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Predicting charge transport in organic molecular crystals is notoriously challenging. Carrier mobility
calculations in organic semiconductors are dominated by quantum chemistry methods based on
charge hopping, which are laborious and only moderately accurate. We compute from first prin-
ciples the electron-phonon scattering and the phonon-limited hole mobility of naphthalene crystal
in the framework of ab initio band theory. Our calculations combine GW electronic bandstruc-
tures, ab initio electron-phonon scattering, and the Boltzmann transport equation. The calculated
hole mobility is in very good agreement with experiment between 100−300 K, and we can predict
its temperature dependence with high accuracy. We show that scattering between inter-molecular
phonons and holes regulates the mobility, though intra-molecular phonons possess the strongest
coupling with holes. We revisit the common belief that only rigid molecular motions affect carrier
dynamics in organic molecular crystals. Our work provides a quantitative and rigorous framework
to compute charge transport in organic crystals, and is a first step toward reconciling band theory
and carrier hopping computational methods.

INTRODUCTION

Organic molecular crystals are broadly relevant to
solid state physics. Their electronic properties range
from conducting to insulating, and they can exhibit
anisotropic electrical and optical properties, ferroelec-
tricity, magnetism, and superconductivity. Organic
semiconductors are lead candidates for novel optoelec-
tronics and spintronics applications [1, 2]. Crystals
like pentacene and rubrene are already widely used in
organic field-effect transistors and light-emitting devices
[3–5].

Yet, in most organic crystals the nature and transport
mechanisms of charge carriers remain unclear. Possible
charge transport regimes include polaron charge hop-
ping, band transport, and intermediate regimes, each
leading to a peculiar temperature dependence of the
mobility. Even in the same organic crystal, electrons and
holes can behave differently. An example is naphthalene,
where hole carriers display band-like transport with a
power-law temperature dependence of the mobility [6],
though electron transport in the out-of-plane direction
is polaronic and nearly temperature independent [7].

Several approaches have been proposed to compute
charge transport in organic crystals [8]. Recent cal-
culations favor either quantum chemistry methods
based on hopping of localized charge carriers [8–15],
or somewhat less extensively polaron theories [16–21].
Charge hopping calculations have provided remarkable
insight into charge transport in molecular crystals
[8–15]. However, they are laborious, and are not based
on rigorous condensed matter theory. They require
large molecular dynamics or Monte Carlo simulations,
rely on semiempirical charge transfer models based on
Marcus theory, and include the temperature dependence

of charge transport only approximately, typically using
the Einstein diffusion formula. A common assumption
is also that only rigid molecular motions affect the
rate of carrier hopping, and therefore charge transport.
The accuracy of the charge hopping approaches is
limited − the best calculations yield mobility values
3−4 times greater than experiment [9, 10], though
order-of-magnitude discrepancies between computed and
measured mobilities are more common [8].

To date, only few works have employed band
theory to compute charge transport in organic crystals
[22–25], despite experimental [26–29] and theoretical [30]
evidence of band-like transport in tetracene, rubrene,
naphthalene and other organic semiconductors. Methods
combining band theory and many-body perturbation
theory have been recently employed to accurately
compute electron-phonon (e-ph) scattering and charge
transport, for now in simple inorganic materials with
a handful of atoms in the unit cell [31–34]. Due to
computational cost, these calculations have not yet been
applied to organic crystals with tens of atoms in the unit
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FIG. 1. The monoclinic crystal structure of naphthalene, with
two molecules in the unit cell. The molecules are arranged in a
herringbone pattern in the ab planes (left), which are stacked
in the c crystallographic direction (right). The c* direction
normal to the ab plane is also shown.
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cell. Ab initio studies of e-ph coupling in organic crystals
exist [35–37], but charge transport, which requires more
elaborate workflows [32], has not yet been investigated
within this framework.

Here we compute from first principles the band-like
hole mobility of naphthalene crystal, a material with 36
atoms in the unit cell (see Fig. 1). The computed mobil-
ity is within a factor of 3−4 of experiment, and we can
accurately predict its temperature dependence between
100−300 K. For organic semiconductors, these results
are a rare case of very good quantitative agreement
with experiment − the accuracy on the mobility is on
par with the best charge hopping calculations, and we
make an order of magnitude improvement over previous
ab initio mobility calculations in organic crystals using
band theory [22, 23]. We show that inter-molecular
phonons (i.e., rigid molecular motions) regulate the
mobility due to a large phase space for scattering holes
with energy close to the band edge. Yet, contrary to
common notions, intra-molecular phonons exhibit the
strongest coupling with holes. Our work reconciles the
tenet of charge hopping methods that inter-molecular
phonons control the mobility with the many-body theory
perspective, which treats carrier scattering in terms of
phonon absorption and emission events.

METHODS

We carry out density functional theory (DFT) calcu-
lations using the Quantum ESPRESSO code [38] with
a plane-wave basis set. We employ the Perdew-Burke-
Ernzerhof generalized gradient approximation [39] and
norm-conserving pseudopotentials [40] from Pseudo Dojo
[41]. A kinetic energy cutoff of 90 Ry and 4 × 4 × 4 k-
point grids are used in all DFT calculations. Thermal
expansion is taken into account by employing, in sepa-
rate calculations, lattice constants [42] and atomic po-
sitions [43, 44] taken from experiment at four different
temperatures of 100, 160, 220, and 300 K. All calcula-
tions listed below are repeated separately at these four
temperatures. The Grimme van der Waals (vdW) correc-
tion [45, 46] is included during structural relaxation. To
obtain accurate electronic bandstructures [47], we carry
out GW calculations using the YAMBO code [48], and
obtain the G0W0 self-energy using 500 bands in the po-
larization function and a cutoff of 10 Ry in the dielectric
screening. Wannier90 [49] is employed to interpolate the
bandstructure, using ab initio molecular orbitals [50] as
initial guesses.

Phonon dispersions are computed with density func-
tional perturbation theory (DFPT) [51] on a 2 × 4 × 2
q-point grid [52]. The e-ph coupling matrix elements
gnmν(k,q) on coarse k- and q-point grids [34] are com-
puted using a routine from the EPW code [53] and inter-
polated using Wannier functions [54] generated with the

Wannier90 code [49]. Here and in the following, n and
m are band indices, ν labels phonon modes, and k and q
are crystal momenta for electrons and phonons, respec-
tively. Our in-house developed code Perturbo [55] is
employed to interpolate the e-ph matrix elements on fine
grids with up to 60 × 60 × 60 k-points and 105 random
q-points, and to compute e-ph scattering rates and the
hole mobility. The band- and momentum-resolved e-ph
scattering rates Γe-ph

nk are obtained in the lowest order of
perturbation theory [34],

Γe-ph
nk =

2π

~
∑
mνq

|gnmν(k,q)|2 (1)

×
[
(Nνq + 1− fmk+q)δ(εnk − εmk+q − ~ωνq)

+ (Nνq + fmk+q)δ(εnk − εmk+q + ~ωνq)
]
,

where εnk and ~ωνq are the hole and phonon energies,
respectively, and fnk and Nνq the corresponding occu-
pations. The scheme developed in our recent work [32] is

applied to converge Γe-ph
nk . The relaxation times τnk used

in the mobility calculations are the inverse of the scat-
tering rates, τnk = 1/Γe-ph

nk . Our calculations focus on
holes, and include only the HOMO and HOMO−1 bands
because the energy gaps to the HOMO−2 and LUMO
bands are larger than the highest phonon frequency.

We employ the Boltzmann transport equation [32, 56]
within the relaxation time approximation to calculate the
electrical conductivity

σαβ(T ) = e2
∫ ∞
−∞

dE

(
−∂f(E, T )

∂E

)
Σαβ(E, T ) (2)

where the transport distribution function Σαβ(E, T ) at
energy E and temperature T is defined as

Σαβ(E, T ) =
2

Vuc

∑
nk

τnk(T )vnk,αvnk,β δ(E − εnk) (3)

and is calculated via tetrahedron integration [57].
The band velocities vnk are obtained from Wannier
interpolation; α and β are cartesian directions, and Vuc
is the unit cell volume. The hole mobility along the
direction α is computed using µα = σαα/npe, where
np is the hole concentration. These e-ph and mobility
calculations on unit cells with tens of atoms are made
possible by efficient algorithms combining MPI plus
OpenMP parallelizations we recently developed.

The computed bandstructures and phonon disper-
sions are given in the appendix (See Fig. 5). The GW
correction is important as it stretches the valence band,
thus lowering the hole effective mass and changing the
relative alignment of the valence band valleys. The qual-
ity of our phonon dispersions is comparable with that
of recent accurate phonon calculations in naphthalene
[52]. For reference, we also employ the methods above
to compute the phonon dispersion of the perdeuterated
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FIG. 2. The hole mobility in naphthalene, given, from left to right in separate panels, in the two in-plane directions a, b and
in the plane-normal direction c*. Circle markers are the computed mobilities and black markers the experimental data from
Ref. [6]. Straight lines are best fits to the power law function T−n of the data points in the 100−300 K temperature range,
and the exponent n for each data set is also given. The error bars are obtained by assuming a 10% error on both the phonon
frequencies and the GW band stretching factor. These error sources are assumed to be independent and combined together.

naphthalene. The comparison with experimental data is
given in the appendix (See Fig. 7).

RESULTS

Figure 2 shows our calculated hole mobilities in the
in-plane a and b and the plane-normal c* directions (see
Fig. 1). The experimental data given for comparison
is taken from Ref. [6]. The computed mobilities are
lower by a factor of 3 − 5 than the experimental values;
the smallest discrepancy (a factor of 3) is found for
the a direction, and the highest (a factor of 5) in the
c* direction. Note that the c* axis corresponds to a
direction along which the molecules are stacked, so that
the slightly lower accuracy in this direction is expected
due to our neglect of van der Waals interactions in
the e-ph coupling. Fitting the data with a power law
function T−n over the 100−300 K temperature range
yields calculated exponents n in the 2.34−2.88 range for
the three directions, in agreement within 3% (in the ab
plane) and 10% in the c* direction with the exponents
n obtained by fitting the experimental data (see Fig.
2). The charge transport anisotropy is estimated by
evaluating mobility ratios between different directions
at 300 K. The computed ratios, µb/µa = 1.16 and
µc*/µa = 0.18 are consistent with the experimental
values of 1.57 and 0.34, respectively.

Since the accuracy of the phonon dispersions and GW
bandstructures depends on the chosen crystal structure,
exchange-correlation functional, and pseudopotential,
it is important to quantify how these sources of uncer-
tainty affect the computed mobility. To this end, we
estimate how the combination of a small error in the
GW correction (arbitrarily chosen to be ∼10% in the
stretching factor of the valence band) and an assumed
∼10% error on the phonon frequencies (a conservative

value for organic crystals) affect our calculations. The
resulting error bars on the mobilities are given in Fig. 2.

Within these uncertainties, which are typical of ab
initio methods − especially for organic crystals with
complex structures − the range of computed mobilities
(inclusive of the error bars) reaches values roughly
2−3 times smaller than the experimental result in the
in-plane a and b directions. Overall, the temperature
trends and absolute values of the mobility are remark-
ably accurate, particularly when compared to the very
scarce literature on charge transport in organic crystals
using ab initio band theory. Our accuracy is comparable
to the best calculations [9, 10] using quantum chemistry
methods based on hopping that dominate the literature.

We have verified that employing the Tkatchenko-
Scheffler (TS) vdW correction [58, 59], which is more
accurate than the Grimme-vdW correction used here,
does not change appreciably the structure and mobility.
In particular, the root-mean-square (RMS) deviation
between the atomic positions obtained with the Grimme-
vdW and the TS-vdW corrections is only 0.05 Å, and
the RMS deviation of the bond lengths is ∼0.05%.
The mobility at 300 K obtained by computing the
bandstructure, phonons and e-ph matrix elements with
the structure obtained using the TS-vdW correction is
very close (within 5−10%, and thus within the error
bars in Fig. 2) to the mobility computed here using
the Grimme-vdW method (see Fig. 6 in Appendix).
Future work will investigate further the role of the vdW
correction on the e-ph coupling and mobility in organic
crystals.

Next, we investigate the role of different phonon modes
in scattering the hole carriers. In the charge hopping
picture, the conventional wisdom is that low-frequency
inter-molecular phonon modes, which correspond to
rigid motions of entire molecules [12, 13], determine the
mobility since they strongly affect the rate of charge
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hopping between molecules. Intra-molecular vibrations,
on the other hand, are typically neglected due to their
hypothesized weaker coupling to the carriers. There
are 108 phonon modes in naphthalene, the 12 lowest-
frequency modes are inter-molecular, and the others are
intra-molecular. We express the total e-ph scattering
rate in Eq. (1) as the sum of the scattering rates due

to each individual mode ν, i.e., Γe-ph
nk =

∑
ν Γ

(ν)
nk , and

investigate the mode-resolved scattering rates Γ
(ν)
nk . Here

and in the following, the phonon modes are numbered in
order of increasing energy at the Brillouin zone center,
and the hole energy increases moving away from the
valence band maximum (VBM) into the valence band.

Figure 3(a) shows the mode-resolved e-ph scattering
rates as a function of hole energy for the 12 inter-
molecular phonon modes, and Fig. 3(b) for selected
intra-molecular phonons. Note that the inter-molecular
phonons have either zero or very small minimum fre-
quency since they correspond to transverse acoustic (TA)
and longitudinal acoustic (LA) vibrations (modes 1−3)
or other rigid vibrations or librations of the molecules
(modes 4−12). By contrast, the intra-molecular modes
20−90 in Fig. 3(b) possess much higher frequencies.
The integrand of the mobility in Eq. (2) is also plotted
in Figs. 3(a)−3(b) to highlight the energy window
contributing to the mobility, which spans hole states
within 50−100 meV of the VBM. In this energy window,
the 12 inter-molecular phonon modes exhibit much
greater scattering rates than the intra-molecular modes,
due to reasons related to the e-ph scattering phase space
that are examined next.

In the hole scattering rates of Eq. (1), the first term
in square brackets corresponds to phonon emission, and
is proportional to the phonon population Nνq+1 since
fmk+q ≈ 0 for holes in our chosen temperature range.
The term in the second square brackets is the phonon
absorption rate, which is proportional to Nνq. Since the
inter-molecular phonon modes 1−12 have a zero or small
minimum energy, inter-molecular phonon absorption and
emission processes are both active at all hole energies.
Their scattering rate decreases monotonically with
phonon energy (and thus with mode number, since the
modes are numbered in order of increasing energy).
Similar to simple metals and non-polar inorganic semi-
conductors, the main source of scattering are acoustic
modes, with smaller contributions from other molecular
rigid vibrations and librations (modes 4−12). This result

is further illustrated in Fig. 3(c), where the average Γ
(ν)
nk

over the 100 meV energy window of relevance for the
mobility is given for each phonon mode. The dominant
role of inter-molecular modes is consistent with the
charge hopping intuition that rigid molecular vibrations
mainly affect charge transport in organic materials.
However, in our band picture based on phonon emission
and absorption events, the origin of this behavior can be

FIG. 3. Mode resolved e-ph scattering rates, Γ
(ν)
nk , for (a)

the 12 inter-molecular phonon modes and (b) selected intra-
molecular phonon modes (note the y-axis log scale). Also
sketched in (b) are the dominant e-ph scattering processes
below and above the phonon emission threshold energy ~ω0,
which is shown as a vertical dashed line for mode 90. The
black dashed curve represents the integrand in Eq. (2), and
shows that only hole states within a 50−100 meV energy win-
dow of the valence band maximum (VBM) contribute to the
mobility. (c) Mode-resolved scattering rates averaged over
the energy window contributing to the mobility. In all plots,
the zero of the energy axis is the VBM, and the hole energy
increases moving away from the VBM into the valence band.

attributed to the phase space rather than the strength
of the e-ph coupling per se, as further discussed below.

The effect of intra-molecular phonons on the mo-
bility is more subtle. Figure 3(b) shows that the e-ph
scattering rates for these modes exhibit a trend with
two plateaus as a function of hole energy. As explained
next, the plateau at low hole energy corresponds to
phonon absorption, and the one at higher hole energy to
phonon emission. Consider an intra-molecular phonon
with minimum energy ~ω0. Due to energy conservation,
a hole in the valence band can emit such a phonon
only at hole energy higher than ~ω0. At hole energies
below this threshold, only phonon absorption is possible,
with a rate proportional to the phonon occupation
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Nνq∝e−~ω0/kBT , which is much smaller than 1 at room
temperature in naphthalene since most intra-molecular
modes have minimum energies ~ω0 ≈ 50−200 meV.
Therefore, the plateau at hole energies below ~ω0 is as-
sociated with a small intra-molecular phonon absorption
rate, and it spans the entire energy window contributing
to the mobility.

At hole energies above ~ω0, the phase space for e-ph
scattering increases dramatically since holes can emit
intra-molecular phonons, with a rate proportional to
Nνq + 1 and thus much greater than the absorption
rate. Opening this phonon emission channel leads to an
increase of the e-ph scattering rates by several orders of
magnitude, but this increase occurs outside the energy
window of relevance for charge transport due to the
high energy of intra-molecular phonons in naphthalene.
These trends are expected to be general in organic crys-
tals, since the dominant presence of hydrogen, carbon
and other light elements makes their intra-molecular
phonon energies much greater than kBT . Interestingly,
in organic molecules containing heavy atoms, which
introduce low-frequency intra-molecular vibrations, a
contribution to transport from intra-molecular phonons
is expected.

In short, the two-plateau structure for intra-molecular
mode e-ph scattering is such that only the small rate
for thermally activated phonon absorption falls in the
energy range of interest for transport. Therefore the
mobility is controlled by low-frequency inter-molecular
vibrations. However, note that intra-molecular phonons
are expected to dominate carrier dynamics at higher
hole energy above the phonon emission threshold, where
their combined scattering rate overwhelms that from
the (much fewer) inter-molecular modes. This analysis
shows that intra-molecular phonons play an essential
role in the dynamics of excited carriers [32–34, 60] in
organic semiconductors.

DISCUSSION

While the phase space limits their scattering near the
band edge, intra-molecular phonons can couple strongly
with holes at all energies, and in fact more strongly than
inter-molecular modes. To study this point, we com-

pute the local e-ph coupling constants g
(loc)
νq between each

phonon mode at the Brillouin zone center (q = 0) and
the HOMO Wannier function (WF) wR(r):

g(loc)νq =

√
~

2ωνq
〈wR|∆νqV

KS|wR〉, (4)

where R is the WF center, and the change in Kohn-Sham
potential ∆νqV

KS arises from the atomic displacements
eκα,ν of each atom κ (with mass Mκ) along all cartesian
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FIG. 4. (a) The absolute value of the local coupling con-
stant [see Eq. (4)] between each of the phonon modes and
the HOMO Wannier function. (b) The square of the HOMO
Wannier function. The potential perturbation ∆νqV

KS at
q = 0 is shown for (c) mode ν = 88 and (d) mode ν = 89.
These modes correspond to the peak (mode 88) and sudden
drop (mode 89) in e-ph coupling in (a). In panels (b)−(d),
yellow is used for positive, and blue for negative isosurfaces.

directions α due to the phonon mode ν,

∆νqV
KS = eiq·r

∑
κα

1√
Mκ

eκα,ν∂κα,qV
KS. (5)

The absolute value of these local e-ph coupling
constants are shown in Fig. 4(a) for all 108 phonon
modes [61]. Contrary to intuition, the strongest e-ph
coupling to the HOMO hole state is not with the inter-
molecular modes that control transport. Rather, specific
high-frequency intra-molecular phonons (in particular,
modes 79−88) exhibit the strongest coupling to holes.
To understand this result, we plot quantities entering
the local e-ph coupling in Eq. (4), namely the square
of the HOMO WF, |wR(r)|2, and the perturbation
potential ∆νqV

KS due to the atomic motions associated
with the given mode.

Figure 4(b) shows the square of the HOMO WF
orbital, |wR(r)|2; the perturbation potential ∆νqV

KS(r)
at q = 0 is shown in Fig. 4(c) for mode 88 and Fig. 4(d)
for mode 89, which are respectively cases of maximally
strong and weak e-ph coupling. We find that e-ph
coupling is maximal for mode 88 due to the strong
overlap between the square of the HOMO WF and the
perturbation potential, and the fact that both quantities
possess the same sign over most of the molecule, so
that no cancellations occur in the real-space integral in
Eq. (4). By contrast, the symmetry of mode 89 is such
that its perturbation potential ∆νqV

KS(r) alternates
positive and negative lobes at bonds where the square
of the HOMO WF is large. As a result, the integrand
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|wR(r)|2 ·∆νqV
KS(r) in Eq. 4 is positive for two bonds

and negative (and roughly equal in absolute value) for
the other two bonds, thus leading to a small integral
over the entire molecule in Eq. 4. This cancellation
results in a small e-ph coupling for mode 89. Other
phonon modes are either associated with perturbation
potentials with small overlap with the square of the
HOMO WF, as is the case for modes in which only the
hydrogen atoms vibrate, or with perturbations that are
out of phase with the square of the HOMO WF, similar
to the case of mode 89. This analysis shows that the
atomic displacements and mode symmetry critically
determine the e-ph coupling of intra-molecular modes,
which can be much stronger than that of inter-molecular
modes due to the large spatial overlap between the
square of the HOMO WF and the intra-molecular mode
perturbation.

Lastly, we comment on the fact that our computed
phonon-limited mobility is smaller than the experimental
result. Due to the presence of impurities and defects
in real samples, our calculation is expected to provide
an upper bound to the mobility, and thus to slightly
overestimate its experimental value, consistent with our
recent results for inorganic crystals [32]. The reason
why our result is lower than experiment is unclear, but
a possible cause is the neglect of non-adiabatic effects.

Our method employs only the lowest Born–
Oppenheimer potential energy surface (PES), since
the e-ph perturbation potential is computed using
DFPT. However, an insight from non-adiabatic surface
hopping calculations [8, 62] is that several PESs can
lie close in energy in organic crystals, and including
their contributions to charge transport may increase the
mobility. The impact of such non-adiabatic effects on
the mobility within the band theory framework used
here deserves further investigation. Nonetheless, the fact
that our results underestimate the measured mobility is
important as it further supports the conclusion in Ref.
[37] that hole charge carriers in naphthalene crystals are
weakly coupled to phonons, so that transport occurs in
the band-like regime studied here. In fact, polaronic
effects resulting from strong e-ph coupling (beyond the
lowest order employed here) would further suppress
carrier transport by increasing the scattering rates and
effective masses [63], thus reducing the mobility.

CONCLUSION

In summary, we compute with quantitative accuracy
the hole mobility and its temperature dependence in
naphthalene, dramatically improving the agreement with
experiment compared to previous efforts using band the-
ory to study charge transport in organic crystals. Our
results show that ab initio approaches based on band
theory and many-body perturbation theory are well

equipped to compute charge transport in organic semi-
conductors. They can provide an accuracy at least as
satisfactory as widespread quantum chemistry methods
based on charge hopping, as well as insight into the role
of different phonon modes. Our work sets the stage for
attempting higher-order corrections or diagram resum-
mations in the e-ph perturbation to access the strong
e-ph coupling regime typical of polaron transport.
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APPENDIX
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FIG. 5. Bandstructures and phonon dispersions of naphtha-
lene crystal, for the structure used at 300 K. (a) The HOMO
and HOMO−1 electronic bands, where black is used for the
DFT bands and red for the bands with the GW correction.
(b) Dispersion of the 12 inter-molecular phonon modes. (c)
Sketch of the first Brillouin zone.
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FIG. 6. The mobility at 300 K obtained using a structure relaxed with the TS-vdW correction is shown with black crosses.
The values fall within the error bars.
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FIG. 7. Calculated dispersion of the 12 inter-molecular
phonon modes for perdeuterated naphthalene, with lattice
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