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We report on the theoretical study of the 2nd and 3rd harmonic generation in plasmonic dimer
nanoantennas with narrow gaps. Our study is based on the time dependent density functional
theory. This allows to address the nonlinear response of a tunneling junction in a subnanometric
plasmonic gaps with a quantum calculation which goes beyond conventional classical local and non-
local treatments. We demonstrate that the nonlinear electron transport in a plasmonic junction,
associated to the corresponding strong field enhancement in the narrow gap, allows to reach orders
of magnitude enhancement in the efficiency of the 2nd and 3rd harmonic generation. Depending
on the size of the junction and the frequency of the fundamental incident wave, we show that the
frequency conversion in plasmonic dimer gaps can be determined by: (i) the intrinsic nonlinearity
of each individual nanoparticle, (ii) the nonlinear ac tunneling current across the gap, and (iii) the
resonant excitations of the plasmon modes of the dimer. The study of the nonlinear response of
plasmonic gaps within a full quantum treatment allows to understand the fundamental mechanisms
of nonlinearity in nanoplasmonics.

PACS numbers: 42.65.Ky, 73.20.Mf, 78.67.Bf, 36.40.Gk

I. INTRODUCTION

Nonlinear optical effects in nanoscale devices allow to
control the electromagnetic fields of light at dimensions
well below the wavelength, making them the focus of
an intense research effort1–5. Indeed, the nonlinear re-
sponse plays an important role in numerous applications
of nanophotonics devoted to information transfer5–10.
Moreover, frequency conversion and generation of high
harmonics can be used for (bio-)imaging11–14, metrology
and sensing15–18, and generation of the atto-second XUV
laser pulses19,20. The latter allowed spectacular progress
in direct time-domain access to electronic processes in
atoms, molecules, and solids20,21. However, optical non-
linearities are usually weak, and therefore the nonlinear
responses associated to them are orders of magnitude
smaller than the linear ones.

Plasmonics offers a way to overcome this difficulty
since many experimental and theoretical works addressed
plasmon-enhanced non linear effects at metallic sur-
faces, nanoparticles and in artificially created nano-
materials5,10,22–34. The common understanding provided
by these approaches is that the coupling of light with
collective electron oscillations in the metal (plasmons)
results in the enhancement of the near fields in the prox-
imity of metallic surfaces, which can be utilized to boost
nonlinear effects. Recent developments also demonstrate
the role of plasmon excitations in the nonlinear response
of graphene nanostructures35–37. Among others, plas-
monic systems with narrow gaps have received a lot of
attention as platforms to effectively support nonlinear
optical processes because of their ability to strongly en-
hance electromagnetic field in the gap region5,27–30,38–51.

The classical electromagnetic theory is routinely applied
to explain many of the experimental data and to predict
the nonlinear properties of nanostructures using pertur-
bative and model approaches. An efficient frequency con-
version can be obtained by fulfilling appropriate symme-
try constraints, and choosing the frequency of the fun-
damental incident wave or its corresponding high har-
monic in resonance with a suitable plasmonic mode of
the system29–34,48–61.

In this context, the quantum regime of plasmonics
where the atomic scale becomes relevant is an interest-
ing platform to explore nonlinear responses. Indeed, ad-
vances in fabrication techniques have allowed to engi-
neer plasmonic structures with nanometer control of their
geometry. Dimer plasmonic antennas with nanometer
and sub-nanometer gaps, for instance, have reached the
regime where the linear optical response is sensitive to
quantum effects such as non-local screening and electron
tunneling between the constituting nanoparticles62–77.
This brings the question about the impact of quantum ef-
fects on nonlinear processes in plasmonic structures with
(sub-)nanometer gaps, and their ability to strengthen the
associated nonlinear optical response. Thus, the coupling
of photons with tunneling electrons is shown to provide
ultra-compact sources for light and plasmon generation in
tunneling configurations78–81. This effect can become a
source of frequency conversion due to the strong sensitiv-
ity of the tunneling process to the potential barrier across
the junction and to the variation of the tunneling barrier
with the optical bias. Optical rectification, as studied
in narrow plasmonic gaps formed by the STM, molecule
functionalised, or break junctions,41,82–84 is one of the
examples of nonlinearity associated to the tunneling cur-
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rent and, a priori, it is accompanied by second-harmonic
generation.

The presence of the high harmonics in the tunneling
current has been studied in the context of the theory
of photo-assisted electron transport (PAT)85–89, partic-
ularly well developed in the THz frequency range for
the semiconductor structures. At optical frequencies,
the nonlinearity of the tunneling current was demon-
strated using time-dependent density functional theory
(TDDFT) calculations for the case of a plasmonic dimer
formed by spherical nanoparticles67,69. Recently re-
ported hydrodynamic methods demonstrate the impact
of the non-local screening on the nonlinear response of in-
dividual nanoparticles60,90–92, and a model study based
on the theory of PAT addressed the effect of tunneling
in the nonlinear response of the gap nanoantenna93–96.
However, a parameter-free quantum approach that allows
to elucidate the rich variety of effects in the nanogap plas-
monic system and the contribution of the different mech-
anisms driving the optical frequency conversion has not
been attempted so far. In the same time, the design of the
efficient nonlinear devices requires understanding of the
respective role of the field enhancement, plasmon reso-
nances, intrinsic nonlinearity of metal nanoparticles, and
the nonlinear electron transport through narrow gaps.

The present work aims at answering the above ques-
tion by using TDDFT97,98 calculations of the 2nd and 3rd

harmonic generation from plasmonic dimer nanoantennas
with narrow gaps. TDDFT provides a time-domain ac-
cess to the quantum dynamics of the electron density
of the system and thus allows for a non-perturbative
treatment of nonlinear effects99. At variance with the
model-Hamiltonian approaches within PAT, the TDDFT
is parameter-free treatment (as far as the potential act-
ing on the valence electrons is set) that naturally includes
the non-local screening and tunneling effects, essential in
the case of metal nanoparticles. By considering a vari-
ety of geometries, different materials, and a wide range
of junction sizes, we isolate different regimes of frequency
conversion in structures with narrow plasmonic gaps. We
analyse in detail the 2nd and 3rd harmonic generation in
such situation, and show that under certain conditions
the nonlinear tunneling current through the potential
barrier between nanoparticles can provide a dominant
contribution to the nonlinear response with up to 2 or-
ders of magnitude increase of the frequency conversion
efficiency. We also demonstrate that because of the role
of the plasmon resonances the dimer configuration does
not necessarily provides a gain in efficiency of the non-
linear process as compared to the pair of non-interacting
nanoparticles.

The paper is organised as follows. The systems under
study and the TDDFT approach are introduced in sec-
tion II. Sections III and IV are devoted to the results and
their discussion. In particular, the role of quantum tun-
neling in the nonlinear response of the system is detailed
in Section IV. The summary and conclusions of this work
are given in section V. Atomic units are used throughout
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FIG. 1. Sketch of the studied systems. a) Spherical Al
nanoparticle dimer. An individual nanosphere has a radius
of Rsph = 11 Å and comprises 1012 electrons. b) Dimer of Na
cylinders, infinite along x-axis. An individual cylinder has a
radius Rcyl = 30.7 Å and comprises 800 electrons per 1 nm
length. The origin of coordinates is at the middle of the junc-
tion and the dimer z-axis is such that the (x, y, z = 0)-plane
is the symmetry plane of the system. The incident electro-
magnetic field is a plane wave polarized along the z-axis and
propagating along the y-axis.

the paper unless otherwise stated.

II. METHODS

To reveal the role of tunneling effects, field enhance-
ment, and plasmon modes in the generation of frequency
conversion, we perform TDDFT calculations of the non-
linear optical response in metal dimer structures with
vacuum gap and with different geometries, as sketched
in Fig. 1. The width of the gap, dgap, has been var-
ied to cover all the interaction regimes, from a touching
geometry to well-separated, weakly-coupled nanoparti-
cles. We consider a spherical nanoparticle dimer and
a dimer formed by infinitely long cylindrical nanowires.
The field of the fundamental incident wave is polarised
along the dimer z-axis, as sketched in the figure. The
spherical nanoparticle and the cylindrical nanowire dimer
geometries allow for a strong field enhancement in the
junction and feature multitude of bonding and charge-
transfer plasmon modes64–70,100,101. We have also con-
sidered the case of the parallel infinite Na metal slabs
separated by the narrow vacuum gap. Each slab has
the width ` = 100 Å and comprises 300 electrons per
nm2 area. In this system the field in the junction is not
enhanced, and only one plasmon mode close to the bulk
plasmon frequency can be excited102. Therefore auxiliary
calculations with parallel metal slabs were performed to
confirm the importance of the field enhancement for the
strong contribution of the nonlinear electron tunneling to
frequency conversion by the system.

Our choice of the description of the metal nanoparti-
cles is determined by several considerations. First, the
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focus of the present contribution is on the nonlinear dy-
namics of the conduction electrons, and in particular on
the role of the electron tunneling across the gap between
the nanoparticles. Second, the description of the metal
nanoparticles needs to allow an efficient implementation
of the TDDFT approach so that the nonlinear response
can be obtained for relatively large nanoparticles with
well established plasmon modes. We thus adopt the free-
electron jellium model103 (JM) of metal. Similar to the
hydrodynamic treatments60,90–92, this approach does not
capture excitations involving electrons from the localized
bands, as e.g. d-band in case of noble metals. At the
same time, the JM is well suited to describe the dynamics
of valence electrons. In particular, the JM along with the
TDDFT approach allow to account for the electron spill-
out, tunneling, non-local response, and photon assisted
transport, effects of paramount importance for electron-
photon coupling in narrow gaps. The JM has been of-
ten considered to elucidate robust quantum effects in the
linear and nonlinear plasmon response as confirmed by
ab-initio and experimental results66–77.

Within the JM the lattice ions are represented by a
uniform positive background charge of density n+ =[

4π
3 r

3
s

]−1
, with rs being the Wigner-Seitz radius. We use

the value rs = 2.07 a0 which corresponds to the Al metal
(spherical dimer), and rs = 4 a0 for the Na metal (cylin-
drical dimer, parallel slabs). Here a0 = 0.053 nm is the
Bohr radius. While being the prototype of free-electron
metals with valence electrons well described within the
JM103–107, Na and Al are characterised by very different
electron densities. As a consequence, the bulk plasmon
frequencies differ by nearly a factor of three which allows
us to check the robustness of the observed effects. The
Na metal nanoparticles feature plasmon modes in a fre-
quency range similar to that of gold and silver nanopar-
ticles and have been often used as a prototype to study
quantum effects67–70. Al, on the other hand, attracts a
growing attention in the plasmonics community owing to
the presence of its plasmon resonances in the UV fre-
quency range26,33,108,109.

The real-time calculations of the electron density dy-
namics triggered by an external incident electromag-
netic pulse are performed within the Kohn-Sham (KS)
scheme110 of TDDFT using the adiabatic local density
approximation (ALDA)97 for the exchange-correlation
potential. The details of the numerical implementation
of the method are given in Refs. 67, 68, and 111 so that
only a brief discussion will be presented here. The time-
dependent electron density n(r, t) =

∑
j∈occχj |ψj(r, t)|

2

is given by the sum over all initially occupied KS or-
bitals ψj(r, t), where the χj multiplier accounts for the
spin and symmetry degeneracy. The KS orbitals evolve
in time according to the Schrödinger-type equations

i∂tψj(r, t) =[
T̂ + VH(r, t) + VXC(r, t) + Vext(r)

]
ψj(r, t), (1)

where T̂ is the kinetic energy operator, VH the Hartree

potential, VXC is the exchange-correlation potential, and
Vext is the external potential. Eqs. (1) are solved on a
mesh of spatial points using split-operator time propaga-
tion and pseudospectral techniques112,113.

We use the velocity gauge with T̂ = 1
2

[
−i~∇+ ~A(t)

]2
.

The vector potential ~A(t) is defined through ~E(t) =

−∂t ~A(t), and the field ~E(t) of the incident Gaussian elec-
tromagnetic pulse is given by

~E(t) = êzE0 cos(ωt)e−( t−t0τ )
2

. (2)

Here êz is the unit length vector along the z-axis. The
pulse duration, 2τ , is set large enough (typically 6 laser
periods) so that well-resolved harmonics can be observed
in the spectrum of the induced dipole. Results presented
below are obtained with a field amplitude E0 = 1.5 ×
10−3 a.u. which corresponds to an average power density
of the incident pulse of 1011 W/cm2. Different values of
E0 were also used to confirm the Inω ∝ E2n

0 scaling of
the intensity Inω of the n-th harmonic.

The Hartree potential is obtained from the to-
tal charge density solving Poisson’s equation ∆VH =
−4π [n+(r) + n(r, t)]. Retardation effects are neglected
because of the small particle sizes considered here.
The exchange-correlation potential of Gunnarson and
Lundqvist114 is used in our study. Finally, the external
potential, Vext(r) = Epz, describes the electron interac-
tion with a dc field applied along the z-axis. For the
dimer formed by identical free-electron metal nanoparti-
cles the 2nd harmonic generation is a symmetry forbidden
process30,45,46. However, this process can be induced us-
ing a polarising field Ep

38,115–117 that allows to actively
control the intensity of the 2nd harmonic generation117.
The results shown below are obtained for polarising field
Ep = 1.05 × 10−4 a.u. In the calculations of the 3rd

harmonic no dc polarising field is applied, Ep = 0.
The frequency-resolved quantities such as the induced

dipole ~pΩ, the induced field in the middle of the junction
EgΩ, current through the middle of the junction IΩ, cur-

rent density ~jΩ(~r), or induced charge densities ∆nΩ(~r),
are obtained from the corresponding time-dependent
quantities using the time-to-frequency Fourier transform.
Thus, considering that the relevant sizes of the dimers
under the study are much smaller than the optical wave-
length, the nonlinear response of the nanostructure can
be adequately described by the dipole induced at the cor-
responding frequency pnω (with n = 2 and n = 3), given
by

pnω =

∫ T

0

eiΩte−( t−t0∆ )
2

p(t), Ω = nω, (3)

(In what follows we will not use the vector notations for
the dipoles because for symmetry reasons only the dipole
along the z-axis can be induced in the systems considered
here.) In Eq. (3) T is a large enough (though finite)
propagation time, and p(t) is the time-dependent dipole
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FIG. 2. Spectral analysis of the z-component of the induced
dipole for a dimer of cylindrical Na nanoparticles separated by
the junction of the width dgap = 3.5 Å. Results of the TDDFT
calculations are shown as function of the frequency Ω. The
incident Gaussian electromagnetic has carrier frequency ω =
0.6 eV and duration 2τ = 40 fs.

of the nanostructure

p(t) = −
∫
z ∆n(~r, t) d3~r. (4)

It is obtained from the induced electron density ∆n(~r, t)
calculated with TDDFT in response to the incident pulse
E(t). Alternatively, assuming the exp(−iωt) time de-
pendence, the pnω can be obtained from the TDDFT re-
sult for the z-component of the harmonic current density
jz,nω(~r)118

nω pnω = i

∫
jz,nω(~r) d3~r. (5)

We have explicitly checked that Eq. (3) and Eq. (5) yield
the same result.

The nonlinear polarisations and currents p2ω, p3ω,
jz,2ω(~r), and jz,3ω(~r) are orders of magnitude smaller
than the induced dipole and current density at the funda-
mental frequency pω, jz,ω(~r). In performing the Fourier
analysis of the time-dependent quantities we then use a
Gaussian filter of width ∆ ≥ τ as in Eq. (3). This ap-
proach allows to improve the convergence of the spectral
futures at harmonic frequencies, and it is particularly
appropriate for the excitation of the dimer nanoantenna
far from the plasmon resonance where the dipolar polar-
isation is only induced during the optical pulse. In the
cases where the harmonic frequency matches some plas-
mon mode of the dimer, the nonlinear dipole is enhanced,
and it can be reliably extracted without using the filter
[∆ parameter is set to infinity in Eq. (3)].

In Fig. 2 we show an example of the spectral analysis
of the dipolar polarisation of a cylindrical nanoparticle
dimer. The main peak in Fig. 2 corresponds to the po-
larisation at the fundamental frequency, and the 3rd and

5th harmonics are clearly distinguishable (only odd har-
monics can be obtained in this case as no polarising field
is applied).

From the nonlinear dipole, pnω, the power radiated by
the nanostructure at harmonic frequency, Inω, can be
obtained as:

Inω =
(nω)4

3c3
|pnω|2, (6)

where c is the speed of light in vacuum. Within the
perturbative regime the nonlinear dipolar polarisation of
the nanostructure can be characterised by the third-order
hyper-polarisabilities, α(3)(2ω) ≡ α(3)(2ω;ω, ω, 0), and
α(3)(3ω) ≡ α(3)(3ω;ω, ω, ω), defined with the following
relations:

p2ω = α(3)(2ω)E2
ωEp,

p3ω = α(3)(3ω)E3
ω. (7)

By performing the TDDFT calculations for different
power of the incident Gaussian pulse and strength of the
polarizing field, we have explicitly checked that Eqs. (7)
hold. The hyper-polarisabilities can thus be obtained by
inverting Eqs. (7) with use of the values of pnω calculated
within TDDFT.

III. LINEAR RESPONSE

Understanding of the main phenomena underlying the
dependence of the nonlinear response on the frequency
of the fundamental wave and on the size of the gap re-
quires characterisation of the linear optical properties of
the system. For the dimer configuration, the linear opti-
cal response including the effects of quantum tunneling
and non-locality has been addressed in great detail in a
number of studies,64–70,100,101. Therefore, only a brief
discussion of the main features will be presented here.

The optical absorption cross section σ calculated with
TDDFT for the Na nanowire dimer and Al nanosphere
dimer in vacuum is shown in Fig. 3a,b as a function of the
width of the gap dgap and the frequency ω of the incident
z-polarized plane wave (see Fig. 1). In Fig. 3c we show
the dgap dependence of the field enhancement, and of
the ac electron current through the middle junction of
the Na cylinder dimer. Results are presented for several
selected frequencies relevant for the calculation of the
frequency conversion below. The field enhancement is
defined as RE = |Egω/Eω|, where Eω and Egω are given
by the Fourier transforms of the incident pulse, and of the
field induced by the nanostructure in the middle of the
junction, respectively. The ac electron current through
the middle of the junction is given by

Iω = êz

∫
dx

∫
dy ~jω(x, y, z = 0), (8)

and in Fig. 3c it is normalized to the field of the incident
pulse (the |Iω/Eω| quantity is shown).
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FIG. 3. Panels a) and b): color plots of the optical absorption cross section σ of a dimer of cylindrical Na [panel a)], and
spherical Al nanoparticles [panel b)]. TDDFT results are presented as a function of the size of the gap between nanoparticles
dgap and frequency of the incident plane wave ω. Labels indicate the plasmon modes responsible for the absorption resonances:
Bonding Dipole Plasmon (BDP), Bonding Quadrupole Plasmon (BQP), the lowest (dipole) Charge Transfer Plasmon (CTP),
and the higher energy Charge Transfer Plasmon (CTP’). c) Cylindrical Na dimer. The gap-size dependence of the enhancement
of the incident field RE = |Eg

ω/Eω| (solid lines) and of the amplitude of the normalized ac current |Iω/Eω| between nanoparticles
(dashed lines). The TDDFT results are obtained in the middle of the gap for different frequencies of the linearly polarised
incident electromagnetic wave ω = 0.6 eV (λ = 2066 nm), ω = 0.8 eV (λ = 1550 nm), and ω = 1.2 eV (λ = 1033 nm)
as explained in the insert. Here, Eω is the incident field, Eg

ω is the induced ac field in the middle of the gap, Iω is the
electron current through the gap at optical frequency. d) Hyper-polarisability α(3)(3ω) of an individual Na nanowire. The
values are given in atomic units (a.u.). The relation 1 esu= 0.1985 × 1040 a.u. can be used for conversion of the third-order
hyper-polarisability to electrostatic units (esu).

For large gap widths (capacitive coupling between
nanoparticles), the absorption resonances correspond to
the excitation of the bonding plasmon modes [bond-
ing dipole plasmon (BDP), bonding quadrupole plasmon
(BQP), etc]. These modes are formed by the hybridiza-
tion between the dipolar and higher momentum plasmon
modes of the individual nanoparticles101. As the width
of the gap dgap decreases, the bonding plasmon modes
experience a red shift because of the attractive inter-
action between the charges of opposite sign induced at
facing metal surfaces across the junction. The induced
charges also lead to the enhancement of the electromag-
netic field in the gap between nanoparticles. The field en-
hancement, RE, increases with decreasing dgap and can
reach extremely high values at bonding plasmon reso-
nances frequencies68,100. However, the enhancement at
low frequencies, out of resonance, is also considerable, as
observed in Fig. 3c.

When dgap is reduced down to a few Å, the absorption
resonances owing to the bonding plasmon modes progres-
sively disappear, and the field enhancement is first satu-
rated and then quenched. This effect is attributed to the
establishment of the ac tunneling current across the junc-
tion, Iω, at optical frequencies. The induced charges of
opposite sign at the facing metal surfaces are neutralised
leading to the observed change of the linear response.
Because of the electron transfer through the potential
barrier separating the nanoparticles, the lowest (CTP)
and higher energy (CTP’) charge transfer plasmon modes
emerge. The nanoparticles become conductively coupled
prior to the direct geometrical contact between their sur-
faces. The establishment of Iω can be identified in Fig. 3c

for the dimer of Na cylinders. As dgap decreases, the ac
current between nanoparticles Iω first grows exponen-
tially (tunneling regime). Starting from dgap ' 2 Å the
potential barrier separating the nanoparticles decreases
enough so that the electrons close to the Fermi level can
move quasi-freely across the junction. In this situation
Iω is stabilised at a nearly constant value.

Qualitatively, the results obtained for the Al spherical
dimer and for the Na nanowires dimer are very similar,
except for the relevant frequency and distance ranges.
Because of the lower electron density, the dipolar plas-
mon resonance of an individual Na cylinder is at ω = 4 eV
while the dipolar plasmon resonance of an individual Al
sphere is at ω = 8.7 eV. As to the relevant distances, the
effects of electron tunneling require smaller dgap to be ap-
parent in the Al case. Indeed, the tunneling barrier of the
junction is larger in the case of Al because of its higher
work function. Note also that because of the much larger
radii, the plasmon resonances are better defined for the
Na nanowires. In the case of Al, the strong interaction
between collective (plasmon) and one-particle electron-
hole pair excitations leads to the broadening of the plas-
mon modes119. For the geometry of parallel Na slabs (not
shown here) the fields in the gap are not enhanced be-
cause of the flat geometry. The absorption cross-section
in such junction is nearly independent of dgap, and it is
characterised by a pronounced resonance at 5.89 eV close
to the bulk plasmon frequency, in full agreement with the
classical theory102.
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IV. NONLINEAR RESPONSE

A. The role of tunneling

Among the effects influencing the nonlinear response
of metal nanostructures, the situations where the inci-
dent wave, or the frequency-converted signal (3rd or 2nd

harmonic for example) are in resonance with the plasmon
mode of the system have been identified as particularly
effective29–34,48–60. This resonant effect is illustrated in
Fig. 3d with the example of an individual Na cylinder in
vacuum. The third-order hyper-polarisability, α(3)(3ω),
increases by more than one order of magnitude when the
frequency of the 3rd harmonic matches the dipolar plas-
mon resonance of the individual cylinder, 3ω = 4 eV.
Similarly, a strong resonant increase of the non linear re-
sponse is also obtained for the dimer, as discussed below
in this section.

1. TDDFT results at low frequencies of the fundamental
wave

To facilitate the analysis of the different mechanisms
involved in the nonlinear response and reveal the effect
of electron tunneling across the gap of the nanoantenna,
we start our discussion with TDDFT results obtained for
the low frequencies of the fundamental wave, as shown
in Fig. 4. We use ω ≤ 1.2 eV for the Na nanowire dimer
and ω ≤ 2.5 eV for Al nanospheres, which places the
2nd or 3rd harmonic frequencies below the energies of the
plasmon modes of the system (see Fig. 3). The case of
the Na nanowire dimer and frequency of the fundamen-
tal ω = 1.2 eV is an exception since the 3rd harmonic is
in resonance with the red-shifted BDP for well-separated
nanowires at dgap = 21 Å. The latter is done on pur-
pose in order to simultaneously illustrate the resonant
effect (here at large dgap) and the tunneling contribu-
tion (small dgap) to the frequency conversion. It is also
noteworthy that considering low frequencies for the in-
cident wave allows for a comparison between the results
of the TDDFT calculations and the qualitative analytical
trends obtained within the theory of PAT85–87. After the
contribution of tunneling to the nonlinear response is un-
veiled, we will extend our analysis to the results obtained
at higher frequencies which show resonance effects.

In Fig. 4 we show the enhancement R of the nonlinear
response due in a dimer configuration. It is defined as
the ratio between the intensity of the 2nd (n = 2) or 3rd

(n = 3) harmonic emitted by the dimer and the intensity
of the corresponding nonlinear signal obtained from the
pair of non-interacting nanoparticles:

Rn = |pnω|2 /(4
∣∣pinω∣∣2), (9)

where pnω is the induced nonlinear dipole of the dimer,
and pinω is the nonlinear dipole of the corresponding in-
dividual nanoparticle. Along with the enhancement Rn,
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FIG. 4. Nonlinear response of a dimer of a) cylindrical Na,
and b) spherical Al nanoparticles. Results of the TDDFT
calculations are shown as a function of the size of the gap
between nanoparticles, dgap. Solid lines represent the en-
hancement of the intensity of the nonlinear dipole Rn =

|pnω|2 /(4
∣∣pinω

∣∣2) at the 2nd (n = 2) and 3rd (n = 3) har-
monic frequency. Dashed lines represent the scaled ac current

through the middle of the junction β |Inω|2 /(4
∣∣pinω

∣∣2) calcu-

lated at the 2nd and 3rd harmonic frequency. Different colors
correspond to results obtained with different frequencies ω of
the incident fundamental wave, as detailed in the inserts. For
further details see the main text.

we also show the scaled ac current through the middle

of the junction, β |Inω|2 /(4
∣∣pinω∣∣2), calculated at the 2nd

and 3rd harmonic frequency. The scaling parameter β is
defined below in this section. Calculations have been per-
formed for the dimer of cylindrical Na nanowires [panel
a)] and for the Al nanosphere dimer [panel b)]. Results
are shown as function of the width of the gap for sev-
eral frequencies of the incident pulse, as indicated in the
inserts.

Overall, the same general trends are obtained for differ-
ent dimer geometries. The nonlinear conversion is much
more efficient for a dimer configuration than for non-
interacting nanoparticles with generality, as far as low
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frequencies ω of the incident electromagnetic wave are
used. The intensity of the nonlinear signal progressively
increases from large separation distances, as the width
of the gap dgap decreases. This increase is due to the
enhancement of the incident field in the gap of the dimer
(see Fig. 3), so that each nanoparticle of the dimer is sub-
jected to a stronger field leading to its larger nonlinear
polarisation. The TDDFT results obtained here for low
ω thus confirm the advantage of using a dimer nanoan-
tenna configuration as a platform for enhancing nonlinear
effects. For slightly larger frequency of the incident wave,
ω = 1.2 eV, the dimer of Na cylinders features a qualita-
tively different behaviour with dgap. In this case the 3rd

harmonic, 3ω = 3.6 eV, is in resonance with the BDP
of the dimer at large separation (dgap = 21 Å). Decreas-
ing the width of the gap below this value red shifts the
BDP frequency. The resonance condition is lost thereby
reducing the nonlinearity, this is despite larger fields are
reached for smaller dgap. However, when the width of the
gap is further reduced down to the tunneling regime, the
3rd harmonic intensity increases again.

All the TDDFT results for the nonlinear response
shown in Fig. 4 feature the same trend when the width
if the gap is reduced to a few Å range where the electron
transport across the junction strongly affects the linear
response of the system [see Fig. 3a]. Namely, the effi-
ciency of the frequency conversion reaches a maximum
at dgap = 2− 3 Å (depending on the metal) correspond-
ing to the electron transport via an ac tunneling current
through the potential barrier separating nanoparticles.
For even smaller dgap, when the conductive contact is
established across the junction, the conversion efficiency
Rn drops by several orders of magnitude. The dimer
evolves towards a single, albeit larger, nanoparticle.

At first glance, the main trends in the dependence of
the frequency conversion on dgap [Fig. 4a and Fig. 4b]
seem to correspond to the gap width dependence of the
field enhancement [see Fig. 3c]. In particular, the de-
crease of the nonlinearity for narrow gaps correlates with
the quenching of the field enhancement due to the estab-
lishment of the optically induced ac current, Iω, across
the junction [see Fig. 3c]. It is then tempting to consider
that the nonlinear response of the dimer can be explained
on the basis of the nonlinear response of the individual
nanoparticles subjected to the corresponding enhanced
fields. However, a careful inspection of the data obtained
for the gap widths of dgap < 4 − 6 Å shows additional
features that might point at the different explanation:

• The smooth variation of the nonlinearity when de-
creasing dgap at large separations is replaced by a
sharp growth at a separation distance of dgap ≈
4 − 6 Å, which correlates with the fast increase of
the ac electron tunneling across the gap.

• The change in the behaviour of the nonlinear re-
sponse at dgap ≈ 4 − 6 Å, and the overall depen-
dence of R(dgap) in the tunneling region matches
the dependence on dgap of the corresponding n-th

harmonic of the (tunneling) current across the junc-

tion, |Inw|2, marked with dashed lines for each cor-
responding case in Fig. 4a and in Fig. 4b.

In what follows, on a basis of a detailed analysis of the
TDDFT results we demonstrate that while for the large
dgap the nonlinear response of the dimer is that of in-
dividual nanoparticles subjected to enhanced fields, the
electron tunneling, and more generally an electron trans-
port through the junction, plays a key role in the for-
mation of the nonlinear response of the dimer structures
with narrow gaps dgap < 4− 6 Å.

2. The nonlinear tunneling currents

An electron tunneling through the junction can influ-
ence the nonlinear response due to its effect on the distri-
bution of the fields inside the particles, as well as due to
the nonlinearity of the tunneling process itself67,93–95,120.
The latter can be qualitatively argued using a semi-
classical approach as follows: high harmonics in the tun-
neling current between nanoparticles, Inω, arise because
of the nonlinearity in the current-voltage characteris-
tic, I(V ), of the junction: Inω ∝ ∂nI

∂V n (Uopt)
n
, where

Uopt = dgap E
g
ω is the optical potential (bias) across the

gap,41,82 with Egω the corresponding local field in it. Go-
ing beyond this simple approach, the quantum theory of
photon-assisted tunneling provides a closed-form expres-
sion for the time-dependent tunneling current in terms
of the complex response function of the junction J85,88:

I(t) = Im

[∑
n,m

Jn(α)Jn+m(α) eimωt J(Vp + nω)

]
,

(10)
where Im[x] stands for the imaginary part of x, Jk is

the Bessel function of order k , and α =
Uopt

ω . Assuming

that α is small, Jk(α) ∝
(
Uopt

ω

)k
. Under these condi-

tions, and in agreement with simple semi-classical ap-
proach, it follows from Eq. 10 that the high harmonics in
the tunneling current between nanoparticles are given by
Inw ∝ (dgap E

g
ω/ω)

n
. We find, that the relative weight

of high harmonics in the ac tunneling current through
the junction calculated with TDDFT indeed increases as

Inω/Iω ∝ (Egωdgap)
(n−1)

with increasing separation be-
tween nanoparticles. For the Na cylinder dimer, the I3ω
becomes comparable to the ac tunneling current at the
frequency of the fundamental wave Iω at large dgap. Ob-
viously, both tunneling currents are exponentially small
in this case.

To further analyse the origin of the nonlinear response,
we show in Fig. 5b color maps of the absolute value of
the z-component of the current density at 3rd harmonic
frequency |jz,3ω(y, z)| for a Na cylindrical dimer nanoan-
tenna, calculated in the (y, z)-plane perpendicular to the
cylinders axis. The frequency of the fundamental wave
is ω = 0.6 eV. Note that because of the strong variation
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dgap = - 3 Ådgap = 0dgap = 3 Å
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minE
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z - component of the current density | jz,3w |
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y

FIG. 5. Analysis of the nonlinear response of the Na cylindrical dimer for the frequency of the fundamental wave ω = 0.6 eV.
Panel a): sketch of the geometry of the system and of the polarisation of the fundamental wave. Panel b): color plots of the

the current density ~j3ω induced at the 3rd harmonic frequency calculated for several sizes of the gap dgap. The absolute value

of the z-component of ~j3ω, |jz,3ω| ≡
∣∣∣êz ~j3ω∣∣∣ is shown in the (y, z)-plane perpendicular to the cylinders axis. The color codes

are explained in the insert. Blue frames indicate a regime of capacitive coupling between nanoparticles, and red frames indicate
a conductive coupling regime. A violet frame is used for an intermediate situation at dgap = 6 Å. Panel c): Time evolution
of the nonlinear dipole Re

[
e−i3ωt p3ω

]
, charge transferred between nanoparticles Re

[
e−i3ωt Q3ω

]
, and current through the

junction Re
[
e−i3ωt I3ω

]
at the 3rd harmonic frequency. Results are shown for dgap = 3 Å, which corresponds to the maximum

enhancement of the 3rd harmonic intensity. Here, Re stands for the real part. All the quantities are scaled to 1 at the maximum.
The color code is explained in the insert.

of the nonlinearity with dgap the color scale is set sepa-
rately for each panel. Assuming the exp(−iωt) time de-
pendence, the total z-oriented nonlinear dipole per unit
length can be obtained from the relationship118

3ω p3ω = i

∫
dy

∫
dz jz,3ω(y, z). (11)

Thus, the results in Fig. 5 allow one to visualize the rela-
tive contributions of the nonlinear currents to p3ω in the
different spatial regions. In particular, we are interested
in how the relative weight of the nonlinear tunneling cur-
rent evolves with dgap.

For well-separated cylinders (dgap = 26 Å, and dgap =

10 Å) the nonlinear current is predominantly excited in
the volume of each nanoparticle as well as at the portion
of its surface oriented in the direction along the electric
field of the incident pulse. Thus, we observe the (strong)
volume and (weaker) surface contributions to the nonlin-
ear polarisation60. At these widths of the gap the total
dipole p3ω is built as a sum of the polarisations of individ-
ual cylinders. Note that the nonlinear surface currents
are the strongest at the surfaces facing the gap because
of the field enhancement at the junction. A decrease of
the gap width to dgap = 10 Å leads to larger fields in the
gap region so that the contribution of the metal surfaces
facing the gap becomes more pronounced.

For dgap ≤ 8 Å the coupling between cylindrical
nanowires evolves from capacitive to conductive. In
this situation an electron tunneling through the junction

strongly affects the optical absorption cross section σ as
shown in Fig. 3. Along with its effect on the linear re-
sponse, the electron transport through the junction con-
tributes to the nonlinear polarisation of the dimer. In-
deed, simultaneously to the presence of the surface cur-
rents, the 3rd harmonic current through the junction be-
comes visible for dgap = 6 Å, and the regions with the
strongest nonlinear current density within the nanoparti-
cle volume shift towards the junction. Note that the vol-
ume current density also contains the contribution of the
tunneling current. This is because the electrons trans-
ferred through the potential barrier of the junction con-
tinue to move towards the inner part of the nanoparticle
while suffering inelastic scattering and dephasing because
of the collisions with the valence electrons121,122. Thus,
it is impossible to explicitly separate the tunneling cur-
rent contribution to the build up of the total nonlinear
polarisation.

A gap width of dgap = 3 Å corresponds to the situ-
ation with the strongest enhancement of the nonlinear
conversion in the system [see Fig. 4a]. In this case the
3rd harmonic of the tunneling current in the junction re-
gion is essential while the surface nonlinear currents are
not distinguishable at the scale of the figure.

By further decreasing the width of the gap, at geo-
metrical contact between the cylinders (dgap = 0 Å) the
junction becomes metallic. The tunneling barrier for the
electrons moving along the dimer axis disappears, the
field is expelled outside the junction neck created by the



9

metallic conductive path, and the field enhancement in
the gap is quenched. Interestingly, the nonlinear currents
in the gap remain strong relative to the other regions. It
is worth stressing however that the total nonlinear po-
larisation and 3rd harmonic currents between nanopar-
ticles are orders (!) of magnitude smaller than that in
the tunneling regime at dgap = 3 Å [see Fig. 4a]. In this
case of conductive contact we ascribe the strong nonlin-
ear current through the gap region to the system evolu-
tion towards the limit of a single elongated peanut-shape
nanowire. The formation of the nonlinear dipole involves
the charge separation between left and right parts of this
compound nanoparticle which results in electron currents
through the junction. Because of the small cross-section
of the latter relatively high currents might be reached. In
the fully overlapping geometry (dgap = −3 Å) the role of
the nonlinear currents at the bulk of the particles and at
the surfaces increases, with the corresponding decrease
of the contribution at the junction itself. This is con-
sistent with a recovery of the nonlinear response based
on the intrinsic bulk and surface nonlinearity of the full
connected system.

3. The nonlinear currents through the junction and build
up of the nonlinear response of the dimer

The nonlinear current through the middle of the junc-
tion of the cross-section S,

Inω =

∫∫
S

jz,nω(x, y, z = 0)dxdy, (12)

transfers a charge Qnω = iInω/nω between the nanopar-
ticles and polarizes the system. Here the relationship
Inω = dQnω/dt = −inωQnω is used assuming harmonic
signals. The resulting charge-transfer dipole can be ex-
pressed as DQnω = iDInω/nω, with D the (unknown)
effective separation between the charges ±Qnω induced
in the nanoparticles. In Fig. 5c we show the dynamics
of the total nonlinear dipole p3ω, the transferred charge
Q3ω, and the current I3ω calculated with TDDFT for
the frequency of fundamental wave ω = 0.6 eV, and
dgap = 3 Å. These conditions correspond to the maxi-
mum enhancement of the 3rd harmonic generation by the
dimer nanoantenna. The width of the gap is such that
the system is in the tunneling regime, i.e. an electron
transport through the junction corresponds to the tun-
neling through the potentials barrier between nanopar-
ticles. The total nonlinear dipole evolves in phase with
transferred charge and its time evolution is shifted by a
quarter of an optical period with respect to that of the
current. I.e. the dynamics of the total nonlinear dipole
is equivalent to that of the charge transfer dipole. This
result is consistent with possibly determinant role played
by the charge transfer dipole and thus by the electron
transport through the junction in the build up of the
total nonlinear polarisation.

z - component of the current density Re(jz,3w) +

-

t (fs)

0         10 20 30 40 50

0

-30     -15  0     15    30

z (Å)

10
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-10

a)

b)

x
(Å

)
FIG. 6. Analysis of the nonlinear response of an Al spherical
dimer for ω = 1 eV. The dimer geometry is characterized by
a gap of width dgap = 2 Å, corresponding to the maximum
enhancement of the 3rd harmonic intensity. Panel a): color

plot of the the current density ~j3ω induced at the 3rd har-
monic frequency. The real part of the z-component of the

current density, Re (jz,3ω) ≡
(
êz ~j3ω

)
, is shown at the in-

stant of time corresponding to the maximum 3rd harmonic
current through the junction. Results are shown in the (x, z)-
plane with z being the axis of the dimer (see Fig. 1). Panel b):
Time evolution of the nonlinear dipole Re

[
e−i3ωt p3ω

]
, charge

transferred between nanoparticles Re
[
e−i3ωt Q3ω

]
, and cur-

rent through the junction Re
[
e−i3ωt I3ω

]
at the 3rd harmonic

frequency. All the quantities are scaled to 1 at the maximum.
The color code is displayed in the insert.

One might consider that for the Na nanowire dimer the
increase of nonlinear response for tunneling distances is
connected with an effect of proximity of the frequency of
the 3rd harmonic to the CTP. For dgap = 1 − 2 Å this
is indeed the case at low frequencies of the fundamen-
tal wave ω = 0.6 eV and ω = 0.8 eV, and this could
further increase the role of the electron transport across
the gap. However, the same qualitative results in the be-
haviour of the nonlinear current and the charge transfer
are obtained (Fig. 6) in the case of an Al spherical dimer
for the frequency of the fundamental wave ω = 1 eV. In
this situation the 3rd harmonic frequency is well below
any resonant excitation in the system [see Fig. 3b], which
points towards a non-resonant effect, intrinsically associ-
ated with the nonlinear tunneling current and therefore
supports robustness of our conclusions.
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4. Intrinsic versus tunneling contributions

As explained above, the tunneling, volume, and sur-
face components of the total nonlinear current calculated
with TDDFT cannot be explicitly separated so that the
respective contributions to the nonlinear response cannot
be straightforwardly obtained using Eq. (5) or Eq. (11).
Similarly, the effective separation D between the charges
transferred across the junction is a priori unknown. To
quantify the role of the electron transport through the
junction in the nonlinear response the following proce-
dure can be applied. Let us write the nonlinear dipole of
the dimer in the form:

pnω = 2pnp
nω + pCT

nω , (13)

where the intrinsic nonlinear polarisation of each
nanoparticle excluding the effects of nonlinear electron
transport through the junction is denoted as pnp

nω, and
pCT
nω ≡ iDInω/(nω) is the nonlinear dipole induced by the

nonlinear current between nanoparticles. If the charge-
transfer polarisation pCT

nω provides the main contribution
to the total nonlinear dipole, i.e., if pCT

nω � pnp
nω, then the

quantity D̃ = −inωpnω/Inω should be real valued and
nearly independent on the width of the gap (we assume
dgap << D). This is indeed what we obtain from pnω
and Inω calculated with TDDFT at small widths of the
gap for both the Na nanowire (below 6 Å) and for the

Al nanosphere dimer (below 4 Å). Thus, D̃ can be used

to find an effective separation D = Re
[
D̃
]

between the

charges induced at the nanoparticles at the corresponding
nth-harmonic frequency because of the electron transport
across the junction.

With this definition at hand, we find that for the Al
nanosphere dimer the effective separation D is very close
to 2Rsph for both the 2nd and 3rd harmonic cases. The
transferred charge is effectively located close to the center
of the nanoparticles as one would expect considering the
symmetry and small size of the Al spheres. For the Na
nanowire dimer, because of the relatively large cylinder
radii, the non-local screening effects become important.
Depending on the frequency, we find an effective separa-
tion distance D within 15 − 50 Å, i.e. D < 2Rcyl. For
all the systems, at large widths of the gap, the quantity
D̃ diverges. This is because the tunneling current Inω
becomes exponentially small in such a situation, and the
intrinsic polarisation pnp

nω of each particle provides the
leading contribution to the total nonlinear dipole.

With parameter D as defined above, and fixed to its
value at small width of the junction, we can estimate
the frequency conversion enhancement R̃ owing exclu-
sively to the charge-transfer dipole pCT

nω . It is given by:

R̃ = β |Inω|2 /4
∣∣pinω∣∣2, where β = (D/nω)

2
. The charge

transfer contribution R̃ is shown in Fig. 4a and Fig. 4b
with dashed lines. In the range of the gap widths where
the electron transfer across the gap is efficient the agree-
ment between the TDDFT result shown in Fig. 4 with

solid lines and the prediction obtained by considering
only the charge transfer between cylinders is remarkable.
This points at the dominant role of the nonlinear cur-
rents in the gap as responsible for the frequency conver-
sion by the dimer. In particular, as follows from Fig. 3c
and Fig. 4, the maximum of the frequency conversion
is reached in the tunneling regime, prior to the estab-
lishment of the conductive contact between nanoparticles
with possibility of the ballistic electron transport through
the junction.

The results in Fig. 4 also nicely visualise the transition
between ”tunneling” and ”intrinsic” regimes of the non-
linearity with increasing dgap. As the width of the junc-
tion increases, and the tunneling effects become exponen-
tially low, the R dependence on dgap changes to much a
smoother variation (solid lines). At these large widths
of the gap the total nonlinear dipole is built by intrinsic
polarisations of the nanoparticles. It is determined by
the field enhancement in the system and decreases with
increasing dgap. A departure from this general behaviour
at large distances can be observed for the Na cylinder
dimer, at ω = 1.2 eV, where R grows with dgap. However
this is due to spectral overlap of the BDP resonance of
the dimer which approaches the 3rd harmonic frequency
in this particular case.

It is noteworthy that an efficient generation of the 2nd

and 3rd harmonics in the tunneling current and thus the
build up of the nonlinear dipole due to the charge trans-
ferred between nanoparticles is possible in the spherical
and cylindrical dimer configurations owing to the field
enhancement in the junction. As follows from Eq. (10),
the harmonics in the tunneling current between nanopar-
ticles Inω are determined by the enhanced fields in the
junction Inω ∝ (Egω)

n
. In this respect, Inω should be

more sensitive to the field enhancement than the intrinsic
polarisation representing the integral over the nanoparti-
cle volume. The TDDFT calculations performed for the
parallel metallic slabs further support the conclusion on
the importance of the field enhancement in the gap. De-
spite the presence of nonlinear tunneling currents in this
case, we do not observe any enhancement of the non-
linearity when decreasing dgap. This result is consistent
with the absence of the field enhancement in the vacuum
gap between flat metal surfaces.

B. Role of resonant plasmonic modes

While a dimer nanoantenna generally enables a more
efficient frequency conversion as compared to the cor-
responding independent nanoparticles, this ”rule of
thumb” is subject to specific conditions determined by
the width of the junction, and the respective role of the
electron transport across the gap and by that of the plas-
mon modes of the nanoantenna. Depending on whether
one seeks for the strongest gain of the nonlinearity as
compared to the single nanoparticle (relative efficiency),
or for the largest intensity of the nonlinear signal (abso-
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FIG. 7. 3rd harmonic generation in a Na cylinder dimer. The
polarisation of the incident plane wave is sketched in the insert
of panel a). TDDFT results are presented as a function of the
size of the gap between nanoparticles dgap. a) Enhancement of
the intensity of the emitted 3rd harmonic, R, as compared to
the case of the individual non-interacting nanoparticles. For
the exact definition of R see Eq. (9). b) Hyperpolarisability,

α(3)(3ω), of the same dimer. The values are given in atomic
units (a.u.). The relation 1 esu= 0.1985 × 1040 a.u. can
be used for conversion to electrostatic units (esu). Different
colors correspond to results obtained with the use of different
frequencies ω of the incident fundamental wave, as detailed
in the insert of panel a).

lute efficiency), the choice of the dimer structure might
differ, as revealed by the TDDFT results shown in Fig. 7.
The 3rd harmonic generation in the Na cylinder dimer is
analysed in this figure for a wide range of gap widths
and different frequencies ω of the incident fundamental
wave. The main difference between the two panels in
Figure 7 is that Fig. 7a shows the effect of the collective
response of the dimer relative to the independent individ-
ual nanoparticles, while Fig. 7b provides the information
on the absolute value of the nonlinear response.

We start our discussion with dependence of the en-
hancement of the intensity of the emitted 3rd harmonic,
R, on the width of the junction [Fig. 7a]. The largest en-
hancement (nearly four orders of magnitude) is reached
at low frequencies of the fundamental wave in the tunnel-

ing regime (tunneling enhancement, TE, in narrow gaps)
because of the nonlinear electron transport across the
gap. As the frequency of the incident fundamental wave
is increased, the gain in the 3rd harmonic intensity be-
cause of the dimer structure as compared to the two in-
dividual non-interacting nanoparticles becomes smaller.
This is because of (i) the overall decrease in the non-
linearity of tunneling current [see Eq. (10)], (ii) the en-
hancement of the 3rd harmonic intensity from the sin-
gle nanoparticle since 3ω approaches its dipolar plasmon
resonance (see Fig. 3). For the frequencies of the funda-
mental wave ω above 1.2 eV, no noticeable effect of the
tunneling enhancement can be observed.

Together with the main maximum of the nonlinear en-
hancement in the tunneling regime at dgap = 3 − 4 Å,
the results obtained for larger incident frequencies, at
ω = 0.9 eV, 1.0 eV, 1.1 eV, and 1.2 eV also show an addi-
tional, weaker, feature at larger dgap. This corresponds to
a resonant process [resonant enhancement, RE]. At these
frequencies of the fundamental wave, the corresponding
3rd harmonic is still at lower frequencies than the dipo-
lar plasmon mode of the individual cylinder [see Fig. 4d].
However, the plasmon coupling101 in a dimer configura-
tion red-shifts the dipolar plasmon frequency so that at
a given dgap the 3rd harmonic can be at resonance with
the BDP plasmon mode of the dimer [see Fig. 4]. This
leads to the RE of the nonlinear polarisation. The red
shift of the BDP frequency with decreasing dgap trans-
lates into the corresponding shift of the RE maximum
which appears at smaller dgap when decreasing the inci-
dent frequency.

At frequencies of the fundamental wave ω =1.3 eV,
1.4 eV, and 1.5 eV, the 3rd harmonic spans the high fre-
quency wing of the RE for the individual cylinder ow-
ing to the dipolar plasmon mode [see Fig. 3d]. Since
the dimer configuration red-shifts the BDP out of res-
onance and because of the relatively small TE at high
frequencies, R decreases by several orders of magnitude.
It reaches values close to unity, i.e. the dimer performs
equally good as the noninteracting cylinders in these cir-
cumstances. This is despite the fact that the field en-
hancement in the gap between nanoparticles a priori
should increase the nonlinear response, however, the res-
onance effects outperform the effects of the field enhance-
ment.

Thus, at low frequency of the fundamental wave the
field enhancement and tunneling effects in the gap be-
tween nanoparticles result in the strongest gain of the
frequency conversion obtained with a dimer, as compared
to individual nanoparticles. At the same time, reaching
the maximum absolute value of the nonlinear response
might not necessarily require the same conditions, as fol-
lows from Fig. 7b. In this figure the TDDFT results
for the hyper polarisability, α(3)(3ω), of the dimer are
shown as function of the width of the junction for differ-
ent frequencies of the fundamental wave. The maximum
value of α(3)(3ω) is obtained for a narrow junction, not at
the lowest frequencies but at an intermediate frequency
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range between ω = 0.9 eV and ω = 1.0 eV, where tun-
neling and resonance effects overlap. Comparable high
nonlinear hyperpolarisability is obtained at ω = 1.2 eV
for a wide gap of dgap = 21 Å, where the 3rd harmonic
frequency is at resonance with the BDP plasmon mode
of the dimer. At even higher frequencies, the hyper po-
larisability α(3)(3ω) shows only mild variations with dgap

and its frequency dependence is mainly determined by
the plasmon resonance of the individual cylinders.

One remark is in order before closing this section. We
intentionally did not perform calculations with higher
frequencies of the fundamental wave in resonance with
the plasmon modes of the system. While this situ-
ation is known to provide strong enhancement of the
nonlinearity5,30,43,47,48,52,60,61, the nonlinear tunneling
effects would be small at these relatively high frequen-
cies, and thus difficult to reveal. Moreover, since the
incident pulse needed to observe nonlinear effects is in-
tense, a frequency match with the plasmon resonance in
the absorption cross section would result in strong elec-
tron emission. Precisely, this efficient conversion of the
optical energy into electron-hole pairs via an intermediate
plasmon excitation has made plasmonics a very attrac-
tive tool for solar energy harvesting or for photochemical
applications123–129. However, in the present case, hot
electron emission would result in a spread of the electron
density over the entire computational grid, leading to the
loss of precision.

V. SUMMARY AND CONCLUSIONS

In summary, using quantum calculations based on the
Time Dependent Density Functional Theory we obtained
the nonlinear response in plasmonic free-electron-metal
dimer nanoantennas with narrow gaps. The analysis of
the real-time dynamics of the electron density in response
to an incident intense electromagnetic pulse, allowed us
to elucidate the role of the nonlinear quantum tunnel-
ing and plasmon resonances in the 2nd and 3rd harmonic
generation from these systems.

We found that depending on the main contributions to
the nonlinear response, three interaction regimes can be
identified in a dimer nanoantenna:

(i) At large widths of the gap between nanoparticles,
dgap > 6 − 8 Å(separated nanoparticles), the total non-
linear polarisation of the dimer is given by the sum of the
nonlinear polarizations of individual nanoparticles. The
coupling between the nanoparticles in the dimer, and, in
particular, the field enhancement in the gap increases in
overall the nonlinear response.

(ii) In the tunneling distance range of 2 Å< dgap <

6 − 8 Å, the harmonic components of the ac electron
tunneling current through the gap between nanoparticles
build the nonlinear charge-transfer dipole. Along with
the response of the individual nanoparticles, this charge-
transfer dipole contributes to the total nonlinear polar-
isation of the dimer. At low frequencies (0.6-1.5 eV de-

pending on the metal) of the fundamental incident wave,
the nonlinear tunneling current across the junction deter-
mines and governs the nonlinear response of the dimer.
It might lead to orders of magnitude increase of the fre-
quency conversion.

(iii) Finally, for a situation of geometrical overlap be-
tween nanoparticle surfaces, a conductive contact is es-
tablished. The nonlinear response of the dimer evolves
to that of a single nanoparticle, albeit of larger size. The
strong gap-induced enhancement of the nonlinear signal
is quenched in this situation, consistent with experimen-
tal observations.42,72

The three ranges of gap widths pointed out above are
defined with respect to the transport properties of the
junction. In that respect, they are very similar to the
definition proposed earlier, based on the quantum effects
in the linear response130.

It is worth to stress that the incident field enhance-
ment in the gap of the dimer structure is at the origin
of the strong nonlinear effects due to both the nonlinear
polarizations of individual nanoparticles and the nonlin-
ear electron tunneling mechanisms. In the former case it
leads to the overall increase of the fundamental field seen
by each nanoparticle, while in the latter case it results in
the high optical bias across the junction producing the
strong nonlinear current between nanoparticles.

Along with tunneling enhancement mechanism, our
TDDFT calculations confirm a pronounced resonance
enhancement of the nonlinear response when the 2nd

or 3rd harmonic frequency matches the plasmon mode
of the dimer. This effect also reported in earlier
studies5,30,42,53,54. We concluded that if one seeks for
the best performance of the dimer compared to the non-
interacting nanoparticles, the low frequency range and
the tunneling regime might provide an appropriate solu-
tion. At the same time, if the largest absolute value of
the emitted harmonic is sought, either using the tunnel-
ing regime at small gap width, or setting the emission
frequency in resonance with the bonding plasmon mode
at large gap width, can be equally efficient.

Finally, the present work enabled the theoretical study
of the mechanisms involved in the generation of the
harmonics of the fundamental frequency in the dimer
nanoantennas with subnanometer gaps, a very challeng-
ing regime. The TDDFT approach goes beyond hy-
drodynamic treatments of the nonlinear response60,90–92,
since it naturally accounts for electron tunneling. Thus,
the role of the nonlinear tunneling currents addressed
previously using parameterized classical or semiclassi-
cal approaches93–95 has been demonstrated here on full-
quantum grounds. While our work addresses small-size
plasmonic nanoparticles, the demonstration of the effect
of nonlinear tunneling currents is of relevance for larger
systems with narrow gaps. Considering the current ex-
perimental capabilities to build plasmonic junctions that
reach atomic-scale40–42,49,71–77,82–84, we believe that the
understanding of the mechanisms of the nonlinear re-
sponse in narrow gaps is of paramount importance for



13

designing of efficient nonlinear nanoscale devices giving
rise to a broad range of optoelectronic applications.
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chitsch, and A. Leitenstorfer, Phys. Rev. Lett. 103,
257404 (2009).

30 J. Butet, P.-F. Brevet, and O. J. F. Martin, ACS Nano
9, 10545 (2015).

31 M. Lippitz, M. A. van Dijk, and M. Orrit, Nano Lett. 5,
799 (2005).
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