
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Fundamental bounds on the operation of Fano nonlinear
isolators

Dimitrios L. Sounas and Andrea Alù
Phys. Rev. B 97, 115431 — Published 20 March 2018

DOI: 10.1103/PhysRevB.97.115431

http://dx.doi.org/10.1103/PhysRevB.97.115431


Fundamental Bounds on the Operation of Fano Nonlinear Isolators 

Dimitrios L. Sounas1, and Andrea Alù1,2 

1Department of Electrical and Computer Engineering, The University of Texas at Austin 

2Advanced Science Research Center, City University of New York 

aalu@gc.cuny.edu 

Nonlinear isolators have attracted significant attention for their ability to break reciprocity 

and provide isolation without the need of an external bias. A popular approach for the 

design of such devices is based on Fano resonators, which, due to their sharp frequency 

response, can lead to very large isolation for moderate input intensities. Here, we show 

that, independent of their specific implementation, these devices are subject to fundamental 

bounds on the transmission coefficient in the forward direction versus their quality-factor, 

input power and nonreciprocal intensity range. Our analysis quantifies a general trade-off 

between forward transmission and these metrics, stemming directly from time-reversal 

symmetry, and that unitary transmission is only possible for vanishing nonreciprocity. Our 

results also shed light on the operation of resonant nonlinear isolators, reveal their 

fundamental limitations, and provide indications on how it is possible to design nonlinear 

isolators with optimal performance. 

Subject areas: Optics, Nonlinear Dynamics, Metamaterials 

I. Introduction 

Nonreciprocal devices, such as isolators and circulators, are crucial components in optics, of 

great interest for source protection, and to separate signals propagating in opposite directions [1]-



[2]. Reciprocity can be broken by either biasing a linear structure with a quantity that is odd-

symmetric under time reversal, or by relying on nonlinear effects [3]. The most common 

approach consists in applying an external static magnetic bias, but other magnetless approaches 

based on biasing with electric current, linear or angular momentum have recently gained 

attention for their potential to realize integrated, low-noise isolators and circulators [4]-[17]. 

Nonlinearities can also enable magnetless nonreciprocal components, with the advantage of not 

requiring an external bias, thus realizing all-passive nonreciprocity [18]-[38]. In this context, 

nonlinear isolators exhibit a large transmission contrast when excited from opposite sides with 

signals of equal intensities. These devices are self-biased by the signal itself traveling through 

the device, and therefore they can provide isolation only when excited separately from different 

ports [37], in contrast to linear isolators that work under any excitation condition, even with 

signals incoming simultaneously from both ports. Yet, these nonlinear devices can be very useful 

in situations involving pulsed signals. A relevant scenario of interest is the case of a nonlinear 

isolator connected at the output of a pulsed source. If the pulse duration is short enough, the 

overlap between the incident signal from the source and the reflected signal at the output of the 

isolator can be avoided, allowing the nonlinear isolator to transmit the incident signal and block 

the reflected one. The most common way to achieve nonlinear isolation is through the optical 

Kerr effect, according to which the permittivity of a material depends on the local intensity of the 

electric field as 2(3)
linε ε χ= + E , where linε  is the linear permittivity, (3)χ  is the third-order 

nonlinear susceptibility and E  is the local electric field intensity. If a Kerr resonator is designed 

to support different field distributions when excited from opposite directions, the nonlinear 

permittivity distribution ensures an asymmetry in response and, by appropriate design, full 

isolation can be achieved. 



A common approach for the design of Kerr nonlinear isolators is based on two-port nonlinear 

resonators with asymmetric coupling coefficients when excited from opposite ports. Fano 

resonators are ideal in this context, as they offer a sharp frequency response, with transmission 

varying from zero to a peak over a narrow frequency band around the resonance frequency, 

which enables the design of nonlinear isolators with very large isolation for moderate input 

intensity [31]-[36]. In this context, isolation is defined as the ratio of transmission in opposite 

directions for the same input intensity; infinite isolation corresponds to zero transmission from 

one direction and nonzero transmission from the opposite one. Indeed, the vast majority of 

nonlinear isolators presented to date in the literature are based on devices that fall in the broad 

category of Fano resonators. 

In the following, we show that this large class of nonlinear isolators are subject to bounds 

stemming directly from time-reversal symmetry and passivity, which fundamentally limit their 

forward transmission fwT  versus their nonreciprocal intensity range ( NRIR ), defined as the ratio 

of intensities from opposite directions for which transmission experiences a fast transition from 

low/high to high/low values, the Q-factor and the input intensity inP . A large NRIR implies a 

large range of intensities offering strong isolation, while a unitary NRIR corresponds to a 

structure with the same response from opposite sides, and therefore no isolation at all. In the 

following, we first rigorously prove that in resonant nonlinear isolators reversing the propagation 

direction results in a direct scaling of the intensity that leads to a given transmission value, by a 

factor that is exactly equal to the degree of asymmetry with which the two ports are coupled to 

the resonator in the linear regime, showing that NRIR  is identically equal to the linear 

asymmetry factor. Combining this property with a general bound between transmission and the 

asymmetry factor that can be derived from time-reversal symmetry, we show that, independent 



of the specific design strategy, fwT  necessarily decreases as NRIR  increases, and that 1fwT =  

only for vanishing nonreciprocity. In other words, it is impossible to realize Fano nonlinear 

isolators with unitary transmission. We also derive tight bounds on fwT  as a function of Q  and 

inP  for the case of infinite isolation (the case when backward transmission is zero), showing that 

an increase in fwT  requires increasing Q-factor and/or input intensity. Our analysis also provides 

insights on the general operation of nonlinear isolators, and a quantitative tool to design optimal 

devices with the largest possible forward transmission for given Q-factor, bandwidth, input 

power and nonreciprocity intensity range. 

II. Trade-off between transmission and isolation intensity range 

In order to understand the nature of the limitations outlined above, we start from a particular 

example of Fano nonlinear isolator, based on a substrate-backed dielectric grating, as in the inset 

of Fig. 1a. Such a design is suitable for isolation of waves propagating in free space. The 

structure has 12linε = , (3) 18 2 212. 08 m Vχ −×= , realistically modeling Si [39], and it is excited 

from the normal direction with a wave polarized parallel to the grating. Fig. 1a shows the linear 

response of the structure, with a Fano resonant signature stemming from the superposition of a 

high-Q resonance in the dielectric rods and a low-Q background reflection at the air-dielectric 

interfaces [40], with transmission rapidly changing from zero to a peak as the input frequency 

varies. The grating depth d , width w  and periodicity a  control the resonance frequency, while 

the substrate thickness t  controls the asymmetry from opposite sides, necessary to realize 

isolation in the nonlinear regime. Increasing the input intensity results in an increase of 

permittivity due to Kerr nonlinearity, which in turn shifts downwards the resonance frequency. 

Since the resonator is asymmetric, this shift is different for excitation from opposite sides, 



enabling isolation. The isolation becomes infinite when the input intensity is selected so that the 

resonant dip for excitation from one side (left-hand side in Fig. 1) aligns with the operation 

frequency. Through appropriate design of the structure asymmetry, we can also make sure that, 

for excitation from the other side (right-hand side in Fig. 1), the resonance peak arises for the 

same intensity at the same excitation frequency, enabling an isolator with zero and maximum 

transmission for opposite excitations. Fig. 1b illustrates this mechanism, comparing the linear 

response (gray) with the nonlinear responses for excitation with same input intensity from 

opposite sides. Ideally, we would like to achieve unitary transmission in the forward direction (

fwT ) and large isolation over a broad intensity range. 

Consider now the calculated response of this nonlinear grating, presented in Fig. 1c. The 

figure shows transmission versus input intensity for the desired excitation frequency. The 

substrate thickness t  was selected to a finite value to provide nonzero asymmetry, while the rest 

of the design parameters were chosen to maximize fwT  when transmission in the backward 

direction is zero. For both directions, as we increase the input intensity the transmission 

experiences a rapid transition from low to high values at a particular input intensity (from now 

on, we will call this intensity the critical intensity), corresponding to the Fano feature crossing 

the excitation frequency. Due to the resonator asymmetry, the transition intensity is different for 

opposite excitations, leading to large isolation for input intensities between the critical intensities 

for opposite directions. We define the ratio of critical intensities from opposite directions the 

nonreciprocal intensity range ( NRIR ), which, as mentioned in the introduction, quantifies the 

range of intensities over which large transmission contrast from opposite directions can be 

achieved. One natural way to increase NRIR  is to increase the asymmetry parameter t . In Fig. 

1d, we show the transmission for a substrate with larger thickness, with the other design 



parameters optimized again to maximize fwT  at the intensity of infinite isolation. Although a 

larger t  indeed increases NRIR , this increase results in an unwanted decrease in forward 

transmission, degrading the overall performance of the device. 

This tradeoff between forward transmission and NRIR , evident in the example of Fig. 1, is 

not specific to this design, but it is very general, and it can be understood using coupled-mode 

theory (CMT). In the context of CMT, a two-port lossless Fano resonator is described as [34] 
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where a  is the resonance amplitude, 0ω  is the resonance frequency, γ  is the decay rate, ik  is the 

coupling coefficient between the resonator and the i-th port, is+  is the signal entering the 

resonator from the i-th port, is−  is the signal leaving the resonator from the i-th port, Br  is the 

background reflection coefficient and Bt  is the background transmission coefficient. Br , Bt  refer 

to the response of the system far from the Fano resonance [43]. Notice that this model 

encompasses also Lorentzian resonators, as a particular class of Fano resonators.  

The decay rate can be decomposed as 1 2γ γ γ= + , where 1 2,γ γ  are the decay rates due to 

radiation to the ports. Eq. (1) needs to be supplemented with the conditions 22 i ikγ = , 

2 2 1B Br t+ =  and 
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derived from power conservation and time-reversal symmetry. From Eqs. (1),(2), it is 

straightforward to find that the transmission coefficient through the system is given by 
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where 2
BBT t= , 0( )x ω ω γ= −  is the detuning factor of the resonator, ω  is the driving 

frequency and 2
0 1 2 1 24 [ ( ) ] 1bgx Tγ γ γ γ= + −  is a characteristic parameter of the resonator that 

provides the detuning from the resonance frequency at which transmission is zero. The minus 

sign in Eq. (3) corresponds to the case where the transmission zero is at lower frequencies than 

the resonance frequency, as in Fig. 1, which also implies that the transmission zero is at a lower 

frequency than the transmission maximum. The plus sign is the dual case of a resonator with the 

transmission zero at a higher frequency than the resonance frequency.  

If we define 1 2
2 2

1 2k kκ γ γ= =  as the asymmetry factor from different ports (κ  can also 

be defined as the ratio of field intensities for excitation from different ports; assuming operation 

close to a single resonance, this ratio is the same at any point in the resonator, as we are 

assuming a single mode), Eq. (3) can be rewritten as 
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If the resonator is symmetric, 1κ =  and 
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, while leaving its line-shape 



unaffected. Considering that for a symmetric Fano resonator maximum transmission is unitary, 

we see that asymmetry imposes the following bound on the transmission of Fano resonators 
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In [41], it was shown that this equation actually applies to any lossless linear structure, regardless 

of whether it is a Fano resonator or not, and it is a direct consequence of time-reversal symmetry. 

For Fano resonators, Eq. (5) also applies to the lossy case, which can be intuitively explained by 

the fact that adding loss reduces maximum transmission compared to the lossless case. A 

rigorous proof of this fact can be developed as in the lossless case after adding the intrinsic decay 

rate lossγ  of the resonator to γ .  

Consider now a quadratic nonlinearity 2(3)
linε ε χ= + E  in the Fano resonator. The 

nonlinearity results in a shift of the resonance frequency of the resonator as 
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where 0,linω  is the resonance frequency in the linear (low-intensity) regime and 2
0a  is a 

characteristic quantity of the resonator with units of energy [43]. In principle, the nonlinearity 

may also affect the decay rate γ  and the coupling coefficients ik  between the resonator and the 

ports, however these effects are usually neglected for perturbations involving only the real part 

of the permittivity, since γ  and ik  are primarily determined by the mode profile which, 

compared to the resonance frequency, is weakly affected by the nonlinearity [43],[45]. This 

allows applying Eq. (3) to the nonlinear case, if we replace 0ω  with the expression in Eq. (6), 



while the rest of the parameters (γ , bgT , κ ) being calculated in the linear regime. Then, Eqs. (4) 

and (5) also hold in the nonlinear case, with the parameter κ , determining the bound, still being 

the asymmetry factor in the linear regime. Consider now that the structure is excited from the i-

th port with a monochromatic signal is+  at frequency ω . Then, the resonance amplitude is given 

by 
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where the only quantity that depends on the input intensity is 0ω , while γ  and ik  are the same as 

in the linear regime. Inserting Eq. (7) into Eq. (6) yields 
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where 
2in

i iP s+= . From Eq. (8), we can derive a very important property for the response of Fano 

nonlinear isolators. In particular, the resonance frequency, and consequently the overall response 

of the resonator, for excitation from port 2 has exactly the same dependence versus intensity as 

for excitation from port 1, if the input intensity is scaled by the factor 2
2 2

1k kκ = , again 

depending exclusively on the response of the isolator in the linear regime. In other words, the 

blue and red curves in Fig. 1c-d, and for any arbitrary Fano nonlinear isolator, can be derived 

from each other by simply horizontally scaling by a factor κ , which we stress again is the linear 

asymmetry parameter. This property shows that NRIR , defined earlier as the ratio of transition 

intensities from opposite directions, is also the ratio of input intensities from opposite directions 

that lead to the same transmission coefficient for any value of the transmission coefficient. 



Furthermore, NRIR  is equal to κ  or 1κ −  depending on whether 1κ >  or 1κ < , respectively. In a 

dB scale, NRIR  is equal to the difference of input powers in dB that yield the same transmission 

from opposite directions. A unitary NRIR  (zero in dB scale) corresponds to a system with 

identical response from opposite sides and therefor no isolation. On the other hand, a large 

NRIR  corresponds to a system which exhibits large isolation over a large range of input 

intensities, as in Figs. 1c-d. 

The fact that Eq. (5) is valid in the nonlinear case and that the linear κ  involved in this 

equations gives NRIR  results in a fundamental bound between nonlinear transmission and 

NRIR . In particular, replacing κ  from 1max{ , }NRIR κ κ −=  into Eq. (5) yields 
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This equation shows that increasing T  is only possible by reducing NRIR , consistent with the 

examples in Figs. 1c-d. The extreme case of unitary transmission is possible only for 1κ = , 

which corresponds to 1NRIR =  (0 dB), meaning that it is impossible to realize a Fano-based 

nonlinear isolator with unitary transmission. In order to numerically validate this result, Fig. 2 

shows fwT  at the intensity of infinite isolation versus NRIR  calculated for various design 

parameters for the nonlinear metasurface in Fig. 1, fully validating Eq. (9), and confirming that 

our derived bound is tight. We would like to highlight that Eq. (9) is a consequence of the special 

nonlinear dynamics of Fano resonators, namely the applicability of Eq. (5) in the nonlinear case 

and the close relation between NRIR  and the linear κ . Since any system with a single resonator 

can be accurately mapped to a Fano response (for example, a Lorentzian resonator is a Fano 

resonator with zero or unitary background transmission), it follows that Eq. (9) is also valid for 



any isolator based on a single resonator. In turn, this fact indicates that Eq. (9) may be possibly 

broken in more complex systems consisting of multiple resonators or other systems that do not 

involve resonators at all [38], although such systems will still be subject to the dynamic 

reciprocity limitations described in Ref. [37]. It is important to note that Eq. (9) is also valid for 

lossy resonators, since, as we explained before, Eq. (5) still holds in the case of loss, and Eq. (8) 

is unaffected by the presence of absorption, if γ  is the total decay rate of the resonator that 

includes intrinsic loss. The same is true even for the case of two-photon absorption, which 

becomes important at high input intensities. Two-photon absorption results in an intrinsic loss 

rate that increases as the input intensity increases as 
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 where 0,lossγ  is the loss rate in the linear regime and 
2

0,TBAa  is a characteristic quantity of the 

system with units of energy. Inserting Eq. (10) into Eq. (8) yields 

 

2
2 2

020 0
0 0 0, 2 2

0, 0, 00,

1 ( 1) i
loss

l

in
i

in linTBAa

P
a

a kω ωω ω γ γ
ω ω

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥− + + − =⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

− . (11) 

Eq. (11) shows that, even in the presence of two-photon absorption, the intensities of 

transmission from opposite sides are scaled by the linear asymmetry factor κ  when we reverse 

the excitation direction, showing that NRIR  is still equal to κ . From this fact and the fact that 

Eq. (5) is valid in the case of loss, we conclude that the bound in Eq. (9) is valid also in the 

presence of two-photon absorption, as another common form of optical nonlinearity. 

 



 

III. Bounds for forward transmission in the case of infinite isolation 

In the above discussion, we did not make any assumption regarding the transmission in the 

backward direction, therefore Eq. (9) is valid independent of the isolation level. In the following, 

we focus on the case in which the device is designed to achieve zero transmission in the 

backward direction, hence infinite isolation, for a certain input intensity and derive bounds for 

forward transmission fwT  versus the Q-factor of the resonator and the input power. The analysis 

assumes zero loss, since in the presence of loss transmission of a Fano resonator never goes to 

zero and as a result it is impossible to obtain infinite isolation. In the lossy case, the results 

should be interpreted as an upper bound for forward transmission at the intensity of maximum 

isolation (minimum backward transmission).  

From Eq. (4) we see that transmission is zero when 0x x= ±  or 0 0xω ω γ= ± . Assuming a 

resonator with specified γ , κ  and BT , we can calculate the input power that leads to zero 

transmission in the backward direction and therefore infinite isolation by substituting this 0ω  in 

Eq. (8) with 2i = . Solving Eq. (8) with 1i =  and the same input power gives the nonlinearity-

shifted resonance frequency in the forward direction for the input power that yields zero 

transmission in the backward direction. Substituting this resonance frequency into Eq. (3) 

provides the value of fwT . In Fig. 3a-c, we plot fwT  calculated as outlined above versus BT  (the 

background power transmission coefficient) and κ  for various levels of Q  and 0,0.95 linω ω=  

and assuming a positive sign in 0 0xω ω γ= ±  [negative sign in Eq. (3)]. Each point in the plots 

corresponds to a specific nonlinear isolator design that supports zero transmission in the 



backward direction, i.e., infinite isolation. It has to be noted that in general, for each combination 

of κ , BT , there might be multiple solutions, from which we choose the one with the larger 

transmission. The white region on the right corresponds to combinations of BT  and κ  that are 

not admitted by 24 ( 1)BT κ κ≤ +  (Eq. (5) holds for any frequency, therefore also far from 

resonance where BT T→ ), while the one on the left corresponds to cases for which 0 0,linω ω> , 

which according to Eq. (6) are not possible. The discontinuities in the plots indicate multistable 

regions. This figure shows that, for given Q , there is an optimum combination of BT  and κ  

(point A) that maximize fwT . Since Figs. 3a-c have been derived for a positive sign in 

0 0xω ω γ= ± , which corresponds to a resonator with the transmission zero at a lower frequency 

than the transmission maximum, the point of maximum fwT  happens for 1κ > , so that the 

transmission maximum from port 1 can be aligned with the transmission zero from port 2. On the 

other hand, selecting the minus sign in 0 0xω ω γ= ±  leads to the contour plots in Fig. 3d-f, where 

the transmission maximum happens for 1κ <  (point B), since in this case the transmission zero 

is at a higher frequency than the transmission maximum. Interestingly, even though the operation 

schemes associated to points A and B are dual of each other, the forward transmission is 

identical, and it can be found to be equal to (Appendix A) 
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where 0, 0,( )2 lin lil n nix Q ω ω ω−=  is the detuning coefficient in the linear regime. The input power 

required to achieve this transmission is given by (Appendix B) 
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and the corresponding stored energy in the resonator for the direction of maximum coupling by 

(Appendix A) 
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Eq. (12) is a powerful and general result, providing, regardless of the specific design and 

operation of the isolator, a tight upper bound for the forward transmission fwT , and showing that 

it depends only on its detuning parameter linx  in the linear regime, which is proportional to the 

Q-factor and to the separation between driving frequency and resonance frequency. This bound 

grows with linx . In Figs. 3a-c and d-f, we slowly increase linx  by increasing Q, and we observe 

how indeed fwT  at points A and B consistently increases, following Eq. (12). As Q  and fwT  

increase, these two optimal points move closer and closer to the 1κ =  axis, consistent with the 

bound between fwT  and κ  given by Eq. (5). If 2 2linx ≥ , interestingly 1fwT = , but this arises at 

1κ = , consistent with the previous discussion. At this point, the system corresponds to a bistable 

nonlinear resonator exhibiting zero and unitary transmission for the same input intensity, but it is 

absolutely symmetric when excited from different ports, and therefore offers no nonreciprocity. 

From a physical point of view, a larger Q-factor is associated with a sharper Fano response (a 

smaller separation between its transmission maximum and zero), allowing to achieve alignment 

of the transmission maximum and zero in the nonlinear case for a smaller asymmetry factor, 

which according to Eq. (5) allows achieving larger fwT  . Increasing the Q-factor beyond the 



value for which 2 2linx =  offers no advantage, since although fwT  can be unitary, 1κ = , in 

agreement with Eq. (5), leading to a structure with purely symmetric response from opposite 

sides and therefore zero NRIR . Eq. (12) is numerically validated in Fig. 4 showing the 

calculated value of  fwT  for various nonlinear metasurfaces as in Fig. 1 with different values of 

linx .  

An increase in linx , leading to larger fwT  and narrower NRIR , can be achieved not only with 

a larger Q-factor, but also with a larger detuning 0,linω ω− . This second alternative may appear 

more attractive, due to limitations that usually exist in realizing large Q-factors. Nevertheless, it 

is possible to show from Eq. (13) that for 0.5linx > , an increase in linx  through an increase in 

0,linω ω− , while γ  is kept constant, comes at the price of a larger required input power to reach 

maximum isolation (Appendix B). This is consistent with the fact that a larger 0,linω ω−  means 

operation far from linear resonance, requiring a larger input power in order to bring the 

resonance frequency close to the operation frequency, as it is necessary in order to obtain zero 

transmission in the backward direction. On the other hand, increasing linx  by increasing the Q-

factor leads to a reduction of the input power required to achieve maximum isolation (Appendix 

B). In essence, whatever the specific design we consider, our theory shows that Fano nonlinear 

isolators are characterized by a fundamental trade-off between fwT  and Q  or inP , quantitatively 

described by Eqs. (12) and (13), which is reflected in a reduction of non-reciprocal intensity 

range as we increase fwT . Furthermore, it is worth noting that increasing linx  through increasing 

0,linω ω−  leads to a linear-wise increase of the stored energy versus linx , as can be seen from Eq. 

(14) with γ  constant, making the system susceptible to two-photon absorption. This effect does 



not occur when linx  is increased through increasing the Q-factor, in which case the stored energy 

slightly decreases as linx  increases, a fact which can be seen by rewriting Eq. (14) in the form 
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and considering that 0,linω ω−  is constant in this case. 

The analysis presented above is valid for monochromatic excitation, while, as mentioned in 

the Introduction, nonlinear isolators are more suitable for pulsed-source scenarios, due to the 

dynamic reciprocity limitations pointed out in [37]. In the following, we show the response of 

optimal isolators corresponding to points A in Figs. 3a and c for excitation with Gaussian pulses 

with center frequency 0.95ω = , as in Fig. 3, and envelope 2 2( ) exp( )p t t τ= −  with 1500Tτ = , 

where 2T π ω= . These pulses are similar to ones used in Ref. [34] to experimentally test the 

dynamic response of Fano nonlinear isolators at telecom wavelengths. Results are presented for 

three peak intensities, one corresponding to maximum transmission as calculated from Eq. (13) (

maxP ), and other two below and above this intensity with ratio equal to κ  ( NRIR ). In all cases, 

the peak intensity of the output pulse is in good agreement with the results in Fig. 3 derived for 

monochromatic excitation. Furthermore, at the largest input power the response from port 2 is 

identical as the response from port 1 at the lowest input power, validating the fact that in Fano 

resonators the intensity axis of their nonlinear response is scaled by the linear asymmetry factor 

when we reverse the propagation direction, as was shown in Sec. 2. As expected, the pulse shape 

is distorted due to the intensity-dependent response of the resonator, with the distortion being 

more severe in the high-Q case. In particular, in the high-Q case the pulse is chopped when its 

intensity reaches the bistability threshold of the system. This threshold is different for increasing 



and decreasing intensities, explaining the asymmetric shape of the output signals in Fig. 5b. 

These results indicate that, although for monochromatic signals it may be possible to reach very 

high forward transmissivities, in practice pulse distortion may impose an upper bound on linx , 

and subsequently on the forward transmission. 

IV. Conclusions 

In this article we have shown that passive isolators based on a nonlinear resonators are subject to 

fundamental quantitative bounds governing the allowed levels of forward transmission versus the 

Q-factor, input power and nonreciprocal intensity range. In particular, we have shown that the 

forward transmission can increase if the Q-factor or the input power increase, and the 

nonreciprocal intensity range correspondingly decreases. The bounds are the result of 

fundamental restrictions imposed by time-reversal symmetry on the field asymmetry versus the 

transmission in any linear structure, and the fact that the operation of resonant nonlinear isolators 

is determined by their asymmetry at low intensities. We have validated our theory through full-

wave simulations for the case of nonlinear isolators consisting of a dielectric metasurface on top 

of a substrate. Although developed for electromagnetic isolators, our analysis can be readily 

extended to different physical domains, such as acoustics and mechanics, in which the design of 

non-reciprocal devices has recently gained attention for applications in full-duplex acoustical 

systems, sonars and ultrasound imaging devices [44]. Beyond clarifying several fundamental 

aspects of the operation of nonlinear isolators, our theory constitutes the basis for the design of 

such devices with optimal characteristics, operating at the bounds derived here, for the next 

generation of all-passive nanophotonic isolators not requiring magnetic bias. Furthermore, our 

analysis indicates that it may be possible to break the bounds described here in more complex 



systems consisting of multiple resonators supporting multi-stable resonant states, as we have 

explored in . 

 

Appendix A 

Here, we will show the bound in Eq. (12). Assume that the input intensity is such that 

transmission in the backward direction (excitation from port 2) is zero. Then, from Eq. (4) we 

find  

 0

0, 0

,
,bw

bw x
x

x
ω ω γ

±
= ±
=

  (16) 

where the subscript “bw” indicates that the corresponding quantity refers to the backward 

direction. Substituting Eq. (16) into Eq. (8) with 2i =  yields 
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For the same input power, Eq. (8) with 1i =  will give the detuning factor fwx   in the forward 

direction (excitation from port 1): 
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The subscript “fw” indicates that the corresponding quantity refers to the forward direction. 

Transmission in the forward direction can be found by substituting fwx  in Eq. (4) 
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where we have also used 0 bwx x= ±  from Eq. (16). Dividing Eqs. (17),(18) yields 
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Inserting Eq. (20) into Eq. (19) results in 

 22

2

2( 1)

4( )( )( )
.

( ) ( )( 1)
lin fw lin bw fw bw

fw

lin fw liw bb n wfwx

x x x x x

x x

x
T

x x x⎡ ⎤+ +⎣

− −

− + − ⎦

−
=   (21) 

fwT  in Eq. (21) is a function of two variables and through a simple analysis can be found to have 

a maximum value 
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for 
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or 
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Substituting Eqs. (23),(24) into Eqs. (20), we can find the values of the coordinates of the 

maximum points in Fig. 3. Eq. (23) lead to point A in Figs. 3a-c and Eq. (24) to point B in Figs. 

3d-f. From Eqs. (23),(24) and (6) we can also show that the stored energy at the condition of 

maximum forward transmission is given by 

 ( )0
2 2

0
a

,

2
m x

2 3 1 ,
3lin

lina a xγ
ω

+±=   (25) 

where the plus/minus signs hold for excitation from the side of the maximum/minimum coupling 

coefficient. 

Appendix B 

Here, we calculate the power that is required to achieve the maximum forward transmission in 

Fig. 3. From Eq. (8), the input power required to achieve a certain detuning factor fwx   in the 

backward direction is given by 
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From 2 2
1 22 kkγ +=  and 2 2

1 2k kκ =  it follows 2
2 1)2 (k γ κ +=  and Eq. (26) can be 

rewritten as 
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Substituting Eq. (20) into Eq. (27) yields 

 
2 2

0

0,

2 2(1 )( ) (1 )( ) .
2in fw l

lin
in fw bw lin bw

a
P x x x x x xγ

ω
⎡ ⎤= + − + + −⎣ ⎦   (28) 



Substituting fwx  and bwx  form either Eq. (23) or (24) into Eq. (28) results in 
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This is the input power required to achieve zero transmission from port 2 and therefore infinite 

isolation. If linx  is increased by increasing the Q-factor while maintain 0,linω ω−  constant, Eq. 

(29)can be written as 
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which, through elementary calculus, can be shown to be monotonically decreasing as linx  

increases within the practically important range 2 2linx ≤ . On the other hand, if the Q-factor 

and therefore γ  are constant, increasing linx  results in an increase of inP  for 0.5linx > . 
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Figures 

 

Figure 1. Nonlinear Fano isolator based on a substrate-backed dielectric grating. (a) Linear 

response and schematic of the structure for 0.1d a= , 0.8w a= , 0.03t a=  and 12linε = . (b) 

Desired nonlinear response, for which a transmission maximum from port 1 is aligned in terms 

of input intensity with a zero from port 2. The vertical dashed line indicates the excitation 

frequency. (c) Actual nonlinear response for the same parameters as in panel (a), excitation 

frequency 1.094 (2 )f c a=  and third-order nonlinear susceptibility (3) 18 2 212. 08 m Vχ −×= . (d) 

Similar to panel (c) but for 0.08t a=  and 0.9575 (2 )f c a= . The numerical results were derived 

through full-wave simulation with Comsol Multiphysics.  



 

Figure 2. Transmission in the forward direction versus nonreciprocal intensity range for various 

nonlinear isolator designs in Fig. 1. The shaded region corresponds to the bound in Eq. (9). 

  



 

Figure 3. fwT  versus BT  and κ  for various values of Q , 0, 1linω =  and 0.95ω = . Each point in 

the plots corresponds to a design with infinite isolation (zero backward transmission). The white 

regions are forbidden based on Eqs. (5) and (6). (a-c) Minus sign in Eq. (3). (d-f) Plus sign in Eq. 

(3). (a,d) 15Q = . (b,e) 20Q = . (c,f) 25Q = . 

  



 

Figure 4. Transmission in the forward direction versus the detuning factor in the linear regime 

for various designs of the nonlinear isolator in Fig. 2. The shaded region corresponds to the 

bound in Eq. (12). 

  



 

Figure 5. Time-domain response of a nonlinear isolator for excitation from different ports with a 

Gaussian pulse. (a) Isolator with the parameters at point A in Fig. 3a. (b) Isolator with the 

parameters at point A in Fig. 3c. inP  is the power at the peak of the pulse. maxP  is the input power 

of maximum fwT  given by Eq. (13). 


