
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Plasmonic Landau damping in active environments
Niket Thakkar, Nicholas P. Montoni, Charles Cherqui, and David J. Masiello

Phys. Rev. B 97, 121403 — Published 12 March 2018
DOI: 10.1103/PhysRevB.97.121403

http://dx.doi.org/10.1103/PhysRevB.97.121403


Plasmonic Landau Damping in Active Environments1

Niket Thakkar,1, ∗ Nicholas P. Montoni,2 Charles Cherqui,2 and David J. Masiello1, 2, †2

1Department of Applied Mathematics, University of Washington, Seattle, Washington 98195-3925, USA3

2Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA4

(Dated: February 26, 2018)5

Optical manipulation of charge on the nanoscale is of fundamental importance to an array of6

proposed technologies, from selective photocatalysis to nanophotonics. Open plasmonic systems,7

where collective electron oscillations release energy and charge to their environments, offer a poten-8

tial means to this end as plasmons can rapidly decay into energetic electron-hole pairs; however,9

isolating this decay from other plasmon-environment interactions remains a challenge. Here we10

present an analytic theory of noble metal nanoparticles that quantitatively models plasmon decay11

into electron-hole pairs, demonstrates that this decay depends significantly on the nanoparticle’s12

dielectric environment, and disentangles this effect from competing decay pathways. Using our ap-13

proach to incorporate embedding material and substrate effects on plasmon-electron interaction, we14

show that predictions from the model agree with four separate experiments. Finally, examination15

of coupled nanoparticle-emitter systems further shows that the hybridized in-phase mode more effi-16

ciently decays to photons while the out-of-phase mode more efficiently decays to electron-hole pairs,17

offering a new strategy to tailor open plasmonic systems for charge manipulation.18
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Localized surface plasmon (LSP) resonances, the collective oscillations of conduction-band electrons in noble metal19

nanoparticles (MNPs), have a fundamental role in nanoscale optics and electronics1. These collective phenomena offer20

unique control of light1,2, heat3,4, and charge5,6 in nanoscale systems, and studies of their basic properties continue21

to promise new applications in a range of fields, from selective catalysis7 to quantum computing8. The intercon-22

version of LSPs to individual electronic excitations, so-called Landau damping9, has gained particular experimental23

interest5,10–13. Studies report changes in LSP spectra due to changes in particle environment, such as substrate or24

embedding material11–13, as potential signatures of enhanced interconversion rates, indicating that Landau damping25

depends on the MNP’s dielectric environment in analogy to Purcell enhancement of a fluorescent molecule’s radiative26

decay14. Still, disentangling Landau damping from other effects such as optical energy transfer15 presents significant27

experimental challenges and complicates the interpretation of results. A theory of LSP-electron interaction capable28

of incorporating environmental effects, from substrates to other optical emitters, is needed to guide experiments and29

offer a platform to optimize nanoparticle systems for electron-hole pair generation.30

Landau damping is known to increase with decreasing MNP size16–18 and is most significant at length scales31

where classical descriptions of LSPs require quantum-mechanical modification. Recent research on MNPs19–22, MNP32

aggregates23, and bulk metals24–27 has confirmed this result while emphasizing the importance of an accurate de-33

scription of the metal’s electronic structure, electron spill-out, and nonlocal dielectric effects. Meanwhile, a large34

body of research has taken quantum descriptions of small metal clusters and has worked to develop atomistic models35

of LSPs in larger clusters28–35. In most cases, however, MNPs are described in isolation, and the incorporation of36

environmental effects is often computationally intractable.37

In this paper, we present a quantitatively accurate, analytic theory of Landau damping in noble metals, accounting38

for optically active environments. We compare the theory to four experiments: the photofragmentation spectroscopy39

by Tiggesbäumker et al.36 on silver clusters in vacuum, the matrix deposition spectroscopies by Charlé et al.37 and40

Harbich et al.38 on silver clusters in argon, and the electron energy-loss spectroscopy (EELS) by Scholl et al.39 on41

silver nanospheres on 3 nm carbon substrates. After incorporating dielectric background and substrate effects, we42

demonstrate that the theory reproduces the observed LSP energies in all four experiments over decades of cluster sizes,43

from∼ 245, 000 atoms to 5 atoms, reconciling experiments previously thought to disagree28 and showing environmental44

effects’ role in determining quantum LSP properties. We conclude by generalizing the theory to predict the quantum-45

corrected energies of hybrid LSP-emitter systems relevant to studies of nanoparticle assemblies40, MNP-quantum dot46

systems41, and LSP-enhanced molecular spectroscopies42. Surprisingly, we find that unlike the radiative properties of47

LSP-emitter systems43, the hybridized out-of-phase LSP-emitter mode decays to electron-hole pairs most efficiently,48

and we suggest future experiments to measure this effect.49

To elucidate the mechanism by which LSPs disintegrate into electron-hole pairs, we first consider an isolated silver50

nanosphere. The inset of Fig. 1a depicts a sphere with radius a characterized by infinite frequency dielectric response51

ε1, modeling screening due to core electrons16,18,39, and plasma frequency ωp embedded in material with dielectric52

constant ε2. Both ε1 and ωp are estimated by fitting a frictionless, free-electron (Drude) model to optical frequency53

dielectric data45 for bulk silver46.54

In the SI46, we consider conduction electrons confined to the MNP by a potential U+(x) and show that their mean-55

field Coulomb interaction gives rise to a set of multipolar oscillators corresponding to particle-localized collective56



3

a.

b. 

c.

0

2

4

6

8

R
ad

iu
s 

(n
m

)
Energy (eV)

Free Space
On Carbon
Ref. 36
Ref. 39

10

3.2 4.2

3.0 4.0Energy (eV)

Exact
Model

Free Space

R
ad

iu
s 

(n
m

)

Energy (eV)

1

2

3

4

5

3.2 4.2

In Argon

Ref. 37
Ref. 38

Ref. 36

FIG. 1. Predictions and validations of the model. (a) The silver nanosphere’s (inset) absorption cross section is computed
with Mie theory (black curve) and compared to ~ω10 (red dashed line) for a = 10 nm and ε2 = 1, confirming the model’s
reproduction of classical results. (b) Comparison of the free space (ε2 = 1, red line) and argon embedded (ε2 = 1.744, green
line) LSP energy to photofragmentation spectroscopy in vacuum (white triangles, 1 standard deviation error bars)36 and
matrix deposition spectroscopies37,38 in argon (black circles with 1 standard deviation error bars and grey boxes). Quantitative
agreement between the theory and experiments shows that the theory effectively incorporates embedding dielectric effects. (c)
Comparison of the LSP energy to EELS on a carbon substrate (black circles, 2 standard deviation error bars)39 with data
from36 for reference. When the model is extended to incorporate the carbon substrate (blue curve, ε2 = 1, ε3 = 3), the predicted
renormalized LSP energies agree excellently with measurement.

election motion, so-called LSPs47. The system’s Hamilton is57

Hfree =
∑
i

[
p2
i

2me
+ U+(xi)

]
+
∑
`m

(
V`m

2
|p`m|2 +

ω2
`m

2V`m
|q`m|2

)
− e

2mec

∑
i

[pi ·A(xi) + A(xi) · pi] , (1)

where q`m and p`m are generalized LSP coordinates and momenta defined by the total conduction electron density’s58

projection onto the `,m multipole moments’ field within the nanosphere. When retardation effects across the MNP59

are neglected18, these projections oscillate with frequencies ω`m =
√
`ω2

p/(`ε1 + (`+ 1)ε2), and mode volumes V`m =60

[3/(`ε1 +(`+1)ε2)]Vs where Vs is the sphere’s volume. Eq. 1 also introduces the electron positions, xi, and momenta,61

pi, which couple to the collective motion through A(x), the LSP vector potential. It is this interaction that governs62

Landau damping.63

The validity of our estimates of ε1 and ωp can be assessed by comparing the model’s prediction for the LSP energy46
64

with that from Mie theory48, the exact solution to Maxwell’s equations for a dielectric sphere. This is done in Fig.65

1a, where the model’s predicted absorption resonance under z-polarized, plane-wave excitation (red dashed line) is66

compared to the Mie solution for an a = 10 nm silver nanosphere computed with complex-valued bulk dielectric data4567
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(black line). We see that the predicted resonance energy agrees with the exact solution, and that the excitation source68

selects only the ` = 1,m = 0 LSP mode, confirming that the MNP’s optical properties are dipole-dominated at small69

radii16,18,39.70

We now quantize Hfree and calculate the leading order effects of electron-plasmon interaction perturbatively. U+(x)71

is modeled as an infinite spherical well, and the resulting electron wave functions and energies are specified in Ref.16.72

While this approximation neglects complexity of silver’s band structure and electron spill-out at small sizes, an73

important effect in alkali metals22, we show below that this greatly simplified electronic structure is sufficient for74

describing environmental effects on the noble MNPs of interest here.75

To calculate the decay rate for LSPs to electron-hole pairs, we consider transitions between the initial and final76

Fock states |ϕi〉 = |110; 0e, 0h〉 and |ϕf 〉 = |010; 1e, 1h〉 of the form |N`m;ne, nh〉 with N`m plasmons in the `,m mode,77

and ne (nh) electrons (holes) with quantum numbers e (h). All omitted occupation numbers are equal to zero, and78

the restriction to ` = 1, m = 0 is made based on the discussion of Fig. 1a.79

Using Fermi’s golden rule with the interaction Hamiltonian in Eq. 1, we find the LSP decay rate to electron-hole80

pairs4681

Γfree(ω10, V10) =
64V10
3π3Vs

e2

~a

∫ 1

x0

dx

ν3

√
x3(x+ ν), (2)

where ν = ~ω10/εF , εF = 5.5 eV is the Fermi-energy of silver16, and x0 = max{0, 1 − ν}. Notice Γfree ∝ 1/a,82

demonstrating that Landau damping becomes more significant as MNP size decreases, in qualitative agreement with83

previous studies16–20. Γfree can also be used to approximate the second-order change in LSP energy, resulting in the84

renormalized energy ~ω∗10 ≈
√

(~ω10 + ~Γfree)2 − (~Γfree/2)2.85

In Fig. 1b, we compare ~ω∗10 to photofragmentation spectroscopy36 of silver clusters in free space (ε2 = 1, red line)86

and to matrix deposition spectroscopies37,38 of silver clusters embedded in argon (ε2 = 1.744, green line). We see87

that ~ω∗10 rapidly blueshifts as a decreases in excellent agreement with the datasets, validating our approximations88

and indicating that our theory effectively incorporates the embedding dielectric. While not obvious, we show in89

the SI46 that Γfree increases with the embedding dielectric constant, ε2. Thus, LSP decay to electron-hole pairs is90

faster for MNPs in high dielectric materials since the plasmon field is more confined to the particle’s interior and91

electron-plasmon interaction is therefore larger.92

In Fig. 1c, we further compare ~ω∗10 in free space (red line) to data obtained via EELS on a 3 nm carbon substrate39.93

The prediction only qualitatively agrees with the blueshift in the EELS data, generally overestimating the measured94

LSP energy. Although it is possible to modify ε1 and ωp to shift our estimate to lower energy, this would be at the95

expense of agreement with Mie theory (Fig. 1a). This check is critical since simultaneous agreement with Mie theory96

and measurement at small sizes shows that the model correctly transitions from quantum to classical electrodynamics.97

Thus, we instead extend the theory to include substrate effects, demonstrating that the resulting LSP energies agree98

with Mie theory and all four experiments36–39 simultaneously.99

The ` = 1,m = 0 LSP field outside the MNP is identical to that of a point dipole located at the sphere’s center46.100

This observation motivates using the method of images to incorporate the substrate. A point dipole with dipole101

moment d located above an infinite plane with dielectric constant ε3 induces an image dipole dI = −d(ε3−ε2)/(ε3+ε2),102

in the opposite direction for the experimentally relevant case ε3 > ε2
15. Although the substrates in experiments have103
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FIG. 2. (a) Substrate-dressed Landau damping relative to Γfree as a function of ε3. Suppression of the decay rate quickly
saturates as ε3 increases. Thus, the change in optical properties from free space (ε3 = 1) to any substrate (ε3 > 1) is large
compared to the change between low and high dielectric substrates. (b) Size dependence of the substrate-modified LSP linewidth
accounting for LSP-electron interaction and intrinsic substrate losses. The black dashed line shows Γfree, and if ε3 is complex
valued (blue curve), intrinsic substrate losses can cause an increase in linewidth, pushing the system into a regime where LSP
decay to electron-hole pairs and to near-field interaction compete.

finite thickness, the dominant image contribution is that of the infinite half-space, which we verify by accounting for104

the finite substrate in the SI46. Here, for simplicity, we model the substrate as infinite (Fig. 2a, inset), and we modify105

Hfree to include dI ,106

Hsub = Hfree − d10 ·EI −
e

2mec

∑
i

[pi ·AI(xi) + AI(xi) · pi] , (3)

where d10 is the LSP dipole moment and EI and AI are the image electric field and vector potential. Here it is evident107

that the substrate affects the MNP both through LSP coupling and through modification of the vector potential within108

the particle.109

The LSP coupling can be diagonalized via transformation leading to a substrate-dressed LSP with mode volume110

Ṽ10 = V10−2g and resonance frequency ω̃10 =
√
ω2
10(1− 2g/V10) where g = πa3(ε3−ε2)(ε1−ε2)2/6(ε3+ε2)(ε1+2ε2)2,111

and we assume d10 is parallel to the substrate. This indicates, in agreement with other studies13, that the LSP mode112

volume and energy both decrease due to electrostatic substrate effects.113

The remaining interaction term modifies the perturbation theory above. The LSP decay rate can be recalculated114

under the approximation that the image vector potential operator, AI(xi), can be treated as AI(〈xi〉). This ap-115

proximation is valid since fluctuations of the electron position will destructively interfere as the number of electrons116

increases. The perturbation theory gives117

Γsub(ω̃10, Ṽ10) = |1− α|2 64Ṽ10
3π3Vs

e2

~a

∫ 1

x̃0

dx

ν̃3

√
x3(x+ ν̃)

= |1− α|2Γfree(ω̃10, Ṽ10),

(4)

for the substrate-modified rate of LSP decay into electron-hole pairs. Here ν̃ = ~ω̃10/εF , x̃0 = max{0, 1 − ν̃}, and118

α = (ε1 − ε2)(ε3 − ε2)/24(ε3 + ε2).119

Γsub is compared to Γfree for varying ε3 in Fig. 2. Interestingly, in contrast to the ε2 dependence of Γfree, real-valued120
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ε3 > 1 universally suppresses decay (Fig. 2a) since AI is opposite A within the particle, screening the coupling to121

electrons. Only when ε3 is complex-valued (Fig. 2b), indicating that the substrate has intrinsic losses, can energy122

transfer result in an increase above the free space LSP linewidth, pushing the LSP into a regime where Landau123

damping and near-field energy transfer become competitive. We stress, however, that this is due to intrinsic loss in124

the substrate, not due to the enhancement of electron-hole pair generation, illustrating the difficulty in disentangling125

these processes.126

Using Eq. 4 we can calculate the quantum-corrected, substrate-dressed LSP energy as was done previously. This127

is plotted in Fig. 1c (blue curve) with ε3 = 3 for carbon, and we see that the modified resonance energies agree128

excellently with the EELS data39 where the free space calculation fails. Since the previous calculation is simply a129

special case (ε3 = ε2 = 1) of Eq. 4, we have presented a single theory that quantitatively agrees with classical130

electrodynamics and all four experiments36–39 over a wide range of particle sizes.131

Our theory explicitly models LSP-electron interaction and dielectric environment effects but neglects intrinsic losses132

in bulk silver45, ligand effects, and electron spill-out, while using a local dielectric function and a relatively simple133

approximation to the MNP electronic structure. This indicates that LSP-electron interaction dominates LSP loss134

at these sizes and that environmental effects play a much more significant role in determining quantum plasmon135

properties than previously thought39.136

Interestingly, in Fig. 1c, the EELS data appears to shift off the substrate-modified calculation and to the free137

space calculation for a ≤ 3 nm. Full-wave simulation of Maxwell’s equations46 explains this effect, showing that138

substrate-induced reductions in LSP energy are large for a > 3 nm but vanish for smaller particles. That this feature139

of the data can be qualitatively reproduced in simulations indicates that it is due to retardation and not a quantum140

effect.141

We now extend the theory to incorporate an optical emitter such as a quantum dot, fluorophore, substrate resonance,142

or second MNP to illustrate how LSP decay to electron-hole pairs is altered in more complex environments. As143

depicted in the inset of Fig. 3, we neglect the emitter’s electronic structure and model it as a point dipole oscillating144

at frequency ωem located a distance s from the MNP surface. Eq. 1 now becomes145

HLSP-em = Hfree +

(
Vem

2
p2em +

ω2
em

2Vem
q2em

)
− d10 ·Eem −

e

2mec

∑
i

[pi ·Aem(xi) + Aem(xi) · pi] , (5)

where pem and qem are the generalized emitter momentum and coordinate, and Eem and Aem are the emitter electric146

field and vector potential. The mode volume, Vem, is defined in connection to the emitter dipole moment, which is147

assumed to be dem = CVempemẑ, where C is a dimensionless constant that gives the results below general applicability.148

This Hamiltonian shows that, like the substrate, the emitter couples both to the LSP directly and to individual149

electrons through Aem.150

The direct LSP coupling can again be diagonalized through transformation. This results in two hybridized LSP-151

emitter normal modes with eigenfrequencies defined by152

ω2
± = ω2

em/10 cos2 θ + ω2
10/em sin2 θ ± 2gω10ωem√

V10Vem
sin θ cos θ, (6)
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FIG. 3. Evolution of the renormalized in-phase (left) and out-of-phase (right) normal modes of the coupled MNP-optical emitter
system (inset) as a function of a for 3 separation distances, s = 1, 5, and 10 nm. The in-phase mode tracks the uncoupled
LSP (left, black dashed line), and shifts to lower energy as the s decreases. Alternatively, the out-of-phase mode tracks the
uncoupled emitter (right, black dashed line) and shifts to higher energy as s decreases. Further, as the MNP radius decreases,
shifting of ~ω10 causes a rapid decoupling of the LSP and emitter, resulting in a rapid redshift of ~ω∗+.

and mode volumes153

V± = Vem/10

ω2
em/10

ω2
10/em

cos2 θ + Vem/10 sin2 θ ±
2gωem/10

ω10/em

√
Vem/10

V10/em
sin θ cos θ. (7)

Here tan(2θ) = 2gω10ωem/
√
V10Vem(ω2

em − ω2
10), and g = 2CV10Vem(ε1 − ε2)/

√
12π(a+ s)3.154

The rotation angle θ characterizes the degree of mixing between the LSP and emitter and is positive when ωem > ω10.155

In that case, the − and + modes correspond to the well-known in-phase and out-of-phase eigenmodes of a coupled156

dipole system43,49. At θ = 0◦, when ω10 and ωem are sufficiently detuned or the separation distance s is much larger157

than a, the LSP and emitter are essentially uncoupled and the − mode reduces to the LSP while the + mode reduces158

to the emitter. On the other hand, if ω10 and ωem are degenerate or s is very small, θ approaches 45◦ and the LSP159

and emitter are significantly mixed.160

This transformation modifies the second coupling term in Eq. 5, and both the in-phase (−) and out-of-phase (+)161

modes interact with electrons differently. Calculating these interaction terms, a perturbation theory can be carried162
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out for each mode, again using Aem(xi) ≈ Aem(〈xi〉). The resulting decay rates are163

Γ−(ω−, V−) =

∣∣∣∣∣ωem

ω10
cos θ −

√
16πVem

3V10

Ca3

(a+ s)3
sin θ

∣∣∣∣∣
2

Γfree(ω−, V−)

Γ+(ω+, V+) =

∣∣∣∣∣
√
V10
Vem

sin θ +

√
16π

3

ω10

ωem

Ca3

(a+ s)3
cos θ

∣∣∣∣∣
2

Γfree(ω+, V+).

(8)

Notice that the emitter vector potential destructively interferes with the decay in the in-phase configuration where164

A and Aem are misaligned within the particle but constructively interferes in the out-of-phase configuration where165

A and Aem are aligned within the particle. This implies that if the modes are mixed, the out-of-phase mode more166

efficiently decays to electronic excitations than the in-phase mode. This is in stark juxtaposition to the hybridized167

modes’ coupling to near-field energy transfer and far-field radiation, where the in-phase mode’s larger dipole moment168

makes it the more efficiently decaying hybrid resonance43.169

Eq. 8 can be used just as the decay rates previously to calculate the quantum-corrected eigenenergies, ~ω∗±. For the170

case where the emitter is another silver nanosphere with fixed radius (4 nm, ~ωem = 3.55 eV), we plot in Fig. 3 the171

eigenenergies as a function of a for three separation distances, s = 1, 5, and 10 nm, and we compare to the uncoupled172

(g = 0) energies (black dashed curves). We see that ~ω∗− qualitatively tracks the LSP and shifts to lower energy as s173

decreases, with a maximal shift when ω10 ∼ ωem. On the other hand, ~ω∗+ tracks ~ωem and shifts to higher energy as174

s decreases.175

Interestingly, as a decreases, the shift of the in-phase mode becomes severe enough that the LSP and emitter176

effectively decouple, and the out-of-phase mode rapidly collapses back to the uncoupled emitter energy, giving it177

a dramatically different a-dependence. This pronounced change highlights previously unexplored quantum effects178

on plasmon hybridization. Measurement of the hyrbridized LSP-emitter modes’ dependence on MNP size would179

support the prediction that the out-of-phase mode more effectively couples to electrons, suggesting new strategies to180

disentangle LSP decay pathways.181

I. CONCLUSION182

In this paper we have developed an analytic theory of noble metal LSPs in optically-active environments. By incor-183

porating dielectric environment effects on LSP-electron interaction, our theory agrees with Mie theory48, photofrag-184

mentation spectroscopy36, matrix deposition spectroscopies37,38, and EELS39 over orders-of-magnitude changes in size185

with only two parameters defined by bulk dielectric data45, indicating that environmental effects play a significant186

role in plasmonic Landau damping.187

Current work on optimizing plasmonic systems for charge manipulation often relies on indirect, spectral signals188

to elucidate nanoscale behavior. Experiments are in turn required to design systems which isolate Landau damping189

from other decay pathways such as near-field energy transfer and far-field radiation. Our approach disentangles LSP-190

electron and LSP-photon interactions by showing that the out-of-phase mode of a hybrid LSP-emitter system more191

strongly couples to electrons while the in-phase mode more strongly couples to photons. As a whole, this work shows192

that just as LSP radiative properties are strongly environmentally dependent, LSP decay to electron-hole pairs can193

be suppressed or enhanced by environmental factors. Our approach therefore provides an analytic platform to tailor194
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the optoelectronic properties of open plasmonic systems.195
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