Perovskite ThTaN\(_3\): A large-thermopower topological crystalline insulator
Myung-Chul Jung, Kwan-Woo Lee, and Warren E. Pickett
Phys. Rev. B 97, 121104 — Published 8 March 2018
DOI: 10.1103/PhysRevB.97.121104
Perovskite ThTaN$_3$: a Large Thermopower Topological Crystalline Insulator

Myung-Chul Jung1, Kwan-Woo Lee1,2,*, and Warren E. Pickett3

1 Department of Applied Physics, Graduate School, Korea University, Sejong 30019, Korea
2 Division of Display and Semiconductor Physics, Korea University, Sejong 30019, Korea
3 Department of Physics, University of California, Davis, California 95616, USA

ThTaN$_3$, a rare cubic perovskite nitride semiconductor, has been studied using ab initio methods. Spin-orbit coupling (SOC) results in band inversion and a band gap of 150 meV at the zone center. In spite of trivial Z_2 indices, two pairs of spin-polarized surface bands cross the gap near the zone center, indicating that this system is a topological crystalline insulator with the mirror Chern number of $|C_m| = 2$ protected by the mirror and C_4 rotational symmetries. Additionally, SOC doubles the Seebeck coefficient, leading to a maximum of $\sim 400 \mu V/K$ at 150 K for carrier-doping levels of several $10^{17}/cm^3$. ThTaN$_3$ combines excellent bulk thermopower with parallel conduction through topological surface states that may point toward new possibilities for platforms for engineering devices with larger figures of merit.

PACS numbers:

I. INTRODUCTION

After the discovery of time-reversal Z_2 topological insulators (TIs),1 Fu proposed another type of TI protected by crystal symmetries such as mirror or rotational symmetry.2 This class is called the topological crystalline insulator (TCI), expected to display exotic quantum phenomena including topological superconductivity.3 Through model calculations in three-dimensional systems, Fu suggested both the n-fold rotation C_n ($n=4,6$) and time-reversal symmetries could produce TCI, while Alexandradinata et al. further proposed that n-fold rotation and reflection C_{nv} symmetries of $n=3,4,6$ may lead to TCI without help of the time-reversal symmetry.4,5 In contrast to ordinary TIs, need for spin-orbit coupling (SOC) is not a requirement for a TCI, but many prospective TCI materials suggested by first principles calculations require SOC to invert band characters, as in ThTaN$_3$ investigated here. However, SOC will affect the final gap size, so heavy atoms may still be more favorable as in conventional TIs.

The combination of large bulk thermopower and gapless TI boundary states represents a new frontier in topological materials. In finite samples the conductivity provided by (topological) surface states impacts the resulting thermopower, as discussed by Xu et al.6,7 The surface conductance leads to an anomalous Seebeck effect that can be tuned by engineering the size and shape of the sample. The first TCI3s were proposed in IV-VI semiconductors of a simple rocksalt structure with mirror symmetry,8,9 such as SnTe, PbTe, PbSe, SnS, and SnSe, which had been known as good thermoelectric materials.10,11 Soon after these theoretical predictions, the topological character of these compounds was observed,$^{12–14}$ specifically, a double Dirac-cone structure through (spin) angle-resolved photoemission spectroscopy (ARPES).

In contrast to the ordinary Z_2 index class of TIs showing an odd number of Dirac points in a surface state, TCI3s have an even number of Dirac points.8 Moreover, scanning tunneling microscopy and ARPES studies showed massive Dirac cones induced by breaking the symmetry in these TCIs, suggesting a possibility of engineering the Dirac band gap.$^{15–17}$ Their two-dimensional monolayer cousins are also suggested to support TCI phases.18,19 It has been suggested that the rocksalt structure PbPo shows both TCI and ferroelectric instability.20 In additional to the rocksalt compounds, TCI phases have been theoretically predicted in pyrochlore oxides,21 antiperovskite compounds,22 the orthorhombic perovskite SrIrO$_3$,23 and full-Heusler compounds.24 However, exotic physical properties of TCIs have not been established due to the lack of the combination of both theoretical predictions and experimental realization.

In this paper we investigate topological and thermoelectric properties of the time-reversal symmetric cubic perovskite nitride ThTaN$_3$ possessing both the 4-fold rotation and mirror symmetries utilized by Fu,2 but now using first principles approaches. Nitride perovskites are quite rare compared to the oxides26 and with different properties, including that itinerant hole or electron dop-

![FIG. 1: (Color online) (a) Crystal structure of ThTaN$_3$, plotting using the VESTA program.25 (b) bulk and (001) surface Brillouin zones (BZs) with high symmetry points. The \pm symbols represent the party of all occupied bands of ThTaN$_3$ at each time-reversal invariant momentum (TRIM).](image-url)
ing is expected to be much easier in the nitride due to the smaller electronegativity and larger polarizability of N relative to O. The cubic perovskite insulator ThTaN$_3$, displayed in Fig. 1(a), was obtained using solid state synthesis methods by Brese and DiSalvo, but characterization has been limited. Theoretical calculations have confirmed semiconducting character and stability of the cubic phase. The results we present indicate that perovskite ThTaN$_3$ is not only a TCI but also displays highly favorable thermoelectric properties.

The organization of this paper is as follows. The theoretical methods are presented in Sec. II. Sec. III contains the main results on the electronic structure, the TI characteristics, and the carrier density and temperature dependence of the thermopower. In Sec. IV we provide a brief summary.

II. THEORETICAL APPROACH

The experimental diffraction data indicate the cubic perovskite structure, and density functional calculations obtain positive elastic constants for the cubic structure. Our calculations, done using the experimental lattice parameter $a = 4.02\,\text{Å}$, which is close to our optimized value of 4.06Å, were performed using the accurate all-electron full-potential code Wien2k. Selected results were confirmed with another all-electron full-potential code FPLO. The Perdew-Burke-Ernzerhof generalized gradient approximation (GGA) was used as the exchange-correlation functional. SOC has been included in the results we present except where noted. The Brillouin zone was sampled with a uniform fine k-mesh of $21 \times 21 \times 21$ to check the narrow gap nature carefully. In Wien2k, the basis was determined by $R_{\text{MT}} K_{\text{max}} = 7$ and augmented atomic radii in a.u.: Th 2.4, Ta 2.0, and N 1.7. For FPLO the default basis functions for the constituent atoms were used. The second variation procedure is used to include spin-orbit coupling effects in Wien2k. About 1 Ry width of conduction bands is kept for the second diagonalization, giving nearly perfect convergence of the SOC calculation.

To investigate for topological character, our calculated band structure and eigenfunctions were fit using the WANNIERTOOLS code with an initial basis of N 2p, Ta 5d, Th 6d and 5f orbitals, resulting in an excellent fit in the range -7 eV to 4 eV relative to the Fermi level E_F (see Fig. 2(a)). From these results, the surface states were calculated through the Green function approach implemented in the WANNIERTOOLS code. The hybrid Wannier charge center is also provided by the Z2PACK code.

Thermoelectric properties were studied using the BOLTZTRAP code based on the semiclassical Bloch-Boltzmann transport theory with a constant scattering time approximation. The applicability of this approach and the accuracy of the BOLTZTRAP code in similar systems has been well established. A much denser regular k-mesh containing up to 60,000 k-points was used, since these calculations were very sensitive to details of band structure in the region of the gap.

III. RESULTS

A. Electronic structure

First we address the electronic structure obtained with a dense k-mesh to investigate the character of its small gap carefully. The full range GGA band structure and the corresponding atom-resolved densities of states (DOSs) given in Fig. 2(a) and (b), respectively, indicate that this system is a small gap band insulator consistent with the formal charge configuration of Ta$^{5+}$, Th$^{4+}$, and N$^{3-}$. The valence bands have the fully filled N 2p character, while the bottom of the conduction bands have Th 5d character, as shown in Fig. 2(c) and (d). Thus ThTaN$_3$ shows a common direct gap between two 3-fold degenerate bands at the zone center.

Now specific effects of SOC are considered. The bottom panels of Fig. 2 shows enlarged band structures of GGA and GGA+SOC overlapped by the “fatband” coloring showing Ta 5d and N 2p characters. Inclusion of SOC leads to splitting the three-fold bands on either side of the gap into a doublet and singlet and enhancing the energy gap to 150 meV. The gap is smaller by 10 meV at
FIG. 3: (Color online) (001) surface spectral functions (SOC included) obtained from the Green function method, for (a) ThN and (b) TaN\textsubscript{2} terminations. The Fermi contours are shown in blue. Without SOC (not shown here), no surface band appears. Panels (c)-(e) display the spin texture (shown with red arrows), having only in-plane components, on the double Dirac cone, at energies denoted in panel (a). The arrows provide the spin direction. Note the changes in scale in panels (c)-(e).

the optimized volume. Most importantly, the band splitting results in band inversion at \(\Gamma \). As shown in Fig. 2(c), before SOC the 3-fold band at the top of the valence band arising from \(2p \) states of all \(N \) ions has negative parity, whereas the \(t_{2g} \) triplet at the bottom of the conduction band have positive parity. SOC results in splitting and inverting the parities: the parity of each band in the doublet at the bottom of the conduction band is negative (see Fig. 2 (d)). This band inversion suggests nontrivial topological character, as will be discussed in the next subsection.

B. Topological crystalline insulating phase

Our calculations of the topological character begin from the Wannier representation,36 shown in Fig. 2(a). The \(Z_2 \) indices \(\nu_0 \) (\(\nu_1 \nu_2 \nu_3 \)) are calculated44 from the parities of all occupied bands, excluding the core orbitals, at TRIMs, shown in Fig. 1(b). The indices are 0; (000), indicating that ThTaN\textsubscript{3} is topologically trivial. Specifically, two negative parity valence band states have interchanged with two positive parity conduction states, and the change in occupied TRIM parities by two leaves vanishing \(Z_2 \) indices. To gather further evidence, the hybrid Wannier charge centers are calculated for half of the BZ on the mirror plane.38 Consistent with the \(Z_2 \) indices, the hybrid center plot shows an even number of crossings, indicating that a \(Z_2 \) TI has not emerged.45

Next, we performed surface state calculations by the Green function approach. Figure 3 (a) and (b) show the surface spectral functions for ThN and TaN\textsubscript{2} surface terminations, respectively, using (001) surfaces (given the cubic symmetry, only (001) needs to be considered). For both terminations, two pairs of surface bands crossing the gap appear at the zone center, although distinctions verify that they are inequivalent.

The spin textures, pictured in Fig. 3(c)-(e), are calculated in three regimes: below the lower Dirac point, above the upper Dirac point, and midway between the two points. At 160 meV in Fig. 3 (c), the texture on the outer Fermi contour is clockwise, with opposite chirality on the inner contour. At 120 meV (the intermediate regime, Fig. 3(d)) both textures are counterclockwise. At 75 meV the texture on the outer Fermi contour is counterclockwise, with opposite chirality on the inner contour.

To reveal the origin of this topological character, crys-
talline symmetries have been broken by displacing the Ta ion in two directions. First, the ion was displaced by 0.01 Å along the (100) direction to remove the $x \to -x$ mirror symmetry. The upper panel of Fig. 4 shows that elimination of this mirror symmetry destroys the surface state of the ThN termination (the disconnect of bands near 0.06 eV energy), while that of the TaN$_2$ survives. Second, both the mirror and rotational symmetries were discarded by shifting Ta along the (111) direction by 0.01 Å. The bottom panel of Fig. 4 reveals that both surface states have disappeared. This killing of surface bands by breaking of symmetry is evidence that ThTaN$_3$ is a TCI protected by C_4 symmetry rather than by mirror symmetry. Similar effects have been observed in the antiperovskite compounds. Also, these two pairs of surface bands indicate that the mirror Chern number $C_M = (C_{+1} - C_{-1})/2$ is two, where $C_{\pm 1}$ are individual Chern numbers for Bloch eigenstates with eigenvalues $\eta = \pm i$. Note that two Dirac cones in ThTaN$_3$ concurrently emerge at Γ, in contrast to the previous TCIs with $|C_M| = 2$, which have two Dirac cones separately appearing at two different TRIMs.

C. Thermoelectric properties

As mentioned above, the first TCIs were realized in promising thermoelectric compounds. There is how-
IV. SUMMARY

In ThTaN$_3$, which is a rare cubic nitride perovskite, spin-orbit coupling leads to enlarging the gap to 150 meV and inverting valence and conduction bands. Interestingly, two surface band Dirac cones in the gap currently appear at the zone center, although this system shows trivial Z_2 indices and character of the hybrid Wannier charge center. This even number of surface bands indicates that ThTaN$_3$ is a topological crystalline insulator with the mirror Chern number $|C_m| = 2$, protected by the mirror and 4-fold rotational symmetries. Additionally, due to the narrow gap and less dispersive bands near E_F induced by SOC, this system shows a very high Seebeck coefficient with a maximum of $\sim 400 \, \mu V/K$ at 150 K, suggesting possible application as an element in a thermoelectric device.\cite{11}

Our findings indicate that stoichiometric ThTaN$_3$ is a TCI also with good thermoelectric properties, inviting further theoretical and experimental researches. Most currently known topological insulators suffer from defects in the bulk that degrade the insulating bulk to semiconducting, thus preventing identification of and therefore application of the topological surface bands. The sample quality did not allow determination of stoichiometry in ThTaN$_3$,\cite{28} but this material is chemically distinct from previous TIs and thus provides new opportunities.

V. ACKNOWLEDGMENTS

We acknowledge Young-Kuk Kim for useful discussion of topological insulators, and Kyo-Hoon Ahn and Young-Joon Song for useful technical discussions. Discussion on nitride perovskites with A. P. Ramirez, T. Siegrist, M. Subramanian, and T. Siegrist were appreciated. This research was supported by NRF of Korea Grant No. NRF-2016R1A2B4009579 at Korea University, and by U.S. DOE BES Grant DE-FG02-04ER46111 (W.E.P.).

*
* Electronic address: mckwan@korea.ac.kr

† Electronic address: pickett@physics.ucdavis.edu

1 C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett. 95, 226801 (2005).

7 For a review, see N. Xu, Y. Xu, and J. Zhu, Topological insulators for thermoelectrics, npj Quantum Mater. 2, 51 (2017).

Using three different codes WIEN2K, FPLO, and VASP, our careful calculations with a dense k-mesh indicate that ThTaN2 is either metallic or insulating with a tiny gap of several meV within GGA, differences that are typical between different codes. Our value of the gap is different from the previous reports in Refs. [29–31] which quote energy gaps of 0.4–0.8 eV. However, one of them included an artificial factor to enhance the gap. The largest value was also obtained with a hybrid functional. Thus the main difference in quoted gap among these calculations is due to using different exchange-correlation functionals or different basis sizes. Most importantly, however, is that the previous calculations did not include spin-orbit coupling. The lowest conducting bands from Ta t2g states undergo a substantial spin-orbit splitting, which reduces and inverts the gap; see Fig. 2.

See Supplemental Material for the hybrid Wannier charge center plot, band structures for breaking symmetries, and additional thermoelectric parameters.

