisfies this condition, while the circled
corners in (b) cause the cleaning procedure for Z stabilizers
to fail for the corresponding region A.

We begin with the bottom layer (i.e. smallest z co-
ordinate) of X0. In this slice, commutation between xy
plane vertex stabilizers is exactly as in the d = 2 toric
code. Using the fact that the stacked region is simply
connected, this implies that X restricted to this layer is
a product of plaquette operators

∏
`∈pX`, where p is a

square plaquette in the xy plane. We can thus clean this
layer by multiplying X0 with a suitable product of local
X stabilizers whose cube centers lie just above the slice;
this works because the restriction of these stabilizers to
the slice are plaquette operators.

It appears this cleaning step may leave dangling z-links
lying just above the bottom slice, where X|` = X on such
links. The notation X|` means the restriction of X to the
link `, i.e. X is a product over links of Pauli operators,
and X|` is the Pauli operator (1 or X) at the link ` ap-
pearing in the product. By considering commutation of
X with xz- and yz-plane vertex stabilizers whose centers
lie in the original bottom layer, we see that X|` = 1 for
all these dangling links.

These steps reduce the height of the stack by one unit
cell, resulting in a new region of the with the same prop-
erties as the one we started with. Therefore, we can con-
tinue this procedure until X is only supported on a single
slice. We can show X = 1 by considering commutation
with xz and yz plane vertex stabilizers whose centers lie
in the same slice. Consider x-links in the slice of interest
with some fixed y coordinate. Starting at large negative
values of x, and moving in the positive x direction, find
the first link ` with X|` = X. Then X anticommutes
with the xz vertex stabilizer whose center lies adjacent
to this link in the negative x direction. This is a contra-
diction, and implies X|` = 1 for all x-links, and similarly
for all y-links. Therefore X = 1 and we have reached the
end of the cleaning process.

Now we consider a Z stabilizer Z0 supported on the
same region A, and clean it via multiplication with vertex
stabilizers. Again we start with the bottom slice, where
commutation between Z0 and cube stabilizers whose cen-
ters lie just below the slice is the same as in the d = 2 toric

code. Therefore, Z0 restricted to this slice is a product
of xy plane vertex stabilizers, which we clean off. This
may leave dangling z-links just above the bottom slice,
where Z|` = Z. First consider a z-link ` just above an
acute corner. We assume there is a cube stabilizer that
contains this link, but contains no other links of A; this
is a more precise statement of our assumption that the
acute corners are sufficiently isolated. This cube stabi-
lizer anticommutes with Z unless Z|` = 1. All dangling
z-links not above an acute corner can be cleaned by mul-
tiplying with a xz plane vertex stabilizer, whose vertex
lies just above the link to be cleaned.

This cleaning process can be continued until Z is sup-
ported on a bilayer consisting of the top slice, the slice
just below it, and z-links joining these slices. Both the
top and bottom slice can be cleaned off as above, leav-
ing only the z-links. Considering the set of z links with
Z|` = Z, we go to the leftmost column of this layer (i.e.
smallest x), and find the z link in this column with small-
est y coordinate. We see that Z anticommutes with the
cube stabilizer whose center lies in the same layer, and
lies diagonally adjacent to the selected link in the neg-
ative x, negative y direction. This is a contradiction,
so we must have Z = 1, and the cleaning procedure is
complete.

2. Haah’s code

In Haah’s code, we first show that GA is locally gener-
ated for A a rectangular prism, i.e. a region containing
all sites with x coordinate satisfying xmin ≤ x ≤ xmax,
and similarly for y and z. Axes are chosen as in Fig. 7.
Next, we generalize this to show that GA is locally gener-
ated for certain “L-shaped” regions shown in Fig. 11. In
all cases, it is enough to concentrate on Z stabilizers: The
rectangular prism regions are inversion-symmetric, so the
corresponding result for X stabilizers follow from inver-
sion symmetry. The L-shaped regions are not inversion-
symmetric, but each region of one type as shown in
Fig. 11 is related to a region of a different type under
inversion, so that if all four types of regions have locally
generated GZA, the corresponding statement for X stabi-
lizers follows.

Let A be a rectangular prism region, and choose a Z
stabilizer Z supported in A. We write

Z =
∏
~r∈A

∏
i=0,1

(Z~r,i)
n(~r,i), (A1)

where Z~r,i is the Z Pauli operator for the ith qubit at
position ~r = (x, y, z), and where the choice of operator
is specified by the binary numbers n(~r, i) = 0, 1. The
restriction Z~r is given by

Z|~r = (Z~r,0)n(~r,0)(Z~r,1)n(~r,1). (A2)

We often suppress some of the indices when using this
notation, so for instance if n(~r, 0) = n(~r, 1) = 1, we write

Z|~r = ZZ. (A3)
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FIG. 10. Rectangular prism region A in Haah’s code, with
some lattice sites (circles) labeled to facilitate the discussion
of the cleaning procedure in the text.

In order for Z to be a stabilizer, it must commute
with all the local X stabilizers. We label local stabilizers
Ac and Bc by the position of the corner with smallest
values of the coordinates x, y, z, thus writing Ac = A~r
and Bc = B~r. Then the condition ZB~r = B~rZ can be
written

n(~r, 0) + n(~r, 1) + n(~r + x̂, 1) + n(~r + ŷ, 1)

+ n(~r + ẑ, 1) + n(~r + x̂+ ŷ, 0) + n(~r + x̂+ ẑ, 0)

+ n(~r + ŷ + ẑ, 0) = 0 mod 2. (A4)

As discussed above for the X-cube model, we will carry
out a cleaning process where we successively multiply Z
by local Z stabilizers contained in A until Z = 1.

Equation (A4) looks complicated, but it simplifies if
we choose ~r → ~r0 to be the corner of A with largest x, y
and z coordinates (see Fig. 10), where it reduces to

n(~r, 0) + n(~r, 1) = 0 mod 2. (A5)

This implies that either Z|~r0 = 1 or Z|~r0 = ZZ. Sup-
posing the latter case, we multiply Z by A~r0−(x̂+ŷ+ẑ), to
obtain a new Z with Z|~r0 = 1.

We repeat this procedure, moving down in the z-
direction, to clean operators in the column below ~r0 (red
dots in the figure) until ~r1 is reached. Z|~r1 cannot be
cleaned in the same way, because the Z stabilizer we
would need to act with lies outside A. However, again we
have Z|~r1 = 1 or Z|~r1 = ZZ. Considering commutation
of Z with B~r1−ẑ, we find n(~r1, 1) = 0 mod 2. Therefore
we have Z|~r1 = 1, and no cleaning is needed.

So far we have cleaned the vertical column below ~r0. To
proceed, we move to ~r2, and repeat the same procedure
to clean the vertical column below ~r2. Proceeding in this
way we can clean until we reach the position ~r3. By
the same reasoning as before, either Z|~r3 = 1 or Z|~r3 =
ZZ. We cannot apply the same cleaning procedure for ~r3,
because the local Z stabilizer we would need to multiply
lies outside of A. However, commutation with B~r3−x̂
implies either Z|~r3 = 1 or Z|~r3 = ZI. Therefore Z|~r3 = 1
and no cleaning is needed. The same argument applies
to all the sites vertically below ~r3, and therefore we have
cleaned off the entire +y face of Z.

FIG. 11. Four types of L-shaped regions in Haah’s code with
axes shown. Each region is a stack along the z-axis of the
an xy plane slice, with the top slice is shown for each region.
Regions of types 1, . . . , 4 must be considered separately, be-
cause Haah’s code lacks four-fold rotation symmetry about
the z-axis. The solid and dashed circled subregions, and the
site label ~r0 for the type 3 and 4 regions, are referred to in
the text.

We can repeat the same steps to clean almost all of Z
until position ~r4 is reached. Again we have either Z|~r4 =
1 or Z|~r4 = ZZ. Commutation with B~r4−ŷ implies either
Z|~r4 = 1 or Z|~r4 = ZI. Therefore Z|~r4 = 1 and no
cleaning is needed. We proceed vertically below ~r4, and
then on to position ~r5, and so on, to see that Z|~r = 1
everywhere on the remaining −y face, and no further
cleaning is needed. This completes the argument, and we
have shown GA is locally generated for A a rectangular
prism.

Now we consider L-shaped regions of four types, as
shown in Fig. 11, and show that GA is locally gener-
ated for such regions. Regions of this geometry appear
in the computation of Stopo via the ABC prescription
(see Sec. V C). Each region is a stack along the z-axis for
zmin ≤ z ≤ zmax of an xy plane slice. The figure shows
the top such slice (z = zmax) for each region. Similar re-
gions that are stacks along x and y axes can be obtained
from these by three-fold rotational symmetry about the
[111] axis, and do not need to be considered separately.

For each type of region, we again consider a stabilizer
Z supported in the region. In each case, the entire sub-
region including and below the solid circled regions in
the figure can be cleaned off by following the cleaning
procedure described above for a rectangular prism re-
gion. For type 1 and 2 regions, this results in a stabilizer
Z supported within a rectangular prism, which we have
already shown is a product of local Z stabilizers. For
type 3 and 4 regions, it remains to consider the sub-
region including and below the dashed ovals. Starting
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1

3

2

FIG. 12. Four types of C-shaped regions in Haah’s code with
axes shown. Each region is a stack along the z-axis of the an
xy plane slice, with the top slice is shown for each region.

with the type 3 region, we consider the site ~r0 in the top
layer (see figure). Considering commutation of Z with
B~r0−x̂ and B~r0−x̂−ŷ implies Z|~r0 = 1. The same reason-
ing shows that Z|~r = 1 for all sites in the column below
~r0, and in the whole subregion containing and below the
dashed oval. This again reduces the problem to the al-
ready solved rectangular prism case. The argument for
type 4 regions proceeds essentially the same way, except
that we consider commutation of Z with B~r0 and B~r0−ŷ.

Similarly, we can show that in the C-shaped regions
involved in PQWT constructions like Fig. (4), GA is
also locally generated. As shown in Fig. (12), there are
four possible C-shaped regions. For each type of region,
we still consider a stabilizer Z supported in that region.
In each case, the entire subregion including and below
the solid circled regions in the figure can be cleaned off
by following the cleaning procedure described above for a
rectangular prism region. For type 1 region, this results
in a stabilizer Z supported within a rectangular prism,
which we have already shown is a product of local Z
stabilizers. For type 2 and 4 regions, the solid and dashed
oval regions can be cleaned off in the same way as we
clean the L-shaped regions. Then what is left are type
2 and 1 L-shaped regions respectively, shown in Fig. 11,
which can be cleaned using the same procedure. For the
type 3 region, it is more convenient to start from the
lower left corner, i.e. ~r0. The commutation of Z with
B~r0−ŷ leads to either Z~r0 = 1 or Z~r0 = ZI. Suppose the
latter one is true, then we can multiply by A~r0−x̂−ẑ to
clean this site. All sites below ~r0 (with the same x and y
coordinates) can be cleaned by a similar procedure, until

one arrives at the bottom site ~r1, which has z = zmin.
The commutation of Z with both B~r1−ŷ and B~r1−ŷ−ẑ
requires Z~r1 = 1. The next column beginning with ~r2
can be cleaned off in the same way. Next, we can move
to ~r3. Notice the commutation of Z with both B~r3−ŷ and
B~r3−x̂−ŷ implies that Z~r3 = 1. In a similar fashion we
can proceed to clean the whole subregion in the dashed
circle, resulting in a type 4 L-shaped region which we
have already be able to clean as discussed above.

Appendix B: Simplified expressions for the
topological entanglement entropies

We derive the formula Eq. (19) for SPQWT
topo in terms of

the number of non-local stabilizers in each region. Treat-
ing X and Z stabilizers together, we pick a basis BT,loc
for GT,loc. Because T is a subset of all the other regions,
we can extend this to bases BQ,loc, BW,loc and BP,loc for
GQ,loc, GW,loc and GP,loc. Each of these bases can then
be extended to a basis for the full stabilizer group in
the corresponding region, including non-local stabilizers.
The topological entanglement entropy is

SPQWT
topo = −ΩP + ΩQ + ΩW − ΩT (B1)

− |BP,loc|+ |BQ,loc|+ |BW,loc| − |BT,loc|.

To simplify this expression, we first note that

BT,loc = BQ,loc ∩BW,loc. (B2)

This holds because the local stabilizers added to ex-
tend BT,loc to BQ,loc are contained only in Q and not
in W , and vice versa. Next we consider the union
BQ,loc ∪ BW,loc. This set spans GP,loc, because there
is a basis for GP,loc where the basis elements are local
operators that are thus fully contained either in Q or
W . However it can happen that this set is not linearly
independent. Therefore we have

|BP,loc| = |BQ,loc ∪BW,loc| −∆PQWT , (B3)

where ∆PQWT can be thought of as the number of con-
straint equations obeyed by elements of BQ,loc ∪ BW,loc.
These constraints must be non-local, involving stabilizers
contained in Q but not in W , and vice versa. It follows
that

SPQWT
topo = −ΩP + ΩQ + ΩW − ΩT + ∆PQWT . (B4)

We now discuss ∆PQWT in more detail; among the
models we consider, it can be non-zero only for the d = 3
toric code. Each constraint equation contributing to
∆PQWT is a product of local stabilizers in P that equals
the identity operator. Such a constraint can always be
obtained as a product of local constraints, involving sta-
bilizers that may lie in a larger region containing P . This
can occur for the plaquette stabilizers d = 3 toric code.
For example, using the regions P,Q,W, T shown in Fig. 8,
a product of plaquette stabilizers in P over a surface S
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enclosing the inner cube is the identity operator. The pla-
quette stabilizers satisfy the local constraint that a prod-
uct of stabilizers over the faces of an elementary cube is
unity, and the non-local constraint in P can be obtained
by from these local constraints by taking a product over
all cubes inside S.

However, there are no such non-local constraints in the
other models we consider, where ∆PQWT = 0. In the
d = 2 toric code and Haah’s code, the stabilizers obey no
local constraints. This is also true for the cube stabilizers
of the X-cube model. The vertex stabilizers of the X-cube
model do obey local constraints, but because each vertex
stabilizer participates in exactly one local constraint, it is
not possible to obtain non-local constraints contributing
to ∆PQWT by taking products of local ones.

Now we give a similar discussion of SABCtopo , to obtain the
result that it is determined by stabilizers whose support
is split among all of A, B and C. Here, we consider
only models and regions where A, B and C are locally
generated by a basis of local stabilizers that obey no local
constraints. This property is established for the X-cube
model in Appendix A 1 using a basis of cube stabilizers,
and xy and xz plane vertex stabilizers. For Haah’s code
and the d = 2 toric code, the stabilizers obey no local
constraints. We choose bases BA, BB and BC for the
stabilizer groups BA, BB and BC , respectively.

To obtain a basis for the pairwise unions AB and so
on, we consider the set bAB = BA ∪ BB . This set is
clearly linearly independent, except possibly for the ver-
tex stabilizers of the X-cube model. Any linear relation
would have to involve basis stabilizers in both A and B.
It cannot be a non-local constraint as discussed above. It
also cannot be a local constraint near the boundary of A
and B, because the stabilizers in BA and BB are drawn
from a subset of local stabilizers that do not obey any
local constraints. Therefore bAB is linearly independent.
In order to obtain a basis BAB for GAB , we extend bAB
by adding stabilizers δAB whose support is split between
A and B.

Finally we consider the union ABC. To find a basis,
we first consider the set bABC = BA ∪BB ∪BC ∪ δAB ∪
δBC∪δAC . Again, this set is linearly independent, and we
extend it to a basis BABC by adding a set of stabilizers
δABC , whose support is split among the three regions.

We then obtain for the topological entanglement en-
tropy

SABCtopo = −|BA| − |BB | − |BC |
+ |BAB |+ |BBC |+ |BAC | − |BABC |
= −|δABC |, (B5)

the desired result.

Appendix C: Schrieffer-Wolff perturbation theory

In this section we discuss the construction of dressed
stabilizers upon perturbation of the stabilizer Hamilto-
nian. The derivation is a variation on the standard

method of Schrieffer-Wolff transformations, most closely
related to the method of Wegner-Wilson flow discussed
in Ref. 44. We outline it here mainly in the interests of
completeness.

Let the eigenvectors of the unperturbed Hamiltonian
(H0) be {|n〉} with eigenvalues {En}. Let the new Hamil-
tonian be written as H = H0+λV , where V is some Her-
mitan operator and λ is any real number. Also let the
eigenvectors of this Hamiltonian be {|n′〉} with eigenval-
ues {E′n}. The idea is to find the unitary operator U(λ)
such that

|n′〉 = U(λ) |n〉 . (C1)

If we assume that U(λ) is an analytic function, then there
exists a Hermitian operator-valued function F (λ) such
that

U(λ) = exp (iF (λ)) . (C2)

We may then expand F (λ) as a power series in λ. To
find a relation for Umn = 〈m|n′〉, note that

〈m|H0 + λV |n′〉 = Em 〈m|n′〉+λ 〈m|V |n′〉 = E′n 〈m|n′〉 .
(C3)

We may also expand the V term in the original eigenba-
sis, to obtain the self-consistent equation

Umn(λ) = λ
∑
k

VmkUkn(λ)

E′n(λ)− Em
. (C4)

We now make the standard assumption that V does not
act within degenerate subspaces of H0 (any portion of V
that does so act should be absorbed into our definition of
H0), so we only have to worry about ‘off diagonal’ matrix
elements of V . If we define

A(λ) =
∑
k

VmkUkn(λ)

E′n(λ)− Em
|m〉〈n|, (C5)

we can use (C4) to express the expansion coefficients as(
∂jU

∂λj

)
λ=0

= j

(
∂j−1A

∂λj−1

)
λ=0

, (C6)

assuming the derivatives of A are well behaved at λ = 0.
At first order, we have(

∂U

∂λ

)
λ=0

= i

(
∂F

∂λ

)
λ=0

= Aλ=0 = iL, (C7)

where L can be expressed in terms of its matrix elements
in the old eigenbasis,

Lmn = i
Vmn

Em − En + 0
, (C8)

or [H0, L] = iV . One can continue the expansion to
any desired order. Note that if one is concerned only
with the ground state, and the system is gapped within
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a topological sector, then the denominator has a non-zero
lower bound. It may be shown using standard techniques
that if the original Hamiltonian has a conserved quantity,
ie. [H0, S] = 0, then one can find a conserved quantity

for the perturbed Hamiltonian, S̃ by solving

∂S̃

∂λ
= i[L, S̃], (C9)

The expert reader will recognize this as the equation of
motion for Wegner-Wilson flow44. It is well known that
this sort of flow equation preserves locality of the inte-
grals of motion both for gapped systems and for localized
systems (see e.g. Refs. 43 and 44 for recent discussions),
where ‘local’ means ‘local up to an exponentially decay-
ing tail.’
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