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We probe the accuracy limit of ab initio calculations of carrier mobilities in semiconductors,
within the framework of the Boltzmann transport equation. By focusing on the paradigmatic
case of silicon, we show that fully predictive calculations of electron and hole mobilities require
many-body quasiparticle corrections to band structures and electron-phonon matrix elements, the
inclusion of spin-orbit coupling, and an extremely fine sampling of inelastic scattering processes in
momentum space. By considering all these factors we obtain excellent agreement with experiment,
and we identify the band effective masses as the most critical parameters to achieve predictive
accuracy. Our findings set a blueprint for future calculations of carrier mobilities, and pave the way
to engineering transport properties in semiconductors by design.

During the last decade, materials design guided by
first-principles calculations has emerged as a powerful
research strategy. Nowadays it is often possible to ac-
curately predict ground-state properties of new materi-
als in silico. This information can be used to screen for
promising new materials [1, 2]. At variance with ground-
state properties, the prediction and screening of materials
properties involving electronic excitations is still in its in-
fancy. For example charge and heat transport coefficients
are typically evaluated using a combination of ab ini-
tio and semi-empirical approaches [3–7]. The reasons for
this lag are that the evaluation of transport coefficients
is considerably more challenging than total energies, the
computational infrastructure is not yet fully developed,
and the lack of a clear set of reference data for validation
and verification [8].

In this work, we focus on phonon-limited carrier mo-
bilities in semiconductors. The theoretical framework for
calculating mobilities is well established, and is rooted in
the Boltzmann transport equation (BTE), as described
in Refs. [9–11]. The BTE is a semiclassical, quasipar-
ticle theory of electron transport, which can be rigor-
ously derived from a many-body quantum-field theoretic
framework by neglecting two-particle correlations [12].
The key ingredients are the electronic band structures,
the phonon dispersion relations, and the electron-phonon
matrix elements. The calculations of these quantities
have reached maturity [13], therefore there should be
no fundamental obstacles towards predicting mobilities.
However, already for the most studied semiconductor,
silicon, one finds that (i) calculations of carrier mobil-
ities are scarce, (ii) there is considerable scatter in the
calculated data, and (iii) reproducing measured mobili-
ties remains a challenge. For example, Refs. 14–17 cal-
culate intrinsic electron mobilities at room temperature
µe = 1550, 1750, 1860, and 1970 cm2/Vs, respectively,
while experiments are in the range 1300-1450 cm2/Vs
[18–20].

Motivated by these considerations, here we set to clar-

ify the accuracy limit and the predictive power of ab ini-
tio mobility calculations based on the BTE. We show
that in order to correctly reproduce experimental data we
need to take into account GW quasiparticle corrections
to the band structures and the electron-phonon matrix
elements, to include the spin-orbit splitting of the va-
lence bands, and to properly converge the integrals over
the Brillouin-zone. We also find that accurate band effec-
tive masses are absolutely critical to reproduce measured
mobilities. By considering all these aspects, we succeed
in reproducing measured data with high accuracy, thus
establishing unambiguously the predictive power of the
ab initio BTE.

In a semiconductor the steady-state electric current J
is related to the driving electric field E via the mobility
tensors as: Jα = e (ne µe,αβ + nh µh,αβ)Eβ , where Greek
indices denote Cartesian coordinates. In this expression
µe,αβ , ne and µh,αβ , nh are the mobility and particle den-
sity of electrons and holes, respectively. Within Boltz-
mann’s transport formalism [9] the current density is ex-
pressed as Jα = −eΩ−1

∑
n Ω−1BZ

∫
dk fnk vnk,α, where Ω

and ΩBZ are the volume of the crystalline unit cell and
the first Brillouin zone, respectively. The occupation fac-
tor fnk plays the role of a statistical distribution function,
and reduces to the Fermi-Dirac distribution f0nk in the
absence of the electric field. The band velocity is given
by vnk,α = ~−1∂εnk/∂kα, where εnk is the single-particle
electron eigenvalue for the state |nk〉.

Using these definitions, the electron mobility is ob-
tained via the derivative of the current with respect to
the electric field: µe,αβ = −

∑
n∈CB

∫
dk vnk,α∂Eβ

fnk
/∑

n∈CB

∫
dk f0nk. Here the summations are restricted to

the conduction bands, and ∂Eβ
is short for ∂/∂Eβ . An

analogous expression holds for holes. From this expres-
sion we see that in order to calculate mobilities we need to
evaluate ∂Eβ

fnk, that is the linear response of the distri-
bution function fnk to the electric field E. This quantity
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can be computed starting from the BTE [9]:

(−e)E · 1

~
∂fnk
∂k

=
2π

~
∑
mν

∫
dq

ΩBZ
|gmnν(k,q)|2

×
{

(1− fnk)fmk+qδ(εnk − εmk+q + ~ωqν)(1 + nqν)

+(1− fnk)fmk+qδ(εnk − εmk+q − ~ωqν)nqν

−fnk(1− fmk+q)δ(εnk − εmk+q − ~ωqν)(1 + nqν)

−fnk(1− fmk+q)δ(εnk − εmk+q + ~ωqν)nqν
}
. (1)

The left-hand side of Eq. (1) represents the collisionless
term of Boltzmann’s equation for a uniform and con-
stant electric field, in the absence of temperature gradi-
ents and magnetic fields; the right-hand side represents
the modification of the distribution function arising from
electron-phonon scattering in and out of the state |nk〉,
via emission or absorption of phonons with frequency
ωqν , wavevector q, and branch index ν [10]. nqν is
the Bose-Einstein distribution function. The matrix ele-
ments gmnν(k,q) in Eq. (1) are the probability amplitude
for scattering from an initial electronic state |nk〉 into a
final state |mk+ q〉 via a phonon |qν〉, as obtained from
density-functional perturbation theory [13, 21]. By tak-
ing derivatives of Eq. (1) with respect to E we obtain an
explicit expression for the variation ∂Eβ

fnk:

∂Eβ
fnk =e

∂f0nk
∂εnk

vnk,βτ
0
nk+

2πτ0nk
~

∑
mν

∫
dq

ΩBZ
|gmnν(k,q)|2

×
[
(1 + nqν − f0nk)δ(εnk − εmk+q + ~ωqν)

+(nqν + f0nk)δ(εnk − εmk+q − ~ωqν)
]
∂Eβ

fmk+q, (2)

having defined the relaxation time:

1

τ0nk
=

2π

~
∑
mν

∫
dq

ΩBZ
|gmnν(k,q)|2

×
[
(1− f0mk+q + nqν)δ(εnk − εmk+q − ~ωqν)

+ (f0mk+q + nqν)δ(εnk − εmk+q + ~ωqν)
]
. (3)

Equation (2) is the linearized BTE and is valid under the
assumption that the energy gained by a carrier acceler-
ated by the electric field over the mean free path is much
smaller than the thermal energy, eEβvnk,βτ

0
nk � kBT ;

this assumption is verified in most semiconductors under
standard operating conditions. This equation needs to be
solved self-consistently for ∂Eβ

fnk, and is also referred to
as the iterative BTE (IBTE). A simpler approach con-
sists in neglecting the integral on the r.h.s. of Eq. (2).
In this case we obtain the variation ∂Eβ

fnk without solv-
ing iteratively. It can be shown that the relaxation time
τ0nk is related to the imaginary part of the Fan-Migdal
electron self-energy [13] via 1/τ0nk = 2 Im ΣFM

nk . Based
on this analogy, in the following we refer to the approx-
imation of neglecting the integral in Eq. (2) as the ‘self-
energy relaxation time approximation’ (SERTA). In this
approximation the mobility takes the simple form:

µe,αβ =
−e
ne Ω

∑
n∈CB

∫
dk

ΩBZ

∂f0nk
∂εnk

vnk,α vnk,β τ
0
nk. (4)

We perform calculations within density-functional theory
(DFT), planewaves, and pseudopotentials using the EPW

code [22] of the Quantum ESPRESSO distribution [23], in
conjunction with the wannier90 library [24]. This ap-
proach employs a generalized Wannier-Fourier interpola-
tion technique [25] in order to obtain electron eigenvalues,
phonon eigenfrequencies, and electron-phonon matrix el-
ements on dense Brillouin zone grids by means of maxi-
mally localized Wannier functions [26]. A fine sampling
of the Brillouin zone is required because, at finite temper-
ature, the Fermi level lies within the band gap, therefore
we need to sample scattering processes taking place in the
tails of the Fermi-Dirac distribution. In our calculations
the Fermi level is determined in such a way that the net
charge density at a given temperature, ne − nh, equals
the doping level (ne = nh for an intrinsic material). We
now analyze in turn the key ingredients when calculating
mobilities. We consider the paradigmatic case of silicon,
for which extensive experimental data are available.

Brillouin-zone sampling. We find that in order to ob-
tain reliable intrinsic mobilities it is necessary to employ
extremely fine quasi-random grids, with a densified sam-
pling around the band extrema [27]. Convergence of mo-
bility values to within 0.5% is reached when using grids
with 85K inequivalent k-points and 200K inequivalent q-
points [white dot in Supplemental Fig. S1(a) [27]]. Sub-
sequent calculations in this article are performed using
these grids. In Supplemental Fig. S1(b) we compare cal-
culations of the intrinsic mobility of silicon within the
SERTA and the IBTE approaches. We find that the it-
erative solution of Eq. (2) leads to converged values which
are 6% higher than the SERTA result for electrons, and
1% lower for holes. Since the IBTE is drastically more
expensive because it requires homogeneous and commen-
surate grids [15, 16], in the following discussion we focus
on SERTA calculations. We use a finite broadening of
5 meV to evaluate the Dirac delta function in Eq. (3).
The sensitivity of the results to the broadening parame-
ter is analyzed in the Supplemental Material [27].

Exchange and correlation. In order to investigate the
effect of the DFT exchange and correlation we perform
calculations within both the local density approximation
(LDA) [28, 29] and the generalized gradient approxima-
tion of Perdew, Burke, and Ernzerhof (PBE) [30], using
scalar-relativistic pseudopotentials [31]. Figure 1 shows
that the intrinsic mobilities at 300 K differ by 16% be-
tween LDA and PBE for electrons, and by 3% for holes.
Closer inspection shows that these differences arise pri-
marily from the optimized lattice parameters obtained
with these functionals (a = 5.40 Å in LDA and 5.47 Å in
PBE). In fact, when using the experimental lattice pa-
rameter (a = 5.43 Å) the deviation between LDA and
PBE mobilities reduces to 0.4% for electrons and 2% for
holes (Fig. 1). These results indicate that the choice of
exchange and correlation is not critical so long as accu-
rate lattice parameters are employed.
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FIG. 1. Intrinsic electron and hole mobilities of silicon at
300 K, calculated using various levels of theory. The com-
plexity of the theory increases as we move down the sequence
of bars. The range of measured mobilities is indicated in light
grey vertical bars. Our most accurate theoretical predictions
are µe = 1366 cm2/Vs and µh = 658 cm2/Vs; by replac-
ing the GW hole effective mass with the experimental value
we obtain µe = 502 cm2/Vs, in much better agreement with
experiment. Key: SOC, spin-orbit coupling; EXP, experi-
mental lattice parameter; GW, calculations including quasi-
particle corrections; SCR, electron-phonon coupling with cor-
rected screening; IBTE, iterative Boltzmann transport equa-
tion; RE, change of effective mass due to electron-phonon
renormalization; FIT, band structures calculated from the
measured effective masses.

Spin-orbit coupling. Spin-orbit interactions in silicon
are very weak [32], therefore relativistic effects are usu-
ally neglected. However, here we find that spin-orbit
coupling is important for predictive calculations, yield-
ing hole mobilities 9% higher than non-relativistic calcu-
lations (Fig. 1). This effect can be understood by con-
sidering the band structures in Fig. 2(b). The spin-orbit
interaction splits the six-fold degenerate states at the top
of the valence bands, leading to the formation of two
doubly-degenerate light-hole and heavy-hole bands, and
one doubly-degenerate split-off hole band. As a result
the effective mass of the light hole decreases (see Sup-
plemental Table S1 [27]), leading to a higher mobility.
On the other hand, Fig. 2(a) shows that the conduc-
tion band bottom is relatively unaffected by spin-orbit
coupling, and correspondingly the effect on the electron
mobility is less pronounced (2.7%).

Many-body quasiparticle corrections. Given the sensi-

0.64ΓX 0.85ΓX X

0.0

0.1

0.2

E
ne

rg
y

(e
V

)

No SOC
SOC
SOC+GW
fit

(a)

Γ 0.2ΓX Γ 0.2ΓL Γ 0.2ΓK

−0.4

−0.3

−0.2

−0.1

0.0

E
ne

rg
y

(e
V

)

(b)

FIG. 2. (a) Conduction bands of silicon calculated within
scalar-relativistic PBE (grey), fully-relativistic PBE (blue),
the GW method (orange) and parabolic fit with measured
effective masses (dashed). The zero of the energy axis is set
to the conduction band minimum for clarity. (b) Valence
bands of silicon, calculated within the same approximations
as for (a), and shown using the same color code. The zero of
the energy axis is set to the valence band top. In all panels
the dots indicate explicit GW calculations carried out using
uniform grids containing 12×12×12 to 20×20×20 points. The
GW bands in orange are obtained via Wannier interpolation.

tivity of the calculated mobilities to the band extrema, we
investigate the effect of many-body correlations within
the GW quasiparticle approximation. To obtain quasi-
particle energies we use the Yambo code [33]; the values
calculated on a 12×12×12 uniform grid are then inter-
polated using the EPW code. Figure 2 shows the modifi-
cation to the band extrema resulting from quasiparticle
corrections. In the case of the valence bands, quasipar-
ticle corrections increase the mass of the light holes (see
Supplemental Table S1 [27]); as a result the hole mobility
decreases by 3%, as shown in Fig. 1. The opposite effect
is observed for the conduction bands where the electron
mobility is increased by 5%.

Corrections to the DFT screening. Another source
of error in the DFT calculations of carrier mobilities
is the overscreening of the electron-phonon matrix el-
ements gmnν(k,q) associated with the DFT band gap
problem [13]. In fact, in the case of silicon DFT yields a
static dielectric constant ε0DFT = 12.89, which is higher
than the measured value ε0exp = 11.94 [20]. In order to
overcome this issue it is necessary to modify the screening
in the calculation of phonon dispersion relations. Since
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FIG. 3. (a) Comparison between calculated and measured
intrinsic (low carrier concentration ≤ 1015 cm−3) electron
and hole mobilities of silicon, as a function of temperature.
The calculations are performed using our best computational
setup. The blue lines are for holes and the orange line is
for electrons. In the case of holes we show both our best
ab initio calculations (solid blue), and the results obtained
by setting the hole effective mass to the experimental value
(dashed blue). The shading is a guide to the eye. Experi-
ments are from [34] (4), [35] (♦), [36] (I), [37] (◦), and [19]
(�). (b) Comparison between calculated and measured elec-
tron and hole mobilities of silicon at 300 K, as a function of
carrier concentration, using the same color code as in (a). Ex-
perimental data are from [37] (◦). The impurity scattering is
included via the model of Brooks and Herring with the Long-
Norton correction [38, 39] as described in the Supplemental
Material [27].

this is computationally prohibitive, here we take a sim-
pler approach and renormalize the matrix elements as
follows: g′mnν(k,q) = gmnν(k,q) [εDFT(|q|)/εexp(|q|)].
Here εexp is meant to be the most accurate description
of the screening that we can afford, and we are neglect-
ing local-field effects which should yield an error on the
order of a few percent [40]. For practical purposes we
replace the dielectric functions by an analytic expres-
sion [41], where the only input parameter is the head
of the dielectric matrix. The validity of this procedure is
demonstrated in Supplemental Fig. S3 [27] using explicit
calculations in the random-phase approximation. This
correction to the matrix elements leads to a decrease of
the electron and hole mobilities by 8.8% and 12.4%, re-
spectively, as shown in Fig. 1.

Thermal expansion and electron-phonon renormaliza-
tion. We computed the effect of thermal lattice ex-
pansion on the DFT eigenenergies using the thermo pw

code [42] within the quasi-harmonic approximation and
concluded that this effect is negligible, see Supplemen-
tal Fig. S6 [27]. We also determined the electron-phonon
renormalization of the effective masses using data from
Ref. 43. This effect increases the masses by ∼3%, and
results into a decrease of the mobilities by ∼5%.

After considering all the effects discussed so far, and
after accounting for the corrections to the SERTA re-
sults arising from the solution of the complete IBTE,
our most accurate theoretical mobilities at 300 K are
µe = 1366 cm2/Vs and µh = 658 cm2/Vs. These val-
ues are to be compared to the measured drift mobilities
µexp
e = 1350-1450 cm2/Vs [36, 37, 39, 44] and µexp

h = 445-
510 cm2/Vs [36, 37, 44, 45] (Fig. 1). From the compar-
ison with experiment we see that by pushing the the-
ory to its limits we can obtain electron mobilities in
very good agreement with experiment. On the contrary,
the hole mobility are still approximately 30% above the
measured range. This discrepancy can be traced back
to the underestimation of the [100] heavy hole effective
masses within the GW approximation. In fact, by repeat-
ing the calculation using the experimental hole effective
mass instead of the GW mass, we obtain a hole mobil-
ity µ′h = 502 cm2/Vs, this time in very good agreement
with experiment as shown in Fig. 1. This result leads us
to conclude that the effective mass plays an absolutely
critical role in mobility calculations. Our finding can be
understood by considering that the mobility varies with
the effective mass as µ = (m∗)−p with p being a coeffi-
cient between 1 and 2.5 [46–48]; as a result a 20% error
in the effective mass leads to an error in the mobility of
up to 60%. This finding highlights the critical role of ac-
curate calculations of quasiparticle band structures, and
raises the question on whether the standard GW method
and pseudopotential calculations (see Supplemental Ta-
ble S2) are sufficient for delivering predictive mobilities.

Using the best possible computational setup we can
now compare our calculations with experiment over a
range of temperatures and doping levels. Figure 3(a)
shows the intrinsic electron and hole mobilities of sili-
con between 100 K and 500 K. In the case of the hole
mobilities we show both our best ab initio results (solid
line), as well as those re-calculated using the experimen-
tal effective masses (dashed line). Overall, the agreement
between our calculations and experiment is very good
throughout the entire temperature range. Figure 3(b)
shows a comparison between calculated and measured
mobilities at 300 K, as a function of carrier concentra-
tion between 1015 and 1019 cm−3. In this case, in addi-
tion to the ab initio electron-phonon scattering, we used
the semi-empirical model of Brooks and Herring with the
Long-Norton correction [38, 39] to account for impurity
scattering (see Supplemental Material for details [27]).
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Also in this case we find very good agreement with exper-
iment, although the contribution of impurity scattering
is evaluated semi-empirically.

In conclusion, we pushed the accuracy of transport cal-
culations within the BTE formalism to its limits, and we
demonstrated that this approach can deliver predictive
accuracy for a prototypical semiconductor. Our findings
raise two important questions for future work on trans-
port in semiconductors: (i) the present formalism yields
results which fall within the experimental uncertainty. In
order to enable further progress in this area it will be im-
portant to produce a high-quality experimental data from
single-crystal samples. (ii) An unexpected challenge that
we faced is to perform accurate ab initio calculations of
effective masses. Going forward it will be important to
establish whether the GW method and pseudopotential
calculations can provide effective masses with the accu-
racy required for predictive mobility calculations. Mean-
while, the present work opens the way to predictive cal-
culations of mobilities and lays the groundwork for the
ab initio design of semiconductor devices.

Note added. After submission of this work, a related
calculation for Si was reported, where the authors found
a significant increase in Si hole mobility with SOC and
no effect from SOC on the electron mobility in line with
our results [49].
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