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The successful realization of metamaterials and metasurfaces requires the judicious choice of con-
stituent elements. In this paper, we demonstrate the implementation of time-varying metamaterials
in the Terahertz frequency regime by utilizing graphene-wrapped microwires as building blocks and
modulation of graphene conductivity through exterior electrical grating. These elements enable en-
hancement of light-graphene interaction by utilizing optical resonances associated with Mie scatter-
ing, yielding a large tunability and modulation depth. We develop a novel semi-analytical framework
based on transition matrix formulation for modeling and analysis of periodic and aperiodic arrays of
such time-varying building blocks. The proposed method is validated against full-wave numerical re-
sults obtained using finite-difference time-domain method. It provides an ideal tool for mathematical
synthesis and analysis of space-time gradient metamaterials, eliminating the need for computation-
ally expensive numerical models. Moreover, it allows for a wider exploration of exotic space-time
scattering phenomena in time-modulated metamaterials. We apply the method to explore the role
of modulation parameters in generation of frequency harmonics and their emerging wavefronts.
Several potential applications of such platforms are demonstrated including frequency conversion,
holographic generation of frequency harmonics and spatiotemporal manipulation of light. The pre-
sented results provide key physical insights to design time-modulated functional metadevices using
various building blocks and open up new directions in the emerging paradigm of time-modulated
metamaterials.

Metamaterials, composed of subwavelength engineered
building blocks provide a great flexibility in manipulation
of light waves and fields by providing access to a wider
design space, beyond naturally available materials1. In
particular, a great amount of attention has been paid into
two-dimensional metamaterials, or metasurfaces, due to
their low profile which makes them more favorable in
terms of fabrication and allows shrinking the size of op-
tical platforms2. The operation of metamaterials and
metasurfaces, predominantly relies on realization of a
gradient index profile3 or a gradient discontinuity in the
phase and amplitude4. These design principles have been
used in a variety of flat and bulk optical components
for different applications such as focusing5, bending6,
holography7, etc.

In conventional designs of metamaterials, the gradi-
ent characteristics are achieved through geometrical vari-
ation of building blocks which makes their operation
static, tying them to a specific application after fab-
rication. More recently, several efforts have been put
into post-fabrication control of the metamaterials by
exploiting mechanical reconfiguration8,9, thermal phase
transitions10,11 and electro-optical materials12–17 in geo-
metrically fixed platforms. Such tunable designs render
more flexibility in the operation allowing for multifunc-
tionality and on-demand manipulation of light.

Despite the real-time tunability offered by recon-
figurable metamaterials, their operation has remained
mostly quasi-static as the variations in time are disre-
garded. Exploiting tunability mechanisms also offers the
possibility of implementing time-varying metamaterials
in which the parameters of the metamaterial is vary-
ing in time by changing the external stimuli. Tempo-

ral variation enables several exotic scattering phenomena
by breaking the time-reversal symmetry and generation
of frequency harmonics in the output spectrum18–29. It
also adds a new dimensionality to the design space, pro-
viding even further flexibility in the design which can
be exploited to tackle several challenges associated with
static and quasi-static metamaterials and realize novel
advanced functionalities.

In the microwave frequency regime, implementation
of time-modulated metamaterials has been demonstrated
by using lumped elements such as varactors in microstrip
circuits23–26. Moving beyond microwaves into terahretz
(THz) and infrared (IR) frequencies, several mechanisms
can be foreseen for the synthesis of time-varying meta-
materials by utilizing different trigger mechanisms such
as mechanical actuation, thermal phase transition and
electrical gating. Among all these mechanisms, electri-
cal gating of electro-optical materials holds the greatest
promise as it offers a continuous tunability range and
has the quickest response time allowing for larger mod-
ulation frequencies. Graphene has been shown as an
ideal candidate for electro-optical tunability in THz and
IR frequency regime due to its many advantages includ-
ing low-loss, low-dimensionality, broadband tunability,
large-scale fabrication feasibility and interface compat-
ibility with silicon fabrication technology. The surface
carrier concentration of a graphene layer can be changed
by applying an exterior gate voltage in a parallel capac-
itor configuration which results into a change in the sur-
face conductivity. Graphene has been incorporated into
many active optical platforms for different applications
such as tuning the optical absorption17 and phase mod-
ulation of reflected light13. In such designs, graphene is
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integrated into resonant geometries which enhance the
light-graphene interaction yielding a larger tunability.
The surface conductivity of graphene can be modulated
with frequencies up to several gigahertz (GHz)30–34. As
such, graphene-integrated building blocks can be used to
implement electrically tunable time-modulated metama-
terials in THz and IR frequencies by utilizing a radio-
frequency (RF) biasing network.

Along with the progress in materials technology which
allows realization of time-varying metamaterials, there is
a need for simulation techniques to design and analyze
such emerging platforms and unravel the novel physics
associated with light scattering from time-varying meta-
materials. The finite-difference time-domain (FDTD)
method can be conveniently used as it can easily take
into account for variation of material parameters in time.
However, it lacks efficiency to model arrays of large area
with sub-wavelength features as it requires the discretiza-
tion of whole computational domain in space and time
which leads to numerical models featuring a large num-
ber of degrees of freedom. Introducing time-variations
adds yet another challenge for FDTD simulations. In
particular, modulation frequencies of the materials which
are accessible in practice are small compared to operat-
ing frequencies at IR and THz frequency regimes. As
such, FDTD requires enormous number of time-steps
to capture steady-state solutions which becomes very
time-consuming and needs tremendous computational
resources. Therefore, developing semi-analytical tech-
niques capable of modeling time-varying elements offers
great benefits as they do not suffer from numerical inac-
curacies inherent within FDTD and enable fast design of
time-varying metamaterials. Furthermore, they can pro-
vide more physical insight to the scattering phenomena.

The objective of this paper is three-fold: (a) imple-
mentation of time-varying metamaterials in the THz fre-
quency regime based on graphene-wrapped microwires,
(b) developing a robust semi-analytical framework for
rigorous modeling of such structures, and (c) investigat-
ing unexplored potential applications of time-modulated
metamaterials for light manipulation. We demonstrate
realization of time-varying metamaterials in the THz fre-
quencies by adopting graphene-wrapped microwires as
building blocks and modulating the surface conductiv-
ity of graphene via RF signals. Such elements can en-
hance light-graphene interactions through resonant fea-
tures associated with Mie scattering; yielding compara-
ble modulation depths with planar structures of much
greater volume. Furthermore, these elements exhibit
strong gate dependence and reduced sub-threshold swing
in the account of their large aspect ratios35,36. Graphene-
wrapped wires have been fabricated via chemical-vapor-
deposition (CVD) growth of monolayer graphene on
microwires37,38 and draping graphene flakes over mi-
crowires with an adhesive tape39. They have been en-
visioned for a variety of applications such as tunable
modulation of absorption40, cloaking41, wave guiding42,
nonlinear harmonic generation43, etc. We develop a ro-

bust semi-analytical framework for the analysis of such
time-varying elements based on transition matrix (T-
matrix) formulation. The method is able to accurately
characterize both nearfield and farfield responses of pe-
riodic and aperiodic arrangements of the elements on
top of a substrate. The validity of the method is rig-
orously verified by comparing the results obtained with
FDTD simulations. An enormous computational gain
is afforded by the proposed method, which can be used
for the fast design of time-varying metamaterials and
metasurfaces with advanced functionalities by avoiding
computationally expensive numerical models. We apply
the method to explore several potential applications of
time-modulated metamaterial platforms for light manip-
ulation. The frequency conversion process in the time-
modulated building blocks is studied and its dependence
to the resonant characteristics of the element is ana-
lyzed. We also analyze the effects of modulation pa-
rameters on the amplitude and phase of generated fre-
quency harmonics in time-modulated metasurfaces. It
is revealed that an independent control over the phase
and amplitude of scattered frequency harmonics can be
achieved by controlling modulation phase delay and mod-
ulation depth, enabling high-efficiency holography. Fur-
thermore, we demonstrate that the effective refractive
index of deeply subwavelength microwires can be mod-
ulated in time to realize time-modulated metamaterials
offering spatiotemporal control of light. In particular,
a time-modulated lens is designed in which the bending
angle varies with time enabling ultrafast beam scanning.
The rest of this paper is organized as follows. In section I,
the development of semi-analytical technique is detailed.
Then, the method is validated by comparing the nearfield
results against full-wave FDTD simulations in section II.
In section III, we utilize the method for establishing de-
sign rules for novel functional time-modulated metama-
terial platforms. Finally, the conclusions are drawn in
section IV.

I. FORMULATION

There have been several efforts on analytical mod-
eling of electromagnetic scattering from time-varying
structures18–24. However, all these efforts are dealing
with space-time modulated slabs or impedance surfaces
with relatively simple periodic space-time gradients for
effective constituent parameters which rely on the ho-
mogenization and provide no clue on the implementa-
tion. The homogenization approach becomes unreliable
for aperiodic structures or when the constituent elements
are resonant and not deeply subwavelength. Further-
more, this approach is not applicable to meta-devices
with arbitrary arrangements of time-modulated building
blocks driven by different modulation parameters. Here,
we aim at developing a robust semi-analytical method
capable of modeling space-time gradient metamaterials
consisted of periodic and aperiodic arrangement of mi-
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crowires wrapped by time-varying graphene layers which
avoids the limitations associated with prior analytic ho-
mogenization techniques.

The available geometrical features of a scatterer al-
lows to study the electromagnetic scattering analytically
using different techniques relying on multipole expan-
sion of the fields. Among the various multipole scat-
tering techniques, T-matrix is the most powerful due to
its simplicity and generality. The T-matrix method was
introduced by Waterman44 for electromagnetic scatter-
ing from an arbitrarily shaped homogeneous scatterer.
The formulation was extended by Peterson and Strom
to the case of an arbitrary number of two-dimensional
(2D) scatterers by applying the translation formula to the
cylindrical wave solution of Helmoltzs wave equation45.
The method has evolved quite dramatically ever since
and has been adapted to solve several problems involv-
ing periodic and aperiodic arrangements of cylindrical
objects46–49. In particular, the authors have extended
the method to take into account for multiple scatter-
ing between cylinders and layered substrates50 as well
as crossed configurations of cylinders51,52. Here, we de-
velop a novel semi-analytical framework by extending
the T-matrix formulation to solve electromagnetic scat-
tering from substrate-supported periodic and aperiodic
arrays of cylindrical structures wrapped by time-varying
graphene layers. In the following, we establish the matrix
equations for electromagnetic scattering of multipoles
corresponding to different frequency harmonics generated
by the time-varying elements similar to the definition of
T-matrix for time-varying acoustic materials53. Further
details regarding the block structure of the matrices and
building the matrix equations can be found in section 1
of the Supplemental Material54.

A. T-matrix of an Isolated Time-varying
Graphene-wrapped Wire

We begin developing the formulation by obtaining the
T-matrix of an isolated wire element wrapped by a time-
varying isotropic graphene layer located in free-space as
shown in Fig. 1(a). The radius, relative permittivity and
relative permeability of the core are denoted by R, εc and
µc, respectively, The graphene layer is characterized by
a time-varying surface conductivity of σ(ω0, t) which is
dependent on the excitation frequency (ω0). The coor-
dinate system is chosen such that z-axis lies along the
microwire axis while the origin is located at the center
of microwire. (ρ, φ) are polar coordinates of the frame
as shown in Fig. 1(b). First, we consider a plane wave
incidence with transverse magnetic (TMz) polarization
where the electric field is along microwire axis. We as-
sume the temporal variations to be small compared to
oscillations of excitation frequency such that the disper-
sion effects induced by time-modulation can be ignored.
The validity of this assumption is ensured by the range of
accessible modulation frequencies for electro-optical ma-

FIG. 1. The schematic of an isolated microwire wrapped by
a time-varying graphene.

terials in the THz and IR frequency regime. As such
the constitutive relations can be written in multiplica-
tive form in time-domain for each excitation frequency.
It should be remarked while disregarding the modulation-
induced dispersion effects, we consider dependency of
conductivity temporal variations to excitation frequency,
thus considering strong material dispersion in this fre-
quency regime. In this case, the boundary conditions at
the interface of the microwire (ρ = R) can be written as
following in time-domain55:

ρ̂× ( ~Eiz(t) + ~Esz(t)− ~Ecz(t)) = 0 (1)

ρ̂× ( ~Hiφ(t) + ~Hsφ(t)− ~Hcφ(t)) = σ(ω0, t) ~Ecz(t) (2)

where ~E and ~H are electric and magnetic fields, respec-
tively and subscripts ”i”, ”s” and ”c” correspond to the
incident, scattered and internal field contributions. Ac-
cording to the multipole expansion of the fields, they can
be expressed as a summation of orthogonal cylindrical
wavefunctions in the frequency domain. Therefore, the
time-domain representation of the electric field contribu-
tions can be written as the inverse Fourier transforms of
the multipole expansions:

~Eiz(t) =
1

2π

∫ +∞∑
m=−∞

Am(ω)Jm(
ω

c
ρ)e(imφ)e(iωt)dω (3)

~Esz(t) =
1

2π

∫ +∞∑
m=−∞

Bm(ω)Hm(
ω

c
ρ)e(imφ)e(iωt)dω

(4)

~Ecz(t) =
1

2π

∫ +∞∑
m=−∞

Cm(ω)Jm(
ncω

c
ρ)e(imφ)e(iωt)dω

(5)

where ω is angular frequency, c is the speed of light in
vacuum and nc =

√
εcµc is the refractive index of the

core. Jm(.) and Hm(.) are the Bessel and Hankel func-
tion of the first kind and order m. Am(ω), Bm(ω) and
Cm(ω) are the unknown coefficients of the multipole ex-
pansions of the fields. Similarly, the φ-component of
the magnetic field contributions can be obtained using
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~Hφ = − 1
iωµ0

∂ ~Ez
∂ρ , as:

~Hiφ(t) =
i

2πµ0c

∫ +∞∑
m=−∞

Am(ω)J ′m(
ω

c
ρ)e(imφ)e(iωt)dω

(6)

~Hsφ(t) =
i

2πµ0c

∫ +∞∑
m=−∞

Bm(ω)H ′m(
ω

c
ρ)e(imφ)e(iωt)dω

(7)

~Hcφ(t) =
inc

2πµ0c

∫ +∞∑
m=−∞

Cm(ω)J ′m(
ncω

c
ρ)e(imφ)e(iωt)dω

(8)

where µ0 is the free-space permeability and the prime
denotes derivative with respect to ρ. Substituting field
representation (3)-(5) into boundary condition (1) and
using the orthogonality of exponential functions of eimφ

and eiωt, it can be easily obtained:

Cm(ω) =
Am(ω)Jm(ωcR) +Bm(ω)Hm(ωcR)

Jm(ncωc R)
(9)

For treating boundary condition (2), we rewrite the time-
domain multiplication in the right-hand side of the equa-
tion as the inverse Fourier transform of the convolution
in frequency domain as:

1

2π
F−1
ω (σ̂0(ω) ∗

+∞∑
m=−∞

Cm(ω)Jm(
ncω

c
ρ)e(imφ)) =

1

2π
F−1
ω (

∫
σ̂0(ω − ω′)

+∞∑
m=−∞

Cm(ω′)Jm(
ncω

′

c
ρ)e(imφ)dω′) =

1

4π2

∫ ∫
σ̂0(ω − ω′)

+∞∑
m=−∞

Cm(ω′)Jm(
ncω

′

c
ρ)e(imφ)dω′e(iωt)dω

(10)

where F−1 denotes inverse Fourier transform and σ̂0(ω)
is the Fourier transform of σ(ω0, t) with respect to t.
Now, using the field representations (6)-(8) and (10),
the boundary condition (2) will result into the following
equation, according to the orthogonality of exponential
functions eimφ and eiωt:

Am(ω)J ′m(
ω

c
R) +Bm(ω)H ′m(

ω

c
R)− ncCm(ω)J ′m(

ncω

c
R)

− iµc

2π

∫
σ̂0(ω − ω′)Cm(ω′)Jm(

ncω
′

c
R) = 0

(11)

In order to build the T-matrix, we are looking for an
equation which relates Am(ω) to Bm(ω). Substituting

(9) into (11), we will arrive at:

Am(ω)(J ′m(
ω

c
R)− ncJm(

ω

c
R)
J ′m(ncωc R)

Jm(ncωc R)
)

+
icncµ

2π

∫
σ̂0(ω − ω′)Am(ω′)Jm(

ω′

c
R)

Jm(ncω
′

c R)

Jm(nc
ncω′

c R)
=

Bm(ω)(ncHm(
ω

c
R)

J ′n(ncωc R)

Jm(ncωc R)
−H ′m(

ω

c
R))

− icncµ
2π

∫
σ̂0(ω − ω′)Bm(ω′)Hm(

ω′

c
R)

Jm(ncω
′

c R)

Jm(nc
ncω′

c R)
(12)

The above integral equation implies that a monochro-
matic Am(ω) will excite a continuous spectrum of fre-
quency harmonics Bm(ω′) in the output. The equation
can be discretized with a specific frequency resolution ∆ω
to obtain the T-matrix. Choosing ω = ωp = ω0 + p∆ω
and ω′ = ωq = ω0+q∆ω; we will arrive at the T-matrix of

a wire wrapped by a time-varying graphene as T = [T ]qpmn
with m,n, p, q = · · · ,−1, 0,+1, · · · , whose elements are
given in (13).

[T ]qpmn is the T-matrix element which relates p-th fre-
quency harmonic corresponding to the n-th cylindrical
mode of the incident field to the q-th frequency harmonic
corresponding to the m-th cylindrical mode of the scat-
tered field. Due to δmn term in equation (13), it can
be understood that the cylindrical modes are decoupled
similar to the static case. Therefore, for each cylindri-
cal mode, equation (13) will result into a matrix divi-
sion whose solution gives a matrix relating the incident
and scattered frequency harmonics corresponding to that
cylindrical mode.

For the transverse electric polarization where the mag-
netic field is along microwire axis (TEz), we can follow
the same procedure by writing the time-domain repre-

sentation of ~Hz and ~Eφ field contributions as the inverse
Fourier transform of their corresponding multipole ex-
pansions. Treating the boundary conditions for these
field components in a similar fashion will result into the
T-matrix for TE polarization whose elements are given
in (14).

Setting σ̂0(ωp − ωq) = 0, equations (13) and (14)
will result into the T-matrices of an isolated microwire
without any graphene coating47. Moreover, putting
σ̂0(ωp − ωq) = 2πδpqσ(ω0) will yield the T-matrices of
a microwire coated by a time-invarient graphene layer
which verifies the validity of our formulation in the static
limit55.

It is important to mention that for a periodic mod-
ulation in time with modulation frequency of ωm, the
Fourier spectrum of σ(ω0, t) becomes discrete and can
be written as σ̂0(ω) =

∑
s P

sδ(ω − sωm). This implies
that the output sepctrum will be discrete as well and the
generated frequency harmonics will consist of the excita-
tion frequency up- and down-modulated by the modula-
tion frequency. In this case, one can choose ∆ω = ωm
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for discretization of the T-matrix equation and replace
σ̂0(ωp − ωq) by P (p−q) in equations (13) and (14). The
modulation induced dispersion effects in self and mutual

couplings can be taken into account approximately by
considering the dependence of Fourier spectrum of con-
ductivity to input frequencies ωp in the matrix equation.

TM Polarization:

[T ]qpmn = δmn
J ′n(

ωp
c R)Jn(

ncωp
c R)δpq − ncJn(

ωp
c R)J ′n(

ncωp
c R)δpq + icµ0

2π σ̂0(ωp − ωq)Jn(
ncωq
c R)Jn(

ωq
c R)

−H ′n(
ωp
c R)Jn(

ncωp
c R)δpq + ncHn(

ωp
c R)J ′n(

ncωp
c R)δpq − icµ0

2π σ̂0(ωp − ωq)Jn(
ncωq
c R)Hn(

ωq
c R)

(13)

TE Polarization:

[T ]qpmn = δmn
J ′n(

ncωp
c R)Jn(

ωp
c R)δpq − ncJn(

ncωp
c R)J ′n(

ωp
c R)δpq − i

2πε0c
σ̂0(ωp − ωq)J ′n(

ncωq
c R)J ′n(

ωq
c R)

−Hn(
ωp
c R)J ′n(

ncωp
c R)δpq + ncH ′n(

ωp
c R)Jn(

ncωp
c R)δpq + i

2πε0c
σ̂0(ωp − ωq)J ′n(

ncωq
c R)H ′n(

ωq
c R)

(14)

The T-matrix for a multimaterial wire consisted of sev-
eral dielectric and graphene layers can be obtained by
generalizing the T-matrix obtained here using an aggre-
gate T-matrix49 approach which is brought in section 2
of Supplemental Material54.

B. Aperiodic Array of Time-varying Wires

Next, we consider an aperiodic array of N graphene-
wrapped wires which can have different sizes, different
materials and different time-variation profiles for the con-
ductivity of graphene layers as shown in Fig. 2. We in-
troduce N local coordinate systems located at the centers
of N wires, with (xl, yl) and (ρl, φl) denoting the Carte-
sian and polar coordinates of the frame corresponding to
the l-th wire, respectively. The vector pointing from the
origin of global coordinate system to the center of l-th
wire is defined as ~rl = (xcl, ycl, 0) as shown in Fig. 2.

FIG. 2. The schematic of an aperiodic arrangement of mi-
crowires wrapped by time-varying graphene layers.

The scattered fields from each wire can be expressed
as a summation of multipole expansions with different

frequency harmonics in its corresponding local coordinate
system. For the TM polarization, the scattered electric
field form l-th microwire can be written as:

~Elsz =

+∞∑
p=−∞

+∞∑
m=−∞

p
mBlHm(

ωp
c
ρl)e

imφl (15)

where pmBl is the scattering coefficient of l-th microwire
corresponding to the m-th cylindrical mode and p-th fre-
quency harmonic and ωp = ω0 + p∆ω. Similar equation

can be written for ~Hsz in the case of TE polarization. Us-
ing Graf’s addition theorem, each cylindrical mode of the
scattered field in the local coordinates of l-th microwire
can be translated to an expansion of cylindrical modes of
incident field in the local coordinates of k-th microwire
as46:

Hm(
ωp
c
ρl)e

imφl =

+∞∑
n=−∞

αmn(~rk, ~rl)Jn(
ωp
c
ρk)einφk

(16)
where αmn(~rk, ~rl) is the translation coefficient of cylin-
drical harmonics and is given as46:

αmn(~rk, ~rl) = Hm−n(
ωp
c
dl,k)ei(n−m)φl,k (17)

where dl,k =
√

(ycl − yck)2 + (xcl − xck)2 and φl,k =
arctan 2(ycl − yck, xcl − xck). Following the block-
structure of the T-matrix, a translation matrix can be
defined to α(~rk, ~rl) = [α(~rk, ~rl)]

qp
mn whose element re-

lates p-th frequency harmonic corresponding to the n-
th cylindrical mode of the incident field to the q-th fre-
quency harmonic corresponding to the m-th cylindrical
mode of the scattered field. Due to the decoupling of
frequency harmonics in translation of cylindrical modes
αqpmn(~rk, ~rl) = δqpαmn(~rk, ~rl).

Denoting the isolated T-matrix of l-th microwire as T l,
it can be written:

Bl = T l(Al +

N∑
k=1
k 6=l

α(~rl, ~rk)Bk) (18)
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Writing the same coupling equation for all N microwires,
we will arrive at the following system of equations whose
solution give the unknown scattering coefficients of each
microwire:


(T 1)−1 −α(~r1, ~r2) · · · −α(~r1, ~rN )

−α(~r1, ~rN ) (T 2)−1 · · · −α(~r1, ~rN )
...

...
. . .

...

−α(~r1, ~rN ) −α(~r1, ~r2) · · · (TN )−1



B1

B2

...
BN

 =


A1

A2

...
AN


(19)

In the above equation Al is the vector of coefficients cor-
responding to the multipole expansion of the incident
field in the local coordinates of l-th microwire. Similar
equations can be obtained for TE polarization, simply by
replacing the TM T-matrix with the TE counter.

In building the T-matrices of the wires with periodic
modulations in time, if the modulation frequencies are
the same and equal to ωm, one can choose ∆ω = ωm.
Otherwise in case of different modulation frequencies, ∆ω
should be chosen as the greatest common divisor of all
modulation frequencies to capture the cross coupling of
all frequency harmonics.

C. Periodic Array of Time-varying Wires

Now, let us consider an array of time-varying graphene-
wrapped microwires which is periodic along x-axis direc-
tion with a periodicity of Λ as shown in Fig. 3. According

FIG. 3. The schematic of a periodic array of microwires
wrapped by time-varying graphene layers.

to the Floquet theorem47,48, the scattered field from the
array under illumination of a monochromatic plane wave
with an excitation frequency of ω0 and incidence angle of
φ0, can be written as following, for TM polarization:

~Esz =

+∞∑
l=−∞

+∞∑
p=−∞

+∞∑
m=−∞

BpmHm(
ωp
c
ρl)e

imφleiω0lΛ cos(φ0)/c

(20)
in which the exponential term eiω0lΛ cos(φ0)/c is due to the
transverse moment introduced by the oblique incidence.
Following a similar procedure for the treatment of ape-
riodic array, the coupling equation in this case can be

written as:

B = T (A+

+∞∑
l=−∞
l 6=0

α(~r0, ~rl)e
iω0lΛ cos(φ0)/cB) (21)

which leads to:

B = T (I − T
+∞∑
l=−∞
l 6=0

α(~r0, ~rl)e
iω0lΛ cos(φ0)/c)−1A (22)

The semi-infinite summations in (22) are called lat-
tice sums which are slowly convergent. However, they
can be efficiently and accurately evaluated using recur-
rence formula48 or series acceleration techniques such as
Shank’s transformation51. Once the unknown scattering
coefficients are obtained, the Fourier integral represen-
tation of Hankel functions can be used to expand the
scattered fields in terms of a summation of reflected and
transmitted plane waves48 over different frequency har-
monics and spatial diffraction orders as:

Er(x, y) =

+∞∑
p=−∞

+∞∑
v=−∞

ei(kxvx+kv,py)
+∞∑

m=−∞
pv,p,mB

p
m

(23)

Et(x, y) =

+∞∑
p=−∞

+∞∑
v=−∞

ei(kxvx+kv,py)(δv0δp0

+

+∞∑
m=−∞

pv,p,mB
p
m)

(24)

with:

pv,p,m =


2cm(−i)m(kxv+ikv,p)m

Λkv,pωmp
(m ≥ 0)

2c|m|(i)|m|(kxv−ikv,p)|m|

Λkv,pω
|m|
p

(m < 0)
(25)

qv,p,m =


2cm(−i)m(kxv−ikv,p)m

Λkv,pωmp
(m ≥ 0)

2c|m|(i)|m|(kxv+ikv,p)|m|

Λkv,pω
|m|
p

(m < 0)
(26)

where kxv,p = −ω0

c cos(φ0) + 2vπΛ and kv,p =√
ω2
p/c

2 − k2
xv. In the above equations v denotes the spa-

tial diffraction order, p denotes the order of frequency
harmonic and m denotes the cylindrical mode index.

D. Substrate Multiple-scattering Effects

For a finite aperiodic array, the multiple scattering ef-
fects between wires and a layered substrate can be char-
acterized through a reflection matrix whose elements are



7

obtained by evaluating Weyl-type integrals. In this case
the coupling equation (18) can be modified as50,56:

Bl = T l(Al +

k=N∑
k=1
k 6=l

α(~rl, ~rk)Bk +

k=N∑
k=1

RW kβ(~rl, ~rk)Bk)

(27)

where β(~rl, ~rk) is the matrix of translation coefficients for
regular cylindrical harmonics which can be built similar
to α(~rl, ~rk) and its elements are obtained as46:

βqpmn(~rl, ~rk) = δqpJm−n(
ωp
c
dl,k)ei(n−m)φl,k (28)

RW k is the reflection matrix of substrate for multipoles
of k-th wire whose elements can be expressed as50:

qp
mnRWk =

δqp
2π

∫ +∞

−∞
Γ(ωp, nx)Fm+n(

2ωp
c
hk, nx)dnx

(29)
in which hk is the distance of k-th wire from the top in-
terface of substrate, Γ(ωp, nx) is the TM or TE reflection
coefficient from the top interface of substrate correspond-
ing to angular frequency of ωp and tangential wavevector
of kx = nxωp/c, and Fm(y, nx) is the angular spectrum of
scattered cylindrical harmonics which can be expressed
as:

Fm(y, nx) =
2ei
√

1−n2
xy√

1− n2
x

e−im arccos(ny) (30)

The integrals in (29) are Weyl-type integrals which can
be evaluated efficiently by adopting a numerical integra-
tion scheme based on a quadrature algorithm57,58. It
should be noted that in presence of a substrate, Al takes
into account both incident and reflected fields from the
substrate.

For the periodic case, a similar procedure can be
adopted. However, it is more convenient to use a scatter-
ing matrix approach to obtain reflection and transmis-
sion coefficients of the layered system through recursive
formula48,51 as it does not involve numerical evaluation
of Weyl-type integrals.

E. Scope of the Method

A block diagram of the procedure for calculation of
reflected and transmitted fields in the periodic case and
involved equations is demonstrated in Fig. 4. The proce-
dure for obtaining scattered fields in an aperiodic array
is similar with the governing matrix equation being re-
placed with (19) and the scattered field being given by
(15). Further details regarding technical implementation
and assembling of matrices are given in the Supplemental
Material54.

The proposed technique is an analytical solution of
the problem and it should yield exact results as long

FIG. 4. The block diagram of the steps and equations involved
in calculation of transmitted and reflected fields for a periodic
array of wires wrapped by time-modulated graphene layers.

as the modulation-induced dispersion effects are negli-
gible which is guaranteed for the experimentally accessi-
ble modulation frequencies of electro-optical materials in
THz and IR frequencies. The only numerical treatments
regarded in the method are truncation of frequency har-
monic and multipole expansions which can be carried out
carefully to ensure the convergence of the results.

Although, the T-matrix method developed here is
only applicable for modeling wire elements with time-
modulated surface conductivities, its application is not
limited to only graphene. The active charge accumula-
tion layers in highly doped semiconductors, transparent
conducting oxides and transition metal nitrides are ultra-
thin and quasi-2D which allows them to be modeled with
a surface conductivity. The equivalence between 2D and
volumetric models is established for modeling graphene
layers59. It has been shown an ultrathin volumetric layer
with a permittivity of ε and thickness of d is equivalent
to a surface conductivity of σ = εd.

In the development of this formulation, it has been as-
sumed that the axis of microwires of parallel to each other
and the incident plane is perpendicular to the wires axis
such that there is no cross-coupling between TE and TM
polarizations. The method can be readily extended to
the case of crossed wire configurations and out-of-plane
incidence using a generalized transition matrix account-
ing for cross-coupling between orthogonal polarizations51

which is beyond the focus of this work. Furthermore,
the method can be used for any arbitrary-shaped time-
varying 2D scatterer by numerical retrieval of the T-
matrix corresponding to different frequency harmonics.
An extension to three-dimensional T-matrix method60 is
also feasible but we leave it for future research. It should
be mentioned that the use of 2D scatterers is preferred
in terms of viability as they can be addressed and bi-
ased independently without the need for complex three-
dimensional grids.
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II. VALIDATION

In this section, we rigorously validate the developed
semi-analytical framework by comparing the nearfield
results with full-wave FDTD simulations. To this pur-
pose, we consider a dielectric microwire with radius of
R = 50µm and permittivity of ε = 3.9, under normal
incidence of a plane wave with excitation wavelength of
λ = 100µm. The frequency-dependent conductivity of
monolayer graphene is dominated by intraband transi-
tions in the THz regime which can be expressed as61:

σintra(ω) = i
2e2

π~2

kBT

ω + iτ−1
(
Ef

2kBT
+ln(1+exp(−Ef/kBT ))

(31)
where e is the electron charge, ~ is the reduced Planck’s
constant, kB is the Boltzmann constant, T is tempera-
ture, τ and Ef are the scattering time and Fermi energy
level of graphene, respectively. At the room tempera-
ture kBT = 25.7 meV and Ef >> kBT for a moderately
doped graphene. As such, the conductivity can be ap-
proximated as61:

σintra(ω) ≈ 2e2

π~2

kBT

ω + iτ−1
(
Ef

2kBT
) (32)

The relationship between the Fermi level, Ef , of the
graphene sheet and the gate voltage, Vg , in a parallel
capacitor configuration can be expressed as:

Ef = ~vf
√
πCox/e|Vg − VDirac| (33)

where Cox is the geometric capacitance of the gate oxide
and VDirac is the gate voltage at which minimum con-
ductance is observed. According to (32) and (33), the
conductivity of graphene follows a temporal profile pro-
portional to the square root of the modulation voltage.
Applying an external bias with a sine squared waveform
such that Ef = Ef0(1+∆Ef sin(ωmt)), the temporal pro-
file of graphene conductivity for an excitation frequency
of ω0 can be written as:

σ(ω0, t) = σintra(ω0, Ef0)((1+∆Ef sin(ωmt+α))) (34)

Throughout this paper, the scattering time is considered
as τ = 0.5 ps. Electrical tunability of graphene’s Fermi
energy level has been demonstrated experimentally in a
range of 0-0.6 eV13. Here, we have considered Ef0 = 0.3
eV and ∆Ef = 0.3 such that the doping level is moderate
and within practical range.

FDTD simulations were carried out using an in-house
developed solver; characterizing graphene as a dispersive
surface conductivity62 whose plasma frequency is also
modulated in time according to the sinusoidal profile.
In order to model the conformal graphene sheet coat-
ing the microwire, a staircase approximation was used62.
First, the results were compared for different Fermi en-
ergy levels and frequencies in the case of un-modulated
conductivity. A frequency shift of 0.3 THz was observed

in the FDTD results comparing to semi-analytical so-
lutions as a result of staircasing approximation. This
shift is considered in all the FDTD simulations to make
a more accurate comparison. The numerical simulation
of harmonic generation in time-modulated objects using
FDTD, requires long time simulations making it more
susceptible to numerical errors. In particular, for mod-
ulation frequencies accessible in practice which are very
small compared to the excitation frequency in the THz
regime, capturing the steady-state solution will become
very challenging and time-consuming. In order to ensure
the accuracy and convergence of FDTD simulations, we
consider a modulation frequency of fm = f0/8. It should
be remarked that this modulation frequency may not ac-
cessible in practice and is only considered here for the
sake of validation. In all the subsequent analyzes and
presented applications, we limit ourselves to the exper-
imentally accessible range for modulation frequency of
graphene. The microwires were simulated by applying
periodic boundary conditions along the wire axis. A cell
size of ∆x = ∆y = ∆z = 0.5µm was used for discretiza-
tion of the computational domain. The time-step was
chosen as ∆t = 0.925 fs and the total simulation time
was considered as 23040 time steps (≈ 21.3 ns). The
nearfield results were post-processed in the last four cy-
cles of modulation to obtain generated frequency har-
monics through taking Fast Fourier transform (FFT) of
time-domain fields. In the semi-analytical simulations,
the number of cylindrical modes and frequency harmon-
ics were truncated at M = ±3 and Mf = ±3 to ensure
an almost perfect convergence.

In order to validate our semi-analytical framework, we
obtain the nearfield results of fundamental and first-order
generated harmonics using FDTD and T-matrix method
for both TE and TM polarizations in two cases of iso-
lated microwires as well as a periodic arrangement of
microwires with a periodicity of Λ = 130µm. For the
sake of brevity, only the nearfield results corresponding
to the periodic arrangement of microwires incident by a
TE-polarized plane wave is included here in Fig. 5 and
the rest of the results are brought in section 3 of the
Supplemental Material54. An excellent agreement is ob-
tained between the results. The mean absolute difference
between the results are %3.86, %6.68 and %5.49 with re-
spect to the maximum field amplitude for the fundamen-
tal, up-modulated and down-modulated harmonics, re-
spectively. A similar agreement can also be observed for
other configurations included in Supplemental Material
which verifies the validity of our developed theoretical
framework. These discrepancies between two methods
are mainly attributed to the FDTD inherent errors and
non-idealities such as staggered grid for evaluation of field
components and finite-time simulations.

We stress that capturing the steady-state response of
time-modulated metamaterials in the infrared and opti-
cal frequency regimes is very challenging for FDTD sim-
ulations due to the small spectral separation between fre-
quency harmonics which requires long time simulations
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to be resolved accurately while proposed technique is an
analytical solution of the problem and it should yield
exact results as long as the modulation-induced disper-
sion effects are negligible. It is expected that the FDTD
results converge to the analytical solution for small mod-
ulation frequencies by refining the discretization and in-
creasing the simulation time. In the account of limited
computational resources, here we have increased modu-
lation frequency up to fm = f0/8 and used a total sim-
ulation time of ≈ 21.3 ns to successfully perform FDTD
simulations and validate our theoretical framework.

FIG. 5. The comparison of nearfield results obtained with
the T-matrix and FDTD method corresponding to a periodic
array of dielectric cylinders coated by sinusoidally modulated
graphene layers incident normally by a TE-polarized plane
wave.

The computational statistics of the two methods are
compared in Table 1 for the periodic simulation of mi-
crowires. As it can be seen, a significant computational
gain is afforded by using semi-analytical technique in
terms of required memory and computation time. The
large required computational resources by FDTD, lim-
its it applicability to the analysis of metamaterials, even
with a few unit-cells, hindering the fast design of real-
istic structures. On the contrary, the proposed semi-
analytical approach can be used efficiently for simulation
of large-area space-time gradient metamaterials. Fur-

TABLE I. Comparison of computational statistics of the T-
matrix and FDTD methods for the periodic simulation of mi-
crowires.

Method Computational Time Memory Requirement
T-matrix 15 seconds 2.6 Kb
FDTD 40 minutes 150 Mb

thermore, it provides physical insight to the space-time
scattering phenomena without the need for costly post-
processing.

III. POTENTIAL APPLICATIONS

Almost all the previous works on space-time gradi-
ent structures have focused on exploiting time-reversal
asymmetry to develop non-reciprocal components20–28

such as circulators and insulators, while the capabilities
of time-modulated metamaterials in beam-shaping and
wavefront engineering of light have remained unexplored
thus far. In this section, we utilize the developed semi-
analytical framework to explore potential applications of
time-modulated metamaterial and metasurface platforms
for light manipulation. First, we analyze the dependence
of frequency conversion process to the resonant charac-
teristics of time-modulated building blocks. Then, we
establish a systematic design rule for independent con-
trol of amplitude and phase of frequency harmonics in
time-modulated metasurfaces which enables wavefront
engineering and holographic generation of frequency har-
monics. Finally, we demonstrate the potential of space-
time gradient metamaterials for spatiotemporal manipu-
lation of light by designing a time-modulated meta-lens
for beam scanning in time. The presented results provide
key physical insights to design time-modulated metama-
terials and they can be generalized and implemented us-
ing various time-modulated building blocks with alter-
native geometries incorporating different electro-optical
materials in different frequency regimes.

A. Frequency Conversion in Time-modulated
Microwires

In order to gain more insight to the scattering phe-
nomena from time-modulated antennas, in this section
we study the frequency conversion efficiency of a time-
modulated graphene-wrapped microwire through analy-
sis of scattering spectra of frequency harmonics. The
dependence of frequency conversion process to the reso-
nant behavior of time-modulated antennas has not been
rigorously addressed so far and can provide an intuitive
starting point toward designing metamaterial platforms
consisted of a plurality of such elements.

The frequency conversion can be thought of as the
change in the energy of photons due to time modula-
tion and is a direct result of temporal variation in the



10

scattering28,29. As such, the use of graphene as an
electrically tunable material offers greater advantage in
THz frequency regime where graphene yields the largest
tunability. Furthermore, it is beneficial to integrate
graphene into resonant geometries; resulting into larger
scattering modulation and higher frequency conversion
efficiency. Here, the topology of the micorwire is cho-
sen to meet the following requirements: (i) support Mie
resonances in the THz regime, (ii) allows for electrical
biasing of graphene in a parallel capacitor configuration.
An n-type silicon micorwire with a radius of 40 µm and
moderate doping of 1015 cm−3 coated by a thin insulat-
ing layer of SiO2 with radial thickness of 20 nm is chosen
accordingly as shown in Fig. 6(a). The complex per-

FIG. 6. Frequency conversion in a time-modulated graphene-
wrapped microwire. (a) The schematic depiction of a
graphene-wrapped Si/SiO2 microwire modulated sinusoidally
in time. (b) The TE scattering efficiency spectrum of time-
invariant microwire with Fermi energy level of Ef = 0.3 eV.
The peaks correspond to TE resonant modes. (c) and (d) rep-
resent the scattering efficiencies of the fundamental and first-
order generated frequency harmonics as functions of Fermi
energy modulation depth and wavelength. (e) The profiles
of magnetic field corresponding to the resonant modes of the
fundamental and first-order frequency harmonics.

mittivity of silicon is obtained via a Drude model63 as

ε(ω) = εinf −
ω2
p

ω2+iωΓ in which εinf is the high frequency
permittivity, and ωp and Γ are plasma frequency and
damping constant, respectively. The plasma frequency is

related to carrier concentration (n) through ω2
p = ne2

ε0m∗
in

which e is the electron charge, ε0 is the vacuum permit-
tivity and m∗ is the effective mass of electron. For silicon,
we use εinf = 11.7, Γ = 180THz and m∗ = 0.27me.

The scattering efficiency of the microwire is demon-
strated in Fig. 6(b) as a function of wavelength for
a time-invariant graphene with Fermi-energy level of
Ef = 0.3 eV, incident normally by a TE-polarized plane
wave. The peaks in the scattering efficiency spectrum
correspond to the TE resonant modes which are char-
acterized according to their mode profiles. Next, we
consider modulating Fermi energy level sinusoidally with
an average value of Ef0 = 0.3 eV. The modulation fre-
quency is chosen as fm = 1 GHz which is well-within the
practical range30. Furthermore, the generated frequency
harmonics can be resolved with the resolution of THz
detectors64. The extinction coefficients of fundamental
and first-order frequency harmonics are demonstrated in
Figs. 6(c) and (d), respectively as functions of wave-
length and Fermi energy modulation depth. The reso-
nant wavelengths corresponding to the maximal scatter-
ing efficiencies are denoted by white dashed lines for each
frequency harmonic. As it can be observed from the re-
sults, the maximum frequency conversion efficiency is ob-
tained in the vicinity of resonant modes of the fundamen-
tal frequency harmonic as a result of maximal scattering
modulation while the increase in the modulation depth
of Fermi energy level results into the spectral shift of the
resonant modes. Moreover, the frequency conversion ef-
ficiency is directly proportional to the modulation depth
of Fermi energy level. It should be noted, in the account
of small modulation frequency, modulation-induced dis-
persion effects are negligible and the conversion efficiency
of up- and down-modulated harmonics are almost equal.
As the modulation frequency increases, the dispersion ef-
fects become more pronounced which leads to larger dif-
ference between up- and down-modulated harmonics. By
changing the modulation frequency in the external bias,
the time-modulated microwire can serve as an electrically
tunable harmonic generator. Figure 6(e) represents the
nearfield distributions of the magnetic field correspond-
ing to the resonances of fundamental and first-order fre-
quency harmonics. As it can be seen, the mode profiles
of the generated frequency harmonic follow the same dis-
tribution as those of fundamental harmonic while being
symmetric with respect to axial direction which is due to
the symmetry and absence of incident field component at
these frequencies.

It should be mentioned, similar results can be obtained
for TM polarization while the resonant spectra of fre-
quency harmonics will be different due to geometrical
asymmetry in orthogonal directions.
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B. Time-modulated Metasurfaces: Holographic
Generation of Harmonics

Due to the enhanced conversion efficiency associ-
ated with resonant features of Mie scattering, graphene-
wrapped microwires are ideal candidates for realization
of time-modulated metasurfaces. Furthermore, the de-
veloped semi-analytical technique in this paper allows for
a broader exploration of novel space-time scattering phe-
nomena and can be used to establish design rules for such
emerging paradigms.

Here, we consider a periodic arrangement of graphene-
wrapped Si (40 µm)/SiO2 (20 nm) micorwires with a
subwavelength periodicity of Λ = 130µm deposited lat-
erally on a silica substrate with thickness of 80 µm,
incident normally by a TE-polarized plane wave. The
Fermi-energy level of graphene is modulated with an off-
set sinusoid as Ef = Ef0(1 + ∆Ef sin(ωmt + α)) with
Ef0 = 0.3eV and the modulation frequency is assumed to
be fm = 1 GHz. Such a metasurface can be implemented
by using an active RF biasing grid which allows for inde-
pendent addressing and biasing of each microwire. Differ-
ent modulation depths and phase delays can be achieved
by using RF amplifiers and phase shifters65, respectively.
We study the effect of these parameters on the ampli-
tude and phase of generated frequency harmonics to es-
tablish a novel design rule for wavefront engineering in
time-modulated metasurfaces.

Figure 7(a) demonstrates the amplitude and phase

FIG. 7. (a) The amplitude and phase shifts of transmission
coefficients corresponding to fundamental and first-order fre-
quency harmonics as functions of wavelength and modulation
depth of Fermi energy for a modulation phase delay of α = 0.
The phase shift is depicted as pseudo-color and is measured
at each wavelength with respect to the phase at ∆Ef = 0. (b)
demonstrates the same as functions of wavelength and modu-
lation phase delay of Fermi energy for a modulation depth of
∆Ef = 0.75. The phase shift at each wavelength is measured
with respect to the phase at α = 0.

shift of the transmission coefficients corresponding to the
fundamental and first-order frequency harmonics gen-
erated by the metasurface, as functions of modulation
depth and incident wavelength for a modulation phase
delay of α = 0. The phase shifts of frequency harmon-
ics are shown as the pseudo-colors in the 3D plots. The

phase reference at each wavelength is chosen as the phase
corresponding to ∆Ef = 0 to show the phase variations
with respect to Fermi energy modulation depth, more
clearly. The dips in the transmission spectrum of the
fundamental frequency harmonic correspond to TE reso-
nant modes. As it can be seen from the results, the trans-
mission coefficients of generated frequency harmonics ex-
hibit a peak in the vicinity of fundamental harmonic reso-
nant wavelengths due to enhanced scattering modulation.
Moreover, the transmission amplitude of generated fre-
quency harmonics increases almost linearly by increment
of modulation depth of Fermi energy while maintaining
an almost constant phase at each wavelength. As such,
changing modulation depth of Fermi energy level can be
used for broadband amplitude modulation of generated
frequency harmonics.

We also study the amplitude and phase shift of the
transmission coefficients, as functions of modulation
phase delay and incident wavelength for a Fermi energy
modulation depth of ∆Ef = 0.75. The results are pre-
sented in 3D plots of Fig. 7(b) in which the phase shift at
each wavelength is measured with respect to the phase
at α = 0. It can be clearly observed from the results
that the generated frequency harmonics acquire a phase
shift of ±α while maintaining a constant amplitude at
each wavelength. It can be inferred that the light picks
up a dispersionless phase shift proportional to the modu-
lation phase delay upon frequency transitions in a time-
modulated metasurface while maintaining a constant am-
plitude. In particular, the phase shifts of up- and down-
modulated harmonics are conjugate. In this context, this
phase shift closely resembles the dispersionless geometric
phase shift which is introduced by rotation of elements
when the circularly-polarized light is undergoing polar-
ization conversion in a half-wave plate while the phase
shifts for circular polarizations of opposite handness are
opposite66,67. The dispersionless phase shift introduced
by modulation phase delay covers 2π span by electrically
tuning the modulation phase delay via RF phase shifters
in biasing. As such, it can be used for broadband wave-
front engineering of generated harmonics and realization
of different functionalities such as steering and focusing.

It should be noted that similar results can be obtained
for reflection of generated harmonics which are not in-
cluded here for the sake of brevity. Time-modulated el-
ements are bound to radiate higher-order frequency har-
monic on both sides of the metasurface due to symmetry
and absence of incident field component at these frequen-
cies, unless the transmission is blocked by a backmirror.

The obtained results suggest that an independent con-
trol over the amplitude and phase of generated harmonics
can be achieved by changing modulation depth and phase
delay which enables full complex-amplitude modulation
and holographic generation of frequency harmonics. This
approach is ideal for holography and reconstruction of
complex patterns in the nearfields of generated frequency
harmonics as the amplitude and phase modulations do
not interfere with each other. Moreover, it can address
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FIG. 8. Holographic generation of frequency harmonics us-
ing time-modulated metasurfaces. (a) The schematic of a
time-modulated metasurface consisted of graphene-wrapped
microwires biased via an active RF circuit incorporating am-
plifiers and phase shifters to provide required modulation
depth and phase delay. (b) and (c) demonstrate the required
amplitude and phase modulation at the metasurface plane,
respectively which are mapped to the modulation depth and
phase delay of the elements. (d) The magnetic field amplitude
corresponding to the first-up modulated frequency harmonic
generated in the forward direction (transmission). (e) Com-
parison of the ideal and realized patterns at the target plane
located 5λ away from the metasurface plane.

the challenges facing electrically tunable designs based
on resonant phase shifts12–16 suffering from limited phase
shift and extremely narrow bandwidth.

To demonstrate the capability of the proposed ap-
proach and time-modulated metasurface in holographic
generation of harmonics, we aim at reconstructing a lin-
ear pattern of the first up-modulated frequency harmonic
with three flat spots at the intervals of −12λ < x < −6λ,
2λ < x < 6λ and 10λ < x < 12λ at a target plane with
a distance of 5λ from the metasurface, for the incident
wavelength of λ = 300µm at which the metasurface ex-
hibits an enhanced frequency conversion efficiency. We
consider a space-time gradient metasurface consisted of a
finite array of 101 identical graphene-wrapped micorwires
which are modulated via an RF biasing grid incorporat-
ing amplifiers and phase shifters to provide the require
modulation depth and phase delay for each element as
shown in Fig. 8(a).

The required amplitude and phase distributions at the
metasurface plane are obtained using fast Fourier trans-
form holography method7 and are mapped to the modu-
lation depth and modulation phase delay of the elements,
respectively as shown in Figs. 8(b) and (c). The trans-
mitted magnetic field distribution corresponding to the
first up-modulated frequency harmonic is obtained and
demonstrated in Fig. 8(d). As it can be seen from the
results, the pattern is clearly described at the desired
location which indicates that the amplitude profiles are
correctly imprinted as well as the phase profiles. Fig.
8(e) compares the desired pattern and realized pattern
by the time-modulated metasurface. The edges of flat
spots are reconstructed with an excellent accuracy. The
speckle noise in the flat spots is mainly due to the lim-
ited sampling size of the metasurface. It should be noted
that the target image is formed in both forward and back-
ward directions of the metasurface due to the symmetri-
cal radiation of generated frequency harmonics. A sim-
ilar behavior can be observed for single-layer nonlinear
metasurfaces and linear metasurfaces operating at cross-
polarization66–68.

The electrical tunability of the modulation parame-
ters allows for multifunctionality and on-demand manip-
ulation of light. By controlling modulation frequency
(fm), modulation phase delay (α) and modulation depth
(∆Ef ) via RF biasing grid, the metasurface can act si-
multaneously as a tunable harmonic generator and ma-
nipulator. Furthermore, as demonstrated by the results
in Fig. 7, the independent control over amplitude and
phase of generated harmonics can be achieved in a broad
range of wavelengths enabling wideband holography. It
should be remarked, however, the frequency conversion
efficiency depends on the resonant characteristics of the
element which makes the efficiency dependent on the
wavelength and polarization, with the maximum efficien-
cies obtained in the vicinity of the resonant wavelengths
of fundamental frequency harmonic. In the account of
broadband tunability of graphene, the design can be
modified to operate in near-IR and mid-IR frequency
regimes with a lower frequency conversion efficiency due
to smaller tunability of graphene conductivity.

C. Time-modulated Metamaterials:
Spatiotemporal Control of Light

In the non-resonant Mie scattering region (effective
medium regime) associated with deeply subwavelength
microwires, they can be used to realize an effective re-
fractive index by virtue of internal homogenization3,15,52.
As such, time-modulated graphene-wrapped microwires
can be used for realization of space-time gradient meta-
materials and photonic crystals69. Such platforms offer
exciting opportunities for realization of magnetless non-
reciprocal optical components27 as well as spatiotemporal
manipulation of light.

As graphene yields a larger tunability at longer wave-
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lengths while exhibiting a lower loss in shorter wave-
lengths, we choose to operate at λ = 100µm to achieve
a balanced large tunability and low loss in the effective
refractive index of elements. The microwire topology
is chosen as Si (5µm)/SiO2 (10 nm) to be within the
effective medium regime. In order to demonstrate the
applicability of graphene-wrapped microwires as time-
modulated building blocks for both polarizations, in this
section. We consider a TM-polarized incidence. The ef-
fective permittivity of the graphene-wrapped microwire
is obtained as a function of Fermi energy level of graphene
for a TM-polarized plane wave using a parameter re-
trieval technique3,52 and is shown in Fig. 9(a). A large

FIG. 9. (a) The effective pemittivity of the deeply subwave-
length graphene-wrapped microwire as a function of Fermi en-
ergy level of graphene. (b) and (c) compare the nearfield dis-
tributions of electric field corresponding to graphene-wrapped
microwires and homogenized counterparts for Fermi energy
levels of Ef = 0.2 eV and 0.5 eV, respectively.

tunability is achieved for the real part of permittivity
while maintaining a relatively small imaginary part by
changing Fermi energy level from 0 to 0.6 eV. In order to
verify the homogenization, we compare the scattering of
graphene-wrapped microwire against homogenized coun-
terparts. Figures 9(b) and (c) compare the distribution of
electric field magnitude corresponding to the graphene-
wrapped microwires with Fermi energy levels of 0.2 eV
and 0.5 eV with their homogenized counters, respectively.
An excellent agreement is observed between the nearfield
distributions verifying the validity of the homogenization
approach and implying that the graphene-wrapped mi-
crowires indeed scatter similar to the homogenized coun-
ters. It should be noted that the field profiles inside the
microwires are different for the graphene-wrapped and
homogenized microwires.

The results presented in Fig. 9 can be used to im-
plement space-time gradient metamaterials. Here, we
aim at designing of a time-modulated meta-lens yield-
ing a sinusoidal beam-scanning in time such that θ =
θ0 + ∆θ sin(ωmt) with fm = 1 GHz. This enables ultra-
fast scanning of light as it affords a period of τ = 1 ns
for each scanning cycle. In the static case, a generalized
Eaton lens can be used for bending a beam toward arbi-
trary refraction angle of θ. The spatial refractive index

profile of such a lens can be approximated as70:

n(r) ≈ (
Dlens

r
− 1)( θ

π+θ ) (35)

where Dlens is the diameter of the lens and r is the radial
distance from the center. It should be noted that the
singularity of the refractive index profile at the center of
the lens and large required indices, limits applicability
of graphene-wrapped Si microwires for achieving large
steering angles. By substituting θ = θ0 + ∆θ into the
above equation and assuming ∆θ << π + θ0, we can
obtain:

n(r, t) ≈ (
Dlens
r

− 1)
(
θ0

π+θ0
)
(1 +

∆θ sin(ωmt)

π + θ0
log(

Dlens
r

− 1))

= navg(r)(1 + ∆n sin(ωmt))

(36)

According to (36), a sinusoidal beam-steering can be
achieved by a sinusoidal modulation of the refractive in-
dex profile when the steering range is small (∆θ <<
π + θ0). The space-time gradient metamaterial can be
implemented by vertical deposition of microwires on a
substrate which can be addressed and biased indepen-
dently from the top using an RF biasing grid incorporat-
ing amplifiers to provide the required modulation depth
and offset for each element as shown schematically in Fig.
10(a).

FIG. 10. Spatiotemporal manipulation of light using a time-
modulated metamaterials. (a) The schematic depiction of
a space-time gradient metamaterial consisted of graphene-
wrapped microwires biased from the top using an RF biasing
grid incorporating amplifiers to provide required modulation
depth and offset for each element. (b) and (c) demonstrate
the required average value and modulation depth of the effec-
tive permittivity, respectively as functions of radial position
within the lens which are mapped to the average value and
modulation depth of Fermi energy of graphene-wrapped mi-
crowires. (d) The steady-state electric field amplitude distri-
bution at different time steps within a scanning cycle.

We use a circular array of 331 microwires arranged
in 11 layers with an edge-to-edge separation distance
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of 10µm forming a circular lens with a diameter of
Dlens = 4λ = 400µm. The filling fraction in this case
is FF ≈ 0.2 and the sampling period in the radial direc-
tion is 20µm (λ/5) which is within the effective medium
regime. The lens is incident by a TM polarized gaus-
sian beam with a waist of Dy/4 = λ and an offset of
x0 = Dy/4 with respect to the center of the lens. We
choose θ0 = 45◦ and ∆θ = 10◦ and obtain the required
average value and modulation depth of the effective per-
mittivity of microwires using (36) based on the effective
medium theory, as functions of radial position within the
lens. Using the presented results in Fig. (9), the values
are then mapped into the average value and modulation
depth of graphene-wrapped microwires as shown in Figs.
10(b) and (c).

The structure is solved using the proposed semi-
analytical framework and the steady-state time-domain
solution is obtained by taking the inverse Fourier trans-
form of the frequency response. The frequency harmon-
ics are considered up to Mf = ±4 in simulations to en-
sure the convergence of the results. Figure 10(d) demon-
strates the electric field amplitude at different time steps
within a cycle of modulation. The results verify the ul-
trafast beam scanning achieved in the steering range set
by the design. The temporal scanning of the beam can
be seen more clearly in the movie file provided as a Sup-
plemental Material54. The presented design illustrates
the great promise of time-varying metamaterials for spa-
tiotemporal manipulation of light. A more rigorous de-
sign approach can be established by extending general-

ized field transformations into the time-domain and em-
ploying temporal variations beyond sinusoidal modula-
tion profile.

IV. CONCLUSION

A robust semi-analytical framework was developed
based on transition-matrix formulation which is able to
efficiently characterize the nearfield and farfield scatter-
ing from periodic and aperiodic arrangements of time-
varying graphene-wrapped wire elements on top of lay-
ered substrates. The method was verified by comparing
the results with full-wave FDTD simulations. A signif-
icant computational gain was afforded by the method
which enables fast design of space-time gradient meta-
materials with advanced functionalities. It was applied
to establish novel design rules for time-modulated meta-
material platforms and explore their potential applica-
tions in frequency conversion, holographic generation of
frequency harmonics and spatiotemporal manipulation
of light. Our finding can foster the design of time-
modulated metamaterials with different geometries and
tunable materials in different frequency regimes; enabling
novel and improved functionalities.
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