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We propose a theoretical model for a gapless spin liquid phase that may have been observed
in a recent experiment on H3LilroOg [I, 2]. Despite the insulating and non-magnetic nature of
the material, the specific heat coefficient C/T ~ 1/+/T in zero magnetic field and C/T ~ T/B3/?
with finite magnetic field B have been observed. In addition, the NMR relaxation rate shows
1/(ThT) ~ (C/T)*>. Motivated by the fact that the interlayer/in-plane lattice parameters are
reduced/elongated by the hydrogen-intercalation of the parent compound LisIrOs, we consider four
layers of the Kitaev honeycomb lattice model with additional interlayer exchange interactions. It
is shown that the resulting spin liquid excitations reside mostly in the top and bottom layers of
such a layered structure and possess a quartic dispersion. In an applied magnetic field, each quartic
mode is split into four Majorana cones with the velocity v ~ B3/* We suggest that the spin liquid
phase in these “defect” layers, placed between different stacking patterns of the honeycomb layers,
can explain the major phenomenology of the experiment, which can be taken as evidence that the
Kitaev interaction plays the primary role in the formation of a quantum spin liquid in this material.

The honeycomb iridates AoIrOs (A=Na, Li) [3-5] have
gained much attention [6-20] as quantum spin liquid
(QSL) candidate realizations of Kitaev’s exactly solvable
honeycomb lattice model [21-23]. Due to crystal field
splitting and spin-orbit coupling, the strongly correlated
5d electrons residing on the iridium ions can be described
by an effective jeg = % spin, and the bond-dependent
Ising interactions of the Kitaev model can be realized
due to a superexchange path through edge-shared oxygen
octahedra [24]. Although the Kitaev model has a spin
liquid ground state, Kitaev materials such as NasIrO3 or
a-LisIrO3 are magnetically ordered at low temperatures
[256-27]. This occurs because an additional exchange
path from a direct overlap of iridium orbitals introduces
additional Heisenberg [28] and anisotropic off-diagonal
exchange (T") [29] interactions, which favor a magnetically
ordered ground state.

In a recent experiment, Takagi and his colleagues
have synthesized a new spin liquid candidate material,
H;3LilrsOg, by substituting the interlayer lithium ions of
a-LigIrO3 by hydrogen. This insulating material shows
no sign of magnetic order down to low temperatures in
the magnetic susceptibility, specific heat, and NMR mea-
surements [, 2], raising the hope for discovery of a quan-
tum spin liquid. The X-ray powder diffraction pattern
suggests a heavily stacking-faulted crystal structure with
an enlarged in-plane bond length and reduced interlayer
distance. The longer in-plane bond length can be ex-
pected to suppress the Heisenberg and anisotropic off-
diagonal exchange (I') interactions since the contribution
from direct exchange is greatly reduced, which can allow
the Kitaev interaction to dominate the physics.

The experiment is especially significant since the
material may be the first material that is a Kitaev-

like spin liquid; the first to be engineered to be a spin
liquid; and the first where strong inter-layer coupling
stabilizes a spin liquid. Furthermore, given the close
connection to Kitaev’s exact solution, the candidate
spin liquid has a strong theoretical foundation. This
also suggests that when a magnetic field is applied, the
material could be in an Ising topologically ordered phase
with nonabelien anyons [21] relevant to fault-tolerant
quantum computation [30].

However, the NMR spin relaxation rate 1/7; and the
specific heat C' disagree with thermodynamic properties
of a pure Kitaev spin liquid with Majorana cones (for
which C/T ~ T). Instead, it is found that

(TWT)"Y2 ~ CJT ~ T2 (1)

at low temperatures (0.06 K < T < 2K), which implies
an abundant density of states at low energies. But in the
presence of an external magnetic field B (with 1 Tesla <
B < 8Tesla and temperature 0.1 K < T < 1K),

(1,T)™Y? ~ C/T ~ B=3/2T (2)

In the experiment, the magnetic entropy obtained by
integrating the specific heat data suggests that only a few
percent of the local moments contribute to the singular
specific heat. This suggest that the specific heat may be
dominated by unusual “defects” in the material. [2]

In this Letter, we propose a theoretical model for a
gapless spin liquid that may explain these experiments.
Because the interlayer distance is shortened, we expect
interlayer interactions to play important roles. Thus, in
addition to the Kitaev in-plane interaction, we introduce
interlayer exchange interactions to couple the Kitaev
honeycomb layers. We assume that there is a small



fraction of ABCA-type stacked layers in the crystal (to
be generalized later); e.g., the complete sequence could
contain (...B[ABCA]C...). Since the lattice and the
stacking patterns are very likely distorted from the ideal
structure, we consider the distortion effect via further
neighbor exchange interactions instead of taking into
account the distortion of the lattice itself.

Similar to ABC-stacked multilayered graphene [31,

], we show that a coupled ABCA-stack of Kitaev
spin liquids has Majorana excitations with a quartic
dispersion [33]. As shown later, these soft modes are
mostly localized in the top and bottom layers and hence
represent two-dimensional states. The density of states
due to this four-layer “defect” stacking pattern is given
by D(E) ~ E~'/2) which explains the spin relaxation
rate and specific heat (before magnetic fields are applied)
in Eq.(1). With only a small number of ABCA-
type stacking between different stacking patterns, the
magnetic entropy due to these “defect” layers contributes
only a small fraction of the total entropy, as seen in the
experiment. In the presence of a magnetic field, each
quartic mode is split into four Majorana cones in our
model. The momentum shift (from the quartic touching
point) ko of the Majorana cones scales as kg ~ B'/*
since the energy shift is AE ~ ki ~ B with the
Zeeman coupling. Therefore the velocity of the Majorana
fermions is v ~ k3 ~ B3/4, and the Majorana cones (in
two spatial dimensions) have a density of states [34]

D(E) ~ E/v?> ~ B*/?E (3)

which produces the scaling in Eq. (2). Similar to Kitaev’s
exactly solvable model [21], a small gap Eg ~ 1073 meV
can be expected [35], which may only be observable at
significantly lower temperatures (~ 0.01 K).

I. MODEL

The Hamiltonian that we consider consists of an
ABCA-type stacking of N = 4 honeycomb lattices. Each
honeycomb layer hosts a Kitaev honeycomb model [21]
described by Hpg, and the layers are coupled together
by a Heisenberg interaction (H,) (Fig.1). We will also
consider additional in-plane (H)) and interlayer (Hy/)

interactions.

H=Hig+H;+Hy+ Hy (4)
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The summations > ; ;e ., Zéi’)’ and »Z/; 5 sum over
the pairs of lattice sites indicated in Fig.1(a). The
magnitude of K and g are not known, but K is likely to
be similar to the value for its parent material a-LisIrOg
[6], and g could be similar: —K ~ g ~ 10meV. We will
also couple the model to a magnetic field B,

Hp =~ Z Buoy; (6)
£y

See Fig. 2 for a mean-field phase diagram for this model.

Notice that H, is a next-nearest neighbor, bond
and sublattice dependent, intralayer, Ising coupling.
For our purposes, it will be sufficient to consider this
interaction on the boundary layers, but it could also be
present in every layer. Hy/ is similar, except it is an
interlayer coupling. Later, we show that without Hy
or Hy/, our mean field model would result in a non-
generic magnetic field dependence of the density of states
(Eq.(3)). Hx or Hy are just two possible examples
of how to obtain the observed generic magnetic field
dependence (in Appendix A we consider more general
possibilities); either alone is sufficient. The underlying
lattice distortion may render the magnitude of their
coupling constants (A, \') as large as the nearest neighbor
coupling g. On the other hand, Eq. (3) will only hold
for sufficiently small magnetic fields: B < Bpax S
max (A, \).

II. MEAN-FIELD THEORY

We now study our model using mean-field theory.
We follow Kitaev and decompose the spins into four
Majorana fermions [21]: o), = ibj;c;. The physical
states (|¢))) must obey the following Hilbert space
constraint: b%;b%.b%,cyi|Y) = [1).

After decomposing the spins, all of the terms in our
Hamiltonian become products of four Majorana fermions.
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FIG. 1. (a) Two of the four layers in our model
(Eq.(4)). Red and blue vertices denote the A and B
sublattices, respectively. The red, green, and blue links

correspond to o”c”, d¥0Y, and 0”0® couplings, respectively.
The solid colored links denote Kitaev couplings in Hx and
are summed over by Z(Z‘,j)Eu' The black links denote
interlayer Heisenberg couplings in Hy and are summed by
Z<Z 4y- The dotted red and green links denote the o”¢® and
o¥0Y couplings, respectively, that appear in in Hy and H,:.
Note that the dotted couplings are highly anisotropic; all
of the dotted couplings for one unit cell have been drawn.
(A unit cell has two sites per layer. For drawing clarity,
some of the A and ) couplings have been translated into
neighboring unit cells.) (b) A hexagon from each of the four
layers (¢ = 1,2,3,4) when viewed directly from above, which
demonstrates what is meant by ABCA stacking.
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FIG. 2. Phase diagram of our model (Eq. (4)). (red) When
g/K is small and B = 0, our model is in the same phase as
four decoupled layers of Kitaev’s QSL honeycomb model [21],
where each layer can be described by two gapless Majorana
cones coupled to a Z gauge field [36]. (yellow) However,
a magnetic field (B) opens up a small gap and the resulting
phase is four copies of a chiral QSL [35]. (green) According to
mean-field theory, for intermediate g/ K and B = 0, our model
is described by two Majorana modes with quartic dispersion
[33] coupled to a Z> gauge field. (green—blue) When a
small magnetic field (B) is applied, each of the two Majorana
modes with quartic dispersion split into four Majorana cones
(eight in total) with linear dispersion (Fig.3(a)). However,
our model actually predicts a very small gap (see Fig.3(b))
for these Majorana cones [37]. (white) Contents of the white
region are unknown.
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FIG. 3. (a) Before a magnetic field (B) is applied, our model
has two gapless Majorana modes with quartic dispersion
(green curve) at the =K points (red and blue dots). (Note
that in the Brillouin zone, the three red dots are equivalent
points.) After a B field is applied, the quartic mode splits
into four Majorana cones (blue cones) which are displaced
by momentum |ko|. (b) The dispersion of the Majorana
fermions along one of the gray arrows in (a). (green)
Quartic dispersion before a magnetic field (B) is applied.
(blue) Majorana cone after a B field is applied. AE ~ B,
|ko| ~ BY* and Ey ~ B® [35]. See Fig.5
more detailed plots.

in the appendix for

We will apply mean-field theory in order to obtain a
solvable quadratic Hamiltonian. For Hx and H, we will
use the mean-field decomposition:

O'ZUéL/j ~ —<1 beg}jﬁ CpiCpry —
+ (1by;b ) (L ceicer )

If we only consider the Kitaev’s honeycomb model Hy,
then this approximation is exact since it reproduces
Kitaev’s exact solution [21]. The approximation is also
exact if we consider only the Heisenberg Hamiltonian H,
in the sense that it results in the expected dimerized
ground state (of spin singlet pairs across the Heisenberg
bonds) after projecting into the physical Hilbert space.
Thus, we expect this decomposition to be accurate in the
colored regions of our phase diagram (Fig. 2).

After inserting the mean-field decompositions, we
Fourier transform the Majorana fermions:

Chta | _ —i(K+k)-i <C€i) 8
= e
() =2 b ®

1eQ

(i Cgng/jﬁ bZ‘ij

(7)

where o (= A, B) is the sublattice of site i. [38] £K are
the locations of the gapless points (Fig.3(a)) so that k
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FIG. 4.  Picture of our mean-field Hamiltonian (Eq. (9)).
The single-particle Hamiltonian of the c-fermions at a given
momentum k resembles a fermion SPT chain [39] with low-
energy modes at the ends of the chain (corresponding to the
top and bottom layers). When the momentum k is shifted
away from the gapless points (Fig.3(a)), the correlation
length of the SPT chain increases and the energy of the edge
modes is k", where N (= 4 above) is the length of the chain.
Please see paragraphs below Eq. (9) for further explanation.

is the momentum displacement from these points. Since
we are only interested in the low energy physics, we will
expand about small k. Finally, we rotate the phase of
the ¢ and b fermions on the B and A sublattices in order
to cancel out factors of i in HAMF: i.e. ¢pp — ickep and

biea = —ibkpa-
The mean-field Hamiltonian (which is depicted in

Fig. 4) then takes the form of HMF = [, HM where:
= Ky Z = +iky) Ck/ACkZB + gbb Z C04+1,ACkEB
=1

— Kec Z eln b;:gAbkéB + Gec Z bk r1,ab%e (9
L

- Bﬂi bibicnes + hoe. + HYY
Li,p

(¢xa¢y7¢z) = (717 173) 7T1/3

N-1

(10)

For simplicity, we absorbed the mean-field amplitudes
into the coupling constants (e.g. Kpp = K (1bj;b);)). W
will ignore H%E until later.

Since HMF is quadratic and translation invariant, each
momentum component decouples. H }CV[F is composed of
4 x (N =4) x 2 =32 (complex) fermion operators, each
denoted by a black dot in Fig. 4: the 4 flavors (¢, b*, Y, b?)
are positioned along the rows while the N = 4 layers (¢)
and two (o = A, B) sublattices form the columns. Thus,
for a given momentum k, we can picture HMF as four
chains of complex fermions. The g.. and gy, terms in
H }Q/IF couple the fermions connected by the solid black
lines, and K. couples b fermions connected by the dashed
black lines. We will consider gec ~ gpp, ~ Kee ~ Kpp ~ 1.
With only these terms (i.e. k = B = 0), the ¢ fermions at
the ends of the chain (0 and A) are decoupled and form
zero energy eigenstates. When a small k is introduced, a
small (k, + iky) Ky, term couples the ¢ fermions across

the dotted pink lines. The ¢ fermion chain then resembles
a fermion chain symmetry protected topological (SPT)
model [39], where the edge modes have a gap that is
exponentially small in the length (2N) of the chain:
E ~ kN, Since N = 4, we see that H}C\/IF has a quartic
dispersion, which leads to the specific heat in Eq. (1).

A magnetic field B couples the ¢ and b fermions: i.e.
B,, couples each c fermion to the b* above it in Fig. 4.
Four examples of B, are shown in Fig.4 as dotted gray
lines. Although the ¢ fermion chain is an SPT with a very
short correlation length (when k is small), the b fermion
chain is gapped with a correlation length comparable to
the length of the chain (when ge. ~ Kc.). Thus, a small
magnetic field perturbation will couple the ¢ fermion edge
modes (O and A) at second order in perturbation theory
since a fermion at [J will have to hop across two magnetic
field perturbations (and accross the four ¢ or v in Fig. 4)
in order to get to /A. An effective Hamiltonian describing
the low energy ¢ fermion edge modes will thus include a
term with energy coefficient ~ B2, When we back out of
the spin chain picture and think about what happens to
the quartic dispersion, we find that it actually spits into
N = 4 Dirac cones, shifted by momenta |ko| ~ B'/?
with the velocity v ~ |ko|> ~ B%? and density of
states D(E) ~ E/v? ~ B73E. However, this scaling
is not generic; it occurs because the magnetic field only
contributed at second order in perturbation theory, which
resulted because our mean-field model was fine-tuned
such that the ¢ and b fermions do not mix.

In order to mix the ¢ and b fermions, we need to
introduce an additional term in our Hamiltonian. As
an example of how this mixing could occur, we consider
H, and Hy (Eq.(5)) with the following mean-field
decomposition:

MF . . . .
R H(ibgice)icaby; + (cubp;)ibyco;
- <l bZC@/J> <l C&bg/j>

This results in the following terms in the mean-field
Hamiltonian (Eq. (9)):

W p
Opi0p

(11)

HYE = ey Z (szACMA - b‘ZZBCMB) (12)
¢=1,N
+ b Z [ei% (bﬂzH,AckM + CL,ZH,AbizA)
L=1,N-1

+ e (bZ,TeH,BCkL’B + CL,Z+1,BszB> }

These terms couple the ¢ fermions on the A sublattice to
the b* fermions, and the ¢ fermions on the B sublattice
to the bY fermions. A few examples of these couplings are
drawn in Fig. 4. If Ac, # 0, then the bY fermions and the ¢
fermion at A form a chain of length 9, and the eigenvector
with A now also includes contributions from V with
amplitude 19 ~ max(Ach, A,) (when max(Aep, Ap) <

¢ ~ K¢ ~ 1). This eigenstate is still a zero mode



since the length of the chain is odd. The physics is
the same if we consider )\ terms instead. And similarly,
the [0 eigenstate includes contributions from (Qwith the
same amplitude 9. This is important since now the
two zero modes (with support over 00 or AV) are
directly coupled by the magnetic field B (via the dotted
gray lines shown in Fig.4). Thus, following the logic of
the previous paragraph, the B field now enters at first
order in perturbation theory and introduces a term with
energy coefficient AE ~ B to the effective Hamiltonian
describing the low energy modes. The B field now splits
the quartic mode into N = 4 Dirac cones shifted by
momenta kg ~ B4, with velocity v ~ B%* and density
of states D(E) ~ B~3/2E. This is precisely the scaling
seen in the experiment [34].

III. DISCUSSION

Motivated by a recent experiment on H3LilroOg [1, 2],
we have proposed a model for a quantum spin liquid in
coupled-layers of Kitaev spin liquids. We use an example
of ABCA-type stacked-layers of the Kitaev spin liquid
with the nearest and next-nearest interlayer interactions,
which were used to mimic the effect of lattice distortion in
real material. In the mean-field theory, we show that the
scaling of the specific heat and NMR relaxation rate seen
in the experiment can be explained by the underlying
gapless Majorana fermions, which are localized near the
top and bottom layers of the coupled-layer system.

On phenomenological ground, we are assuming that
the ABCA-type stacking pattern makes up a small
fraction of the possibe stacking patterns that may exist
in H3LilroOg. The singular specific heat contribution
from such “defect” patterns will be a small portion of
the total magnetic entropy, which is consistent with the
specific heat data. While the spin susceptibility in the
presence of strong spin-orbit coupling does not simply
reflect the density of states of spinful excitations, the
bulk susceptibility, which includes the contributions from
the “defect” layers, is related to the specific heat via a
thermodynamic relation. This is clearly demonstrated in
the experiment. [1, 2] In contrast, the Knight shift shows
very little temperature dependence at low temperatures,
which may be consistent with the expectation that the
Knight shift is relatively insensitive to those “defects”.
Going beyond mean-field theory, a small magnetic field
opens a small mass gap for the Majorana cones [35].
However, it may be difficult to see such a small gap
in the experimental regime of T ~ 0.1 — 1K and B ~
1-8 T, where the characteristic scalings of 1/7; and
C/T were observed; smaller temperatures and larger
magnetic fields may be needed. As shown in the case of
stacked graphene layers [31, 32], there exist other multi-
layer stacking patterns where soft modes with quartic
dispersion exists (e.g. ABCAC or ABCACB) (along with

other less-soft modes), or cubic k* (ABC) or quintic
k> (ABCAB). As such, other H3Lilr,Og samples could
also exhibit different dispersions which are dominated by
various kinds of stacking sequences. Further experiments
on the distribution of the stacking patterns could be
helpful.
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Appendix A: Other \ Terms

In Eq.(5) we considered a simple possible example
for Hy and H) . Here, we will explain a more general
example:

m-y %

Lap ((i€(L,0),5€(Lr0))) Ly

— / v v
H)\’ - E E Ka,ul/o—@—&-l,io—fj

Lap ((i€(L,0),jE(E+1,a))) Ep

(A1)

Aauv 0407

Do(ie(ta),je(ta)) L Sums over all pairs of sites (i, )
where 7 is on layer ¢ and sublattice o, and similarly
j € (¢, «), and where u specifies the direction of the (i, 7)
bond.

This choice contributes to HM (Eq. (9)) as follows:

HYF =% (Bl, +)° A&WV) bl Chia (A2)
Lav "
- (Z )‘éam/ ei¢u> (bZTZJrl,ackéa - 011;,[+1,o¢b24a)
o

Yhe -

where ¢, was defined in Eq. (10). We see that A\’ must
depend on the bond direction u, or else it cancels out
above.

However, there are other constraints that must be
imposed on A and X, which can be understood from
Fig.4. In particular, if the A sublattice has a oc"c”
coupling, then the B sublattice must not also have this
coupling. That is,

if )‘ZANV 7& 0 or )\ZAW, 7é 0,

then A¢ppw = g, =0 (A3)

and similar for A <> B. If the above is not true, e.g. if
Nauy = )‘;Za;w = 1, then even before a magnetic field is
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FIG. 5. Exampel low energy band structure in units where K = g = 1 and with A = A’ = 1/4 near a K point in the Brillouin
zone. The left column is for no magnetic field, while the right column includes a small magnetic field B, = 1/16 for p = z, v, z.
The bottom row is a contour plot of log,, E, where E is the band energy. In the above plots, we are not including the extra
terms that Kitaev generated via perturbation theory in the presence of a magnetic field [35], which is why no gap is present in

the above plots.

applied, the zero modes (O and A) would be coupled to
each other, which would split the quartic dispersion into
Majorana cones. However, in a material, all of these A
terms can be expected to be nonzero. But most of them

will probably be very small; and as long as Eq. (A3) is at
least approximately obeyed, a quartic dispersion will be
observed in the specific heat until a very low temperature,
which has not been observed yet.
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