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The complete set of the Maxwell’s and hydrodynamic equations for the chiral electrons in Weyl
semimetals is presented. The formulation of the Euler equation takes into account the explicit
breaking of the Galilean invariance by the ion lattice. It is shown that the Chern–Simons (or
Bardeen–Zumino) contributions should be added to the electric current and charge densities in the
Maxwell’s equations that provide the information on the separation of Weyl nodes in energy and
momentum. On the other hand, these topological contributions do not directly affect the Euler
equation and the energy conservation relation for the electron fluid. By making use of the proposed
consistent hydrodynamic framework, we show that the Chern–Simons contributions strongly modify
the dispersion relations of collective modes in Weyl semimetals. This is reflected, in particular, in
the existence of distinctive anomalous Hall waves which are sustained by the local anomalous Hall
currents.

Introduction.— The formulation of relativistic hydro-
dynamics was proposed more than half a century ago
(see, for example, Ref.1). It is widely used in various
fields of physics, ranging from nuclear physics to astro-
physics and cosmology. In interacting systems close to
equilibrium, the hydrodynamic equations describe the
space-time evolution of conserved quantities (e.g., energy,
momentum, electric charge, etc.) in the limit of long
wavelengths and large time scales. Recently, relativistic
hydrodynamics was also generalized to plasmas made of
chiral fermions2–5, where the chiral charge is included as
an additional degree of freedom, whose conservation is
violated only by the chiral anomaly.

The potential relevance of hydrodynamics for the elec-
tron transport in solids is an old idea too6. However, it
can be realized only when the electron-electron scattering
rate is much larger than the rate of electron scattering on
phonons and impurities. Experimentally, the hydrody-
namic transport of relativistic-like electrons was recently
observed in graphene7,8, which is a two dimensional Dirac
material.

It is reasonable to expect that the hydrodynamics is
also relevant for the electron fluid in Dirac and Weyl
semimetals. As in graphene, their low-energy quasipar-
ticles are relativistic-like fermions, although propagating
in the three, rather than two dimensions. Moreover, the
time-reversal (TR) symmetry and/or the parity inver-
sion (PI) are broken in Weyl semimetals. As a result,
the Weyl nodes come in pairs of opposite chirality that
are separated in momentum and/or energy. The corre-
sponding distances are quantified by the chiral shift b

and parameter b0, respectively. (For recent reviews of
Weyl semimetals, see Refs.9–11.)

The experimental confirmation of the hydrodynamic
regime in the Weyl semimetal tungsten diphosphide
(WP2) was recently reported in Ref.12, where the depen-
dence of the electrical resistivity on the channel width

provides a compelling evidence for the hydrodynamic
transport. This interpretation is further supported by
the observation of the Wiedemann–Franz law violation
with the lowest value of the Lorenz number ever reported.
Previously, the equations of relativistic hydrodynamics

were used to describe the negative magnetoresistance13,14

and the thermoelectric transport14 in Weyl semimetals.
However, the corresponding approach lacks an important
information regarding the separation of the Weyl nodes
in energy and momentum. The situation is similar to the
conventional chiral kinetic theory15,16, in which this in-
formation is also missing. In addition, such a kinetic the-
ory suffers from an acute problem of the local nonconser-
vation of the electric charge when both electromagnetic
and strain-induced pseudoelectromagnetic fields are ap-
plied to the system17. We resolved this problem in Ref.18

by amending the electric charge and current densities
with the Chern–Simons contributions19,20. The latter
are also known as the Bardeen–Zumino terms connected
with the consistent anomaly in high energy physics21. In
this Letter, by using the consistent chiral kinetic theory18

in the relaxation time approximation, we derive the hy-
drodynamic equations and study the implications of the
Chern–Simons contributions on the properties of the col-
lective excitations of the electron fluid in Weyl semimet-
als.
Origin of the Chern–Simons contributions.— In order

to demonstrate the need for the Chern–Simons contribu-
tions in the hydrodynamic theory of the electrons in Weyl
materials, let us consider a two-band model of a Weyl
semimetal defined by the following Hamiltonian22,23:

Hlatt = t0 sin (akz) +
∑

i=x,y,z

σidi(k), (1)

where the first term t0 sin (akz) is responsible for break-
ing the PI symmetry, σ = (σx, σy , σz) are the Pauli
matrices, and d(k) are periodic functions of the quasi-
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momentum k. A simple Weyl semimetal with a bro-
ken TR symmetry is defined by dx = Λ sin (akx), dy =
Λ sin (aky), and dz = t0+ t1+

∑

i=x,y,z cos (aki), where a
denotes the lattice spacing, while Λ, t0, and t1 are mate-
rial dependent parameters. In this model, the opposite-
chirality Weyl nodes are separated by 2ebz/(c~) in mo-
mentum and by 2eb0 in energy, where b0 = t0 sin (abz)/e,
bz = c~ arccos [− (t0 + 2t1) /t1]/(ea), and e is the abso-
lute value of the electron charge.
The topological features of Weyl semimetals are cap-

tured by a nontrivial Berry curvature24, i.e.,

Ωi =
∑

l,m=x,y,z

ǫilm
4~|d|3

(

d ·
[

(∂kl
d)× (∂km

d)
])

. (2)

This result is valid in the whole Brillouin zone and, unlike
its simplified monopole analogs in linearized low-energy
models, it captures the nontrivial dependence on b0 and
b. By making use of the chiral kinetic theory approach25,
in the limit of zero temperature (T = 0) and at the
neutrality point (with the vanishing electric and chiral
chemical potentials µ = µ5 = 0), we find the following
topological charge and current densities determined by
the Berry curvature:

ρCS = −e2

c

∫

d3k

(2π)3
(B ·Ω) = − e3

2π2~2c2
(b ·B) , (3)

jCS = −e2
∫

d3k

(2π)3

{

(v ·Ω)B

c
+ [E×Ω]

}

= − e3

2π2~2c
b0B+

e3

2π2~2c
[b×E], (4)

where E and B are the electric and magnetic fields, re-
spectively, and v = ~

−1 [at0 cos (akz)ẑ+ ∂k|d|]. (Here, ẑ
denotes the unit vector in the +z direction.) The topo-
logical nature of these terms as well as the absence of the
“matter” contributions is evident from the lack of the
distribution function in Eqs. (3) and (4). The Chern–
Simons contributions ρCS and jCS play an essential role
in the consistent chiral kinetic theory18. As is easy to
check, they originate primarily from the filled electron
states deep below the Fermi surface. This explains why
such contributions to the charge and current densities
are usually missing in linearized semiclassical low-energy
models, such as the chiral kinetic theory.
In this connection, we should also emphasize that the

expressions for ρCS and jCS are proportional to a wind-
ing number of the mapping of a two-dimensional section
of the Brillouin zone onto the unit sphere26. This fact
accounts for the topological nature of ρCS and jCS and
explains their robustness.
Hydrodynamic equations.— In order to derive the hy-

drodynamic equations for the chiral electron fluid in
Weyl semimetals, we utilize the consistent chiral kinetic
theory18 in the relaxation time approximation. By fol-
lowing the standard approach27,28, the Euler equation
and the energy conservation relation are obtained by
multiplying the corresponding kinetic equation with the
quasiparticle momentum and energy, respectively, and

integrating over the momentum (for details, see the Sup-
plemental Material29). As expected, many terms of the
resulting hydrodynamic equations agree with those in
Refs.2–4,13,14. In order to highlight the distinctive fea-
tures of our framework, here we present the abbreviated
version of the equations in which the terms with spatial
derivatives are omitted, i.e.,

1

vF
∂t

(

ǫ+ P

vF
u+ σ(ǫ,B)B

)

= −en

(

E+
1

c
[u×B]

)

+
σ(B)(E ·B)

3v2F
u− ǫ+ P

τv2F
u+O(∇r) (5)

and

∂tǫ = −E ·
(

enu− σ(B)B
)

+O(∇r). (6)

(The full expressions including also the vorticity effects,
such as the chiral vortical effect30 and the terms with
magnetovorticity coupling31, are given in the Supplemen-
tal Material29.) In these equations, ǫ and P are the elec-
tron energy density and pressure, respectively, n is the
electron number density, u is the electron fluid velocity, τ
is the relaxation time, and vF is the Fermi velocity. The
effects of the chiral anomaly including the chiral mag-
netic effect current32–34, as well as the energy-momentum
flow are captured in the hydrodynamic equations by
the terms ∝ σ(B)B and ∝ σ(ǫ,B)B, respectively, with
σ(B) = e2µ5/(2π

2
~
2c) and σ(ǫ,B) = −eµµ5/(2π

2
~
2vF c).

The coefficients σ(B) and σ(ǫ,B) agree with those obtained
in Refs.25,35,36 in the “no-drag” frame36–38.
We would like to point out that the Chern–Simons

terms ρCS and jCS do not directly contribute to the hy-
drodynamic parts of the charge and current densities in
the Euler equation (5) and the energy conservation re-
lation (6). Conceptually, this is the consequence of the
specific topological origin of ρCS and jCS associated with
the filled electron states deep below the Fermi surface. In
this connection, we note that Eqs. (5) and (6) originate
only from the states near the Fermi surface (see, also,
the Supplemental Material29). Indeed, this follows from
the fact that the corresponding chiral kinetic equations
contain the derivatives from the Fermi–Dirac distribution
functions that are insensitive to the details of the energy
spectrum at the bottom of the valence band. Therefore,
it is sufficient to use the linearized theory for the “mat-
ter” parts of the consistent hydrodynamics.
One of the key features of the Euler equation (5) is the

dissipative term proportional to u/τ on its right-hand
side, which was also introduced phenomenologically in
Ref.13. In the hydrodynamic regime, when the electron-
electron scattering is primarily responsible for the for-
mation of the electron fluid, such a term captures the
dominant dissipative effects due to electron scattering
on phonons and impurities6 and explicitly breaks the
Galilean invariance. From a physics viewpoint, this is
connected with the existence of the preferred frame in
which the ion lattice of a solid is at rest. In the absence
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of electromagnetic fields, this term ensures that u = 0 in
the global equilibrium state of the electron fluid.
It should be emphasized that the hydrodynamic equa-

tions (5) and (6) lead to the conventional Ohm’s law and
the Joule’s heating. Indeed, in the presence of an exter-
nal electric field, the steady state of the electron fluid is
reached when the right-hand side of the Euler equation
(5) vanishes, i.e., at uave = −enτv2FE/(ǫ+P ). The latter
is analogous to the average velocity in the Drude’s model
and reproduces the Ohm’s law when the definition for
the electric current J = −enuave is taken into account.
By substituting uave into Eq. (6), one also reproduces the
correct local form of the Joule’s heating.
Maxwell’s equations.— Since the electron fluid carries

a nonzero charge, the hydrodynamic set of equations is
incomplete without the Maxwell’s equations, i.e.,

εe∇ · E = 4π(ρ+ ρb), (7)

∇×E = −1

c

∂B

∂t
, (8)

1

µm

∇×B =
4π

c
J+ εe

1

c

∂E

∂t
, (9)

together with ∇ ·B = 0. Here εe and µm denote the elec-
tric permittivity and magnetic permeability, respectively,
which originate from the nonitinerant electrons. We note
that the complete electric charge density in the Gauss’s
law (7) must include the contribution of the electrons in
the inner shells and the ions of the lattice ρb. The latter
ensures that the Weyl material is electrically neutral in
equilibrium, i.e., ρ+ ρb = 0.
The Maxwell’s equations should be supplemented by

the expressions for the total electron charge and current
densities that include both the hydrodynamic contribu-
tions and the Chern–Simons terms, i.e.,

ρ = −en+
(B · u)σ(B)

3v2F
+ ρCS, (10)

J = −enu+ σ(B)B+ jCS. (11)

In order to be consistent with Eqs. (7) and (9), these elec-
tric charge and current densities should satisfy the usual
continuity relation ∂tρ+∇·J = 0. (Note that the Chern–
Simons contributions by themselves satisfy the continuity
relation.)
Because of the chiral nature of the electron fluid in

Weyl materials, the complete set of hydrodynamic equa-
tions should also include the anomalous continuity rela-
tion for the chiral charge,

∂tρ5 +∇ · J5 = − e3

2π2~2c
(E ·B) , (12)

where the chiral charge and current densities are

ρ5 = −en5 +
(B · u)σ(B)

5

3v2F
, (13)

J5 = −en5u+ σ
(B)
5 B. (14)

Here σ
(B)
5 = e2µ/(2π2

~
2c) is the anomalous transport co-

efficient responsible for the chiral separation effect39–41.
The complete set of the hydrodynamic and Maxwell’s

equations presented above is one of the key results of this
Letter. Unlike the previous formulations of such equa-
tions in the literature, it incorporates several distinctive
features of the chiral electron fluid in Weyl semimet-
als: (i) the Chern–Simons contributions affecting the
Maxwell’s equations, (ii) the broken Galilean invariance
due to the ion lattice and the electron scattering on
phonons/impurities.
It is interesting to explore specific observable predic-

tions of the proposed framework. One of them is the un-
usual spectrum of collective modes in Weyl semimetals.
A comprehensive study of such modes will be presented
elsewhere. Here, in order to support the general claim
and to illuminate the vital role of the Chern–Simons con-
tributions, we will consider only a few specific modes that
propagate transverse to the direction of a static back-
ground magnetic field B0 ‖ ẑ.
Transverse collective excitations.— In the state of lo-

cal equilibrium, the local chemical potentials µ and µ5

deviate from their values µ0 and µ5,0 in global equilib-
rium. The latter state is characterized by the vanishing
electric current density20,23,42

J0 =

(

σ(B) − e3

2π2~2c
b0

)

B0 = 0 (15)

and by the condition of electric neutrality

−en0 + ρCS + ρb = 0. (16)

Equation (15) is satisfied by setting µ5,0 = eb0. Enforcing
Eq. (16) fixes the value of µ0, which becomes a function
of temperature, the external magnetic field B0, the chiral
shift b, and the energy separation b0.
In the study of collective modes, the deviations of the

local thermodynamic parameters from their equilibrium
values are small. Then, the use of linearized hydro-
dynamic equations is sufficient. They are obtained by
looking for a solution in the form of plane waves, i.e.,
δµ(r) = δµ e−iωt+ikr together with similar expressions
for other oscillating variables (see Sec. II in the Supple-
mental Material29). Using these equations, we analyze
the spectrum of transverse (i.e., k ⊥ B0) collective exci-
tations in Weyl semimetals.
By solving the characteristic equation at n0 = n5,0 =

0, we find the dissipative magnetoacoustic waves with the
dispersion relations given by

ωs,± = − i

2τ
± i

2τ

√

1− 4

3
τ2v2Fk

2
⊥ +

8τ2v2F k
2
⊥σ

(ǫ,u)B2
0

3(ǫ+ P )
.

(17)
Most importantly, there are also collective waves that are
strongly affected by the chiral shift b. One of such modes
is realized when the wave vector k is parallel to the chiral
shift (i.e., k ‖ b ⊥ B0 and b = b⊥). The corresponding
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collective excitation has the following dispersion relation
linear in k⊥:

ωtAHW =
c|k⊥|

√

3v3F~
3B0

√
µm

√

4πe2T 2b2⊥ + 3εev3F ~
3B2

0

+O(k2⊥). (18)

As we show below, the propagation of such a mode in
Weyl semimetals is sustained by local currents associated
with the anomalous Hall effect (AHE). Therefore, we call
it the transverse anomalous Hall wave (tAHW). (We note
that the longitudinal anomalous Hall waves also exist and
their study will be reported elsewhere.)
To clarify the physical origin of the tAHW, it is instruc-

tive to present the relevant hydrodynamic and Maxwell’s
equations. By setting µ0 = µ5,0 = 0 and b ⊥ B0, we
arrive at

4ǫω

T
δT − k⊥

(

ǫ+ P − 2B2
0σ

(ǫ,u)
)

δu⊥ = 0, (19)

k⊥
T

δT − i+ ωτ

v2F τ
δu⊥ +

5ck2⊥B0σ
(ǫ,u)

ω(ǫ+ P )
δẼ⊥ = 0, (20)

T 2ω

3v3F~
δµ5 − i

e2B0

2π2c
δE‖ = 0, (21)

(

ω2 − c2k2⊥
εeµm

)

δẼ⊥ − 2ie3ωb⊥
πcεe~2

δE‖ = 0, (22)

(

ω2 − c2k2⊥
εeµm

)

δE‖ +
2i e2ω

πcεe~2

(

B0δµ5 + eb⊥δẼ⊥

)

= 0,

(23)

where subscripts ‖ and ⊥ denote the vector components

parallel and perpendicular to B0. In addition, δẼ⊥ de-
notes the component of the oscillating electric field per-
pendicular to both B0 and b. The first two equations
originate from the energy conservation relation and the
Euler equation, respectively. The third one is the anoma-
lous continuity relation for the chiral charge and the last
two equations are the Maxwell’s equations. In the deriva-
tion, we also used the Faraday’s law δB = (c/ω)[k× δE]
and took into account that the only oscillating variables
in the tAHW are δµ5, δT , δu⊥, δE‖, and δẼ⊥.
The tAHW is a rather unusual mode that relies on the

dynamical electromagnetism and the Chern–Simons cur-
rents in the chiral electron fluid. Its unique nature is clear
from the modified Maxwell’s equations (22) and (23), in
which the AHE mixes the transverse and longitudinal
components of the oscillating electric field. (Note that
such a mixing occurs even in the absence of an external
magnetic field.) Because of the presence of the magnetic
field B0, the oscillations of the electric fields, in turn,
drive the local oscillations of the chiral charge, temper-
ature, and the fluid velocity. In essence, therefore, the
tAHW is a collective excitation that is strongly affected
by the topological AHE currents in Weyl semimetals.
The representative dispersion relation of the tAHW

for several values of the chemical potential µ0 is shown
in Fig. 1. Because of a finite relaxation time τ , the fre-
quencies generically get nonzero imaginary parts. While

μ0 0
μ0 5 meV
μ0 10 meV
μ0 20 meV

-2 -1 0 1 2

0

2

4

6

8

k /K0

Re[ωtAHW

Ω0

FIG. 1. (Color online) The real part of the tAHW frequency
for several values of µ0. The values of the parameters are
T0 = 10 K, B0 = 10−2 T, b = b⊥ = 0.3 × π~c/(ea), µ5,0 = 0,
a = 25.5 × 10−8 cm−1, and τ = 10−12 s43. The frequency
and the wave vector are given in units of Ω0 = 10−6vFπ/a ≈

1.84 GHz and K0 = 10−6π/a ≈ 12.3 cm−1, respectively.

this is always the case for the magnetoacoustic waves, the
tAHW at the neutrality point µ0 = µ5,0 = 0 is not af-
fected by the dissipation effects encoded in τ . By taking
into account that the propagation of the tAHW is ac-
companied by oscillations of the electron fluid, this fact
is quite amazing.

From Fig. 1, we see that the linear dispersion rela-
tion of the tAHW is transformed into a quadratic one
at nonzero values of µ0. In addition, the frequency of
the wave obtains a small but nonzero imaginary part,
i.e., the tAHW becomes dissipative. Let us note that, at
small enough values of the wave vector, the real part of
the tAHW vanishes and the mode becomes completely
diffusive at µ0 6= 0.

Weyl semimetals with multiple pairs of Weyl nodes.—

So far, we discussed only the simplest model of a Weyl
semimetal with a broken TR symmetry and a single pair
of Weyl nodes. Most Weyl materials, however, have mul-
tiple pairs of Weyl nodes. Moreover, some of them have
a broken PI, but intact TR symmetry (see, e.g., Ref.11).
When the TR symmetry is present, the total number of
Weyl nodes is a multiple of four and the sum of all chi-
ral shifts vanishes

∑

n b
(n) = 0 (here sum runs over all

pairs of Weyl nodes). If this is the case, the net sum of
all Chern–Simons contributions, which are linear in the
chiral shifts b(n), should vanish too. Then, all distinctive
features stemming from a nonzero b will also disappear.
Of course, this does not apply to Weyl semimetals, in
which both the PI and TR symmetries are broken. The
hydrodynamic properties of such materials should be sim-
ilar to those with only a broken TR symmetry, albeit with
the chiral shift replaced by beff ≡ ∑

n b
(n) 6= 0.

Experimental setup.— We would like to note that the
existence of the tAHW and other collective modes can be
tested experimentally in Weyl materials with a broken
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TR symmetry. Similarly to usual metals44, an experi-
mental setup requires measuring the transmission ampli-
tude of an electromagnetic wave through a Weyl crystal
as a function of an applied magnetic field or as a function
of the frequency at a fixed field. Because of the interfer-
ence of standing waves inside the sample, the resulting
signal should oscillate with the magnetic field. The ef-
fects of the chiral shift can be studied by changing the
orientation of the crystal and/or magnetic field.
The promising materials for studying the effects of

the Chern–Simons terms in the hydrodynamic regime
might be magnetic Heusler compounds with a broken TR
symmetry45,46. Moreover, such Weyl semimetals have
only one pair of well-separatedWeyl nodes near the Fermi
level. One might also use antiferromagnetic half-Heusler
compounds, which are predicted to be Weyl semimetals
in an applied magnetic field47–49.
Conclusion.— In this Letter, we formulated a consis-

tent hydrodynamic framework for the chiral electron fluid
in Weyl semimetals. It systematically incorporates the
Chern–Simons contributions, the vorticity effects, and
takes into account the breaking of the Galilean invariance
by the ion lattice. As argued, the topological Chern–
Simons terms affect the electron motion in the hydrody-
namic regime only indirectly via the Maxwell’s equations.
Nevertheless, they lead to observable effects that are sen-
sitive to the energy and momentum separations between
the Weyl nodes.
By making use of the proposed hydrodynamic the-

ory, we studied the transverse (with respect to the back-
ground magnetic field B0) collective excitations in Weyl
materials. In addition to the magnetoacoustic waves

(which are not modified by the chiral shift b at the neu-
trality point), a class of modes that are significantly al-
tered by the Chern–Simons terms was found. As a strik-
ing example, we mentioned a rather unusual transverse
anomalous Hall wave obtained at k ‖ b. At the neu-
trality point, the latter is a gapless mode with a linear
dispersion relation that remains dissipationless even at
finite values of the relaxation time. Most interestingly,
the AHE currents play the key role in the physics of the
tAHW. At nonzero values of the electric charge density,
the frequency of the tAHW becomes quadratic in the
wave vector and acquires a small imaginary part.
Our study in this Letter was limited to the case of

transverse collective excitations. This was sufficient to
illustrate the potential importance of the topological
Chern–Simons terms. Nevertheless, it would be inter-
esting to investigate the spectrum of collective modes in
the most general case by using the consistent hydrody-
namic theory proposed here. Such a study is underway
and will be reported elsewhere.
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