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We find a series of topological phase transitions of increasing order, beyond the more standard
second-order phase transition in a one-dimensional topological superconductor. The jumps in the
order of the transitions depend on the range of the pairing interaction, which is parametrized by
an algebraic decay with exponent α. Remarkably, in the limit α = 1 the order of the topological
transition becomes infinite. We compute the critical exponents for the series of higher-order tran-
sitions in exact form and find that they fulfill the hyperscaling relation. We also study the critical
behaviour at the boundary of the system and discuss potential experimental platforms of magnetic
atoms in superconductors.

1. Introduction.— Quantum phase transitions (QPTs)
are one of the cornerstones in modern condensed matter
physics [1, 2]. These are phase transitions where the vari-
ation of a physical parameter (coupling constant) drives
a transition from one state of matter with a certain order
(phase) to another one with different physical properties.
These transitions stem from the quantum fluctuations in
the energy spectrum of the system, due to the Heisenberg
uncertainty principle. Ideally, they may occur in the ab-
sence of thermal fluctuations, at zero temperature. Fa-
mous examples of QPTs comprise the superfluid to Mott-
insulator transition [3, 4], the insulator to superconductor
transition in cuprates [5], metal-insulator transitions in
disordered two-dimensional (2D) electron gases [6], etc.
Standard QPTs fit into the Landau theory of phase

transitions [7], where different phases can be discrimi-
nated by the symmetry of an order parameter. Remark-
ably, there also exist non-standard phase transitions in
topological systems [8]. They go beyond the standard
classification of quantum phases, since they can neither
be described by a local order parameter nor by the break-
ing of a symmetry at the phase-transition point. On the
contrary, they are characterized by a global order pa-
rameter, which is a topological invariant of the system
[9–14].
A general criterion to classify phase transitions was put

forward initially by Ehrenfest, who associated the degree
(order) of the phase transition to the lowest derivative
of the free energy that is discontinuous at the transition
point [15]. Later on, phase transitions were identified
that fell outside the Ehrenfest classification, like the log-
arithmic singularity in the specific heat of the Onsager
solution to the Ising model in 2D [16]. This led to a sim-
plified binary classification of phase transitions into first-
order and continuous phase transitions [1, 2]. Though
the Ehrenfest criterion is not fully general, it can still be
adapted [17, 18] to define the order of the phase transi-
tion when non-analyticities in the free energy are encoun-
tered. This will be the case for the series of topological
phase transitions found in our work.
Examples of higher-order phase transitions do not

abound. One instance is found in the large-N approxi-
mation of lattice QCD in 2D, that happens to be of third
order [19]. Another example appears in the exact solu-
tion of the 2D Ising model coupled to quantum gravity,
where the transition is also third order [20]. Recently,
also a phase transition of infinite order was found in a
long-range spin model [21].
When it comes to topological phases of matter [22],

only a few examples of first- [23, 24], second- [24, 25],
third- [24, 26, 27] and fourth-order [24] topological phase
transitions have been found and, to the best of our knowl-
edge, never higher than that. Therefore, the question of
whether higher-order topological phase transitions can
appear in symmetry-protected topological systems, and
of whether the bulk and boundary may behave differ-
ently, remains open.
We focus our study on a 1D model of topological su-

perconductors exemplified by the Kitaev chain [25]. An
interesting extension of this model includes hopping and
pairing interactions that are long range [28]. The study
of the topological phases of this long-range Kitaev chain
(LRKC) has revealed a very rich structure, including the
existence of topological massive Dirac edge states when
the pairing is long-range enough [29]. When the model
is 2D, the propagating Majorana modes get enhanced
by long-range hopping and pairing [30]. This opens new
perspectives for their experimental realization.
In this paper, we show that the LRKC displays a stair-

case of higher-order topological phase transitions as we
vary the long-range decaying exponent α of the pair-
ing interaction. Remarkably, when α → 1 the order
of the phase transition becomes infinite. By consider-
ing the ground-state energy, we determine the order of
the phase transition, the corresponding critical expo-
nents and check that they satisfy the hyperscaling re-
lation. Moreover, using correlation functions of the bulk
and boundary combined with a thermodynamic approach
[24, 27], we also analyse the critical behaviour at the
boundary, where a transition from a system with Ma-
jorana Zero Modes (MZMs) to non-local massive Dirac
fermions occurs. Remarkably, in the LRKC the bulk and
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boundary topological phase transition decouple, and the
universality found in Ref. [24], where the phase transi-
tions in the bulk was always one order higher than at the
edges, no longer holds.
2. The Model.— The Hamiltonian of the LRKC [28, 29]
with N sites reads

Ĥ =− µ

N
∑

j=1

(

c†jcj −
1

2

)

− t

N−1
∑

j=1

(

c†jcj+1 + c†j+1cj

)

+

+∆
∑

j 6=l

1

|j − l|α
(

cjcl + c†l c
†
j

)

, (1)

where cj (c†j) is the fermionic annihilation (creation) op-
erator for site j, µ the chemical potential, t the hopping
parameter, ∆ the pairing amplitude and α the parameter
characterising the range of the interaction. Long-range
hopping terms can be also considered, but they do not
provide novel topological phases [29]. Thus, we may con-
sider purely short-range hopping without loss of general-
ity. The spectrum of the LRKC with periodic boundary
conditions is given by [28, 29]

Ek = ±
√

ǫ2k + 4∆2f2
α(k), fα(k) =

N−1
∑

l=1

sin(kl)

|l|α , (2)

where ǫk = −µ − 2t cos(k). For α → ∞, this model
has a well-defined limit to the short-range Kitaev chain
(SRKC) [25], which is known to display a topological
phase for |µ/t| < 2, characterized by the presence of Ma-
jorana zero modes (MZMs) at the edges. For |µ/t| > 2,
a trivial phase is found instead.
The LRKC exhibits even more exotic behaviour than

its short-range counterpart [28, 29, 31]. The long-range
terms give rise to the function fα(k) defined in Eq. (2),
which is discontinuous at k = 0 for α < 1, while its
derivative is discontinuous for α < 2. Therefore, the
physics of the model drastically depends on α.
For α > 2, the LRKC behaves similarly to the SRKC,

i.e. there are MZMs in the topological phase. For α < 1,
the physics in the topological phase changes drastically,
in that the two Majorana modes at the edge merge into a
non-local Dirac fermion that acquires mass provided that
µ/t < 2. Finally, for 1 < α < 2, the topological phase
diagram becomes more intricate, and the winding num-
ber becomes ill-defined, as discussed in Ref. [29]. The
critical behaviour at µ/t = −2 in the bulk changes with
α, while the one at µ/t = 2 remains the same. Contrar-
ily to the bulk, the boundary of the LRKC behaves still
in the same way as the SRKC for 3/2 < α < 2. How-
ever, for α < 3/2 one finds, in addition to the MZMs for
|µ/t| < 2, non-local massive edge states for µ/t < −2
[29, 35]. A disorder analysis of the sector 1 < α < 2
(see ”The Edge States for α < 3/2” in the Sup. Mat.
[35]) shows the robustness of these massive edge states
to static disorder.
In order to understand the nature of the topological

phase transitions at µ/t = ±2 within the different topo-

logical sectors, we investigate their thermodynamic prop-
erties using correlation functions. As it turns out, the
order of the phase transition at µ/t = 2 does not change
with α, but we find extraordinary behaviour for the or-
der of the phase transition at µ/t = −2, in the form of
a staircase of higher-order topological phase transitions
towards α → 1. Before we show these results, let us first
introduce our method.
3. Thermodynamic Analysis.— To classify the phase
transitions of the LRKC, we use an adapted Ehrenfest
classification [15, 17, 18], in which one considers the
grand potential Ω and assigns the order of the phase
transition according to the derivative for which the grand
potential has a divergence or a discontinuity. The grand
potential can subsequently be decomposed into a bulk
term Nω1, which scales linearly with the system size,
and a residual term ω0, which contains the finite-size and
boundary effects, i.e. Ω = Nω1 + ω0. To obtain these
contributions, we consider the derivative of the grand po-
tential Ω w.r.t. µ, such that we can relate it directly to
the correlation functions

∂Ω

∂µ
=

∂

∂µ

(

− 1

β
logTr

[

e−βĤ
]

)

=

〈

∂Ĥ

∂µ

〉

, (3)

where 〈Â〉 := Tr[Âe−βĤ ]/Tr[e−βĤ ]. This thermody-
namic analysis is especially well-suited for symmetry-
protected topological systems both at zero [27] and fi-
nite temperatures [24, 32]. To explicitly find ω1 and ω0,
we consider an infinitely long and periodic chain at zero
temperature with grand-potential density

ω =
Ωp

N
= −

∫ π

−π

dkEk,

where p stands for periodic. This integral is bounded
because the spectrum is finite for α > 1, and diverges
at most as 1/k1−α for α < 1. Hence, ω is finite for all
α and does not depend on the system size in this limit.
Similarly, the on-site correlation function 〈c†rcr〉 does not
depend on the system size whenN is large enough. Thus,
we may add and subtract ∂Ωp/∂µ to Eq. (3), to find

∂Ω

∂µ
=

∂Ωp

∂µ
+

(

∂Ω

∂µ
− ∂Ωp

∂µ

)

. (4)

Using Eqs. (1), (3), and (4), we then obtain

∂Ω

∂µ
= N〈c†rcr〉+

∑

j

(

〈c†jcj〉 − 〈c†rcr〉
)

,

where 〈c†rcr〉 are the on-site correlation functions for the

infinitely long periodic chain and 〈c†jcj〉 are calculated for
the finite chain. Hence, we can read off

∂ω1

∂µ
= 〈c†rcr〉, (5)

∂ω0

∂µ
=

∑

j

(

〈c†jcj〉 − 〈c†rcr〉
)

:=
∑

j

Λ(j). (6)
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(a) (b)

FIG. 1. (a) Second derivative of the bulk thermodynamic potential, obtained from Eq. (5) for the LRKC in the µ/t-α plane.
The dashed line indicates the value of α below which our numerical results are not accurate anymore. (b) Staircase of higher-
order topological phase transition at µ/t = −2, indicating how the order of the transition increases as one approaches α = 1.

The extensive bulk term ∂ω1/∂µ is simply given by the
on-site correlation functions for the infinitely long peri-
odic chain and the residual term ∂ω0/∂µ is the sum of the
difference Λ(j) between the on-site correlation functions
in the periodic and in the finite chain. As a consequence,
the residual contribution ω0 contains all the subleading
terms in N , and therefore includes log(N), constant, and
1/N terms, to name just a few. For large system sizes,
one can only consider the log and the constant term and
neglect all other subleading contributions.

For the SRKC, it suffices to only consider the constant
term [24, 27]. This leads to a first-order phase transi-
tion at the boundaries [24], which is due to the appear-
ance/disappearance of the Majorana edge states. The
second-order phase transition in the bulk is due to a gap
closing at the critical points µ/t = ±2. Let us now fo-
cus on the LRKC, where higher-order topological phase
transitions will arise.

4. Higher-Order Bulk Phase Transitions.— We anal-
yse the zero-temperature behaviour of the bulk grand-
potential density defined in Eq. (5) as a function of the
long-range exponent α and the chemical potential µ. Al-
though we concentrate here on the zero-temperature be-
haviour, the method itself is generic and could be applied
to finite temperatures. The results are shown in Fig. 1.
There is a second-order phase transition at µ/t = 2 sep-
arating the topological and trivial phases for every value
of α [see Fig. 1(a)], precisely as it is the case for the
SRKC. Note the behaviour below the dashed line around
α ≈ 0.3 near µ/t = 2, where the transition line makes a
turn and does not go all the way towards α = 0. This
is merely an artifact due to numerical limitations, since
the correlations become too long-ranged, and one needs
very large system sizes to suppress this effect.

On the other hand, for µ/t = −2 the behaviour of
the phase transition changes drastically, depending on
the value of α, and further analytical calculations are
needed. Since the non-analytical behaviour of the bulk
term in the grand-potential density ω1 is given by the
k = 0 mode, we make the separation ω1 = F +G, where
F is the integral around k = 0, containing all the non-
analyticities, and G is the integral over the remaining
part of the Brillouin zone. In this way, we can consider
only F to describe the non-analytical part of ω1, i.e. the
information about the order of the phase transition. To
calculate F , one can expand the spectrum Ek in Eq. (2)
around k = 0 and integrate it for k ∈ (0, ε), where ε
is sufficiently small for the expansion in k to be valid.
From this expansion, we can also extract the critical ex-
ponent α̃ defined by Ω ∝ m2−α̃, the dynamical exponent
z defined by Ek(m = 0) ∝ kz and the critical exponent
ν defined by Ek=0(m) ∝ mzν [1], where m = µ/t + 2
denotes the distance from the critical point. The leading
term for α > 2 (valid also for the SRKC) casts the form

F (m,α > 2) :=

∫ ε

0

dk
√

m2 + k2 ∝ m2 log |m|.

This function is divergent in its second derivative at
m = 0 for all α > 2, hence we find a second-order phase
transition. For 1 < α < 2, the leading term is given by

F (m, 1 < α < 2) ≈
∫ ε

0

dk
√

m2 + k2(α−1) (7)

∝ Γ

(

− α

2(α− 1)

)

Γ

(

2α− 1

2(α− 1)

)

|m| α

α−1 ,

where the last line is not defined if one of the gamma
functions diverge, which happens when α = n/(n − 1)
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where n ∈ N. For α = 2n/(2n− 1), one finds, instead of
Eq. (7), the relation F ∝ mn log(|m|) , which is divergent
in its n-th derivative at m = 0. For α = (2n−1)/(2n−2),
there will be a discontinuity in the 2n − 1-th derivative
at m = 0, because in that case F ∝ |m|2n−1. Hence, for
any α = n/(n−1), we find a n-th order phase transition.
If α is in between these values, then the power of |m|
in Eq. (7) is a non-integer value, meaning that one can
differentiate it until its power is negative and it becomes
divergent at |m| = 0. For example, if 3/2 < α < 2/1
the exponent of |m| lies between 2 and 3, which means
that the third derivative is divergent at m = 0. For
4/3 < α < 3/2, the exponent of |m| lies between 3 and 4,
which means that the fourth derivative is divergent, and
so forth.

Therefore, we find a staircase behaviour such that the
order of the topological phase transition increases step-
wise at the points α = n/(n − 1) upon lowering α from
α = 2 to α = 1 [see Fig. 1(b)]. This implies that by tun-
ing the exponent α we may address qualitatively differ-
ent thermodynamic behaviour by inducing higher-order
topological phase transitions.

In addition, the critical exponents that follow from
this analysis read α̃ = (α − 2)/(α − 1), z = α − 1 and
ν = 1/(α − 1). This is consistent with the hyperscaling
relation 2 − α̃ = ν(d + z), where d denotes the dimen-
sionality of the model (d = 1 in our case) [33, 34].

A remarkable effect occurs in the limit α = 1, as the
topological phase transition becomes of infinite order. In-
stead, for α < 1, there is no longer a phase transition
at µ/t = −2 because the long-range pairing causes the
whole chain to be correlated, thus gapping the edge mode
everywhere. This can also be clarified from Eq. (7), where

the integrand can be expanded as
√
m2 + k2(α−1) =

k−(1−α) + k1−αm2/2 +O(k1−α(k2(1−α)m2)2), such that
F (m,α < 1) exhibits no non-analyticities. Thus, α = 1
constitute a critical-end point in the α − µ/t quantum
phase diagram. This behaviour is consistent with the
Dirac Sector found in Ref. [29].

5. Boundary Phase Transition.— The separation be-
tween the bulk and residual contribution to the grand
potential allows us to investigate the behaviour of both
independently. Using Eq. (6), we calculate numerically
∂ω0/∂µ in the α − µ/t plane and find the result given
in Fig. 2 (a) for N = 200. Below the dashed line, the
results are not accurate due to numerical limitations, as
was the case for the bulk. Along the line µ/t = 2, there is
a clear indication of a first-order phase transition for all
values of α (dark-blue line). However, for µ/t = −2 there
is only a clear indication of a first-order phase transition
down to α = 3/2 (bright-yellow line), below which the
boundaries of the phase transition blur out. The reason
for this is that for short-range models, when the system
is large enough (although finite), the features character-
izing the phase transition are so sharp, that one can con-
fidently draw conclusions that would - strictly speaking -
only hold for infinite systems. However, when the model
becomes long-range, this is no longer the case (see the

FIG. 2. First derivative of the boundary thermodynamic po-
tential as a function of µ/t, given by Eq. (6). The dashed
line indicates the value of α below which our numerical re-
sults are not accurate anymore. Although the topological
phase transition at µ/t = 2 remains of first order in the entire
regime of α, in the thermodynamic limit the phase transition
at µ/t = −2 terminates at a quantum critical point located at
α = 1. However, numerical limitations prevent us from going
below α = 3/2.

end-to-end correlations analysis in the Sup. Mat. [35]).

6. Conclusions and Outlook.— We discovered a staircase
of higher-order topological phase transitions in a long-
range Kitaev chain. We have shown that the order of the
topological phase transition increases step-wise with the
long-range decaying exponent α of the pairing interac-
tion. In the limit α = 1, we remarkably found an infinite-
order phase transition. By separating the bulk from the
residual contribution in the grand potential and perform-
ing a thermodynamic analysis, we have established not
only the order of the topological phase transitions, but
also the corresponding critical exponents and checked
that they satisfy the hyperscaling relation. Moreover,
we have also studied the critical behaviour at the bound-
ary, where there is a transition from a topological phase
with MZMs to another topological phase with non-local
massive Dirac edge modes [29].

For the long-range Kitaev chain, the correlation func-
tions decay algebraically at long distances, and expo-
nentially at short distances [28, 31]. Hence, the system
is critical, and the correlation length can no longer be
straightforwardly defined [31]. Although the algebraic
term in the correlation functions (which gives the quasi-
long-range order) is present for all α, it becomes impor-
tant around the region where the winding number be-
comes ill-defined. Therefore, both the criticality and the
ill-defined winding number arise due to the relevance of
long-range effects at small α. We would like to empha-
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sise that our results do not depend on the definition of
the correlation length in any way, nor on the correlation
length itself, in contrast to scaling theories, where the
scaling of the correlation length is used to determine the
critical exponents. This is one of the main advantages of
our approach, which allows us to describe even critical
systems.

We determine the critical exponents by analysing the
behaviour of the grand-potential density at the critical
point, and characterise thus the topological phase transi-
tion. Although the results are applied here at zero tem-
perature, the formalism is generic and may also be used
at finite temperatures [24]. In this case, one should be
able to connect the central charge c obtained from the
entanglement entropy [28] to the central charge found
from the heat capacity CV at very small temperatures,
since CV ∝ cT within a first order expansion in T [36].
This would allow for an independent verification of the
anomalous behaviour of the central charge at µ/t = −2
predicted in Ref. [28].

Spin and fermionic topological systems with long-range
interactions have recently attracted much attention [28–
31, 37–48]. In particular, our long-range model is moti-
vated by current experiments of 1D arrays of magnetic
atoms deposited on top of conventional s-wave super-
conductor substrates [49–51]. These arrays of magnetic
impurities form subgap states known as Shiba states [52–
54]. The particular wavefunction of these states have
power-law tails that lead to hopping and pairing ampli-
tudes that decay algebraically with the distance. For

3D superconducting substrates (for instance lead as in
Ref. [49] and [51]) the decay goes as 1/r, whereas for 2D
substrates (for example 2D transition metals dichalco-
genides) the decay goes as 1/

√
r. This long-range be-

haviour of Shiba impurities has already been observed in
recent experiments [55]. Apart from the power-law de-
cay, there is an exponential factor that depends on the
coherence length of the superconductor. However, when
the length of the chain is small with respect to this co-
herence length [56], the dominant decay is algebraic, and
p-wave Hamiltonians with intrinsic long-range pairing are
induced [56–60]. A possible way to tune the decaying ex-
ponents, such that the hopping and pairing amplitudes
decay differently could be achieved through Floquet driv-
ing fields as proposed in Ref. [61]. Thus, the staircase of
higher-order topological phase transitions, found in our
paper, could be experimentally detected.
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