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We investigate the electronic structure of SrMnO3 with Density Functional Theory (DFT) plus
Dynamical Mean-Field Theory (DMFT). Within this scheme the selection of the correlated subspace
and the construction of the corresponding Wannier functions is a crucial step. Due to the crystal
field splitting of the Mn-3d orbitals and their separation from the O-2p bands, SrMnO3 is a material
where on first sight a 3-band d-only model should be sufficient. However, in the present work we
demonstrate that the resulting spectrum is considerably influenced by the number of correlated
orbitals and the number of bands included in the Wannier function construction. For example, in
a d-dp model we observe a splitting of the t2g lower Hubbard band into a more complex spectral
structure, not observable in d-only models. To illustrate these high-frequency differences we employ
the recently developed Fork Tensor Product State (FTPS) impurity solver, as it provides the neces-
sary spectral resolution on the real-frequency axis. We find that the spectral structure of a 5-band
d-dp model is in good agreement with PES and XAS experiments. Our results demonstrate that the
FTPS solver is capable of performing full 5-band DMFT calculations directly on the real-frequency
axis.

I. INTRODUCTION

The combination of density functional theory (DFT)
and dynamical mean-field theory (DMFT) has become
the work-horse method for the modeling of strongly-
correlated materials1–3. For DMFT, a (multi-orbital)
Hubbard model is constructed in a selected correlated
subspace, which usually describes the valence electrons of
the transition metal orbitals in a material. An adequate
basis for these localized orbitals are projective Wannier
functions4,5. In contrast to the Bloch wave functions,
these functions are localized in real space, and therefore
provide a natural basis to include local interactions as
they resemble atomic orbitals and decay with increasing
distance from the nuclei. However, the selection of the
correlated subspace itself and the Wannier function con-
struction are not uniquely defined.
In the present work, we use SrMnO3 to analyze the dif-
ferences of some common models. This perovskite is an
insulator6 with a nominal filling of three electrons in the
Mn 3d shell. There are various works concerning its elec-
tronic structure, both on the experimental7–12 as well as
on the theoretical side13–16. For the construction of the
correlated subspace, we explicitly identify the following
meaningful cases: The first is a three orbital model for
the t2g states only. For the second choice, usually denoted
as d-dp model, the transition metal 3d-states and the
oxygen 2p-states are considered in the Wannier function
construction, but the Hubbard interaction is only applied
to the 3d-states. The correlated subspace is then affected
by the lower lying oxygen bands due to hybridizations.
In both cases, the full 3d manifold can be retained by
including the eg orbitals in genuine 5 orbital models.
To assess the consequences of the different low-energy

models, a good resolution of the spectral function on
the real-frequency axis is beneficial. Due to its exact-
ness up to statistical noise, Continuous Time Quantum
Monte Carlo (CTQMC) is often used as a DMFT impu-
rity solver17–19. However, when using a CTQMC impu-
rity solver, an analytic continuation is necessary, which
results in spectral functions with a severely limited res-
olution at higher frequencies20. This can make it diffi-
cult to judge the influence of the choices made for the
correlated subspace. In the present paper, we therefore
employ the real-frequency Fork Tensor Product States
(FTPS) solver20. This recently developed zero temper-
ature impurity solver was previously applied to SrVO3,
making it possible to reveal an atomic multiplet struc-
ture in the upper Hubbard band20. This observation of a
distinct multiplet structure in a real-material calculation
is an important affirmation of the atom-centered view
promoted by DMFT.
The present work also serves as a deeper investigation of
the capabilities of the FTPS solver. We show that the
FTPS solver can be applied to d-dp models, leading to
new insight into the interplay of the atomic physics of the
transition metal impurity and hybridization effects with
the oxygen atoms as a natural extension to the atom-
centered view. Furthermore, the physics of SrMnO3 is
different from SrVO3, since the manganate is an insula-
tor, and thus it constitutes a new challenge for the FTPS
solver. While we presented a proof of concept for FTPS
on a simple 5-band model before20, we now perform full
5-band real-frequency DFT+DMFT calculations for both
d-only and d-dp models.
We find that the choices made for the correlated sub-
space strongly affect the resulting spectral function and
its physical interpretation. Additionally, we show that
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the interplay of atomic and hybridization physics can al-
ready be found in very simple toy models.
This paper is structured as follows. In section II we dis-
cuss the methods employed, namely DFT, the different
models obtained from different Wannier constructions,
DMFT, and the impurity solvers used. Section III fo-
cuses on the results of the DMFT calculations and the
underlying physics of these different models. This knowl-
edge will then be used in Sec. IV to compare the spectral
function to experiments by Kim et al.12.

II. METHOD

A. DFT and WANNIER BASIS

We start with the DFT density of states (DOS) from
a non-spin-polarized DFT calculation for SrMnO3 in
the cubic phase (shown in Fig. 1). The calculation
was performed with Wien2k21, using 969 k-points in
the irreducible Brillouin zone and a lattice parameter
of a = 3.768 Å. Around the Fermi energy EF , SrMnO3

has the characteristic steeple-like shaped DOS, stemming
from the Mn-t2g bands with a bit of O-px/y contribu-
tion. Below −2.0 eV, the DOS is mainly determined by
oxygen bands which also exhibit manganese hybridiza-
tions. With the exception of some additional weight be-
low −5.0 eV, the Mn-eg states lie mainly in the energy
range from 0.0 eV to 5.0 eV.
In this work we use projective Wannier functions, where
an energy interval has to be chosen as a projection
window4,5. The bands around EF have mainly t2g char-
acter, suggesting a selection of only a narrow energy win-
dow for the Wannier function construction (−2.0 eV to
0.82 eV). We call this set of projective Wannier functions
the 3-band d-only model. However, the t2g orbitals also
show a considerable hybridization with the O-2p states
below −2 eV, and hence, one might want to enlarge the
projective energy window by setting its lower boundary
to −10 eV. We refer to this model as the 3-band d-dp
model.
At the same time, we realize that also the eg orbitals
are not entirely separated from the t2g orbitals in energy
and that they have even some weight around EF (see
middle graph of Fig. 1). These states lie directly above
EF and therefore their influence on the resulting spec-
trum needs to be checked. One should then use a win-
dow capturing 5 bands, the eg and t2g, as a correlated
subspace (from −2 eV to 5 eV). This is a 5-band d-only
model. Note that empty orbitals do not pose a problem
for the FTPS solver. Like before, we can again enlarge
the energy window to include the oxygen hybridization
(−10 eV to 5 eV). We denote this model as the 5-band
d-dp model.
In total, we end up with 4 different choices. The settings
for these 4 models are summarized in Tab. I. All of them
are justified, have different descriptive power, and have
been employed in various DFT+DMFT calculations for
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FIG. 1. Top: Total DFT-DOS for SrMnO3. Middle: partial
Mn-3d DOS. Bottom: partial O-2p DOS for SrMnO3. Below
approximately −1.5 eV, the band structure consists of oxygen
bands that have mostly p-character but also have some eg and
t2g weight due to hybridizations. The t2g bands are located
around the Fermi energy from −1.5 eV to about 0.5 eV, which
have small p-character. Directly above the Fermi energy and
partly overlapping with the t2g bands we find the eg bands
that have small p-contributions as well.

SrMnO3
13,14,16.

B. DMFT

Once the correlated subspace is defined, we use
DMFT2,3,22,23 to solve the resulting multi-band Hub-
bard model. As interaction term we choose the 5/3-band
Kanamori Hamiltonian2425. Within DMFT, the lattice
problem is mapped self consistently onto an Anderson
impurity model (AIM) with the Hamiltonian
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TABLE I. Summary of models with their projective energy windows and the parameters used in the FTPS solver: number
of bath sites NB , Fourier transform broadening ηFT , truncated weight tw and maximal bond dimension allowed for the links
between impurities as well as for the links between an impurity and the first bath tensor. We keep at most this number of
states and increase tw if needed. The number in brackets is the maximal bond dimension during ground state search, while the
first number is used for the time evolution. The bath links were not restricted to any maximal bond dimension. The FTPS
time evolution is performed up to tmax, given in eV−1.

Model Window (eV ) Comments NB ηFT tw Bond dim. tmax

3-band d-only −2.0 - 0.82 only major t2g weight around EF 79 0.08 5 · 10−9 - 14.0

5-band d-only −2.0 - 5.0 include eg, neglect hybridizations 49 0.15 1 · 10−8 200 (150) 12.0

3-band d-dp-model −10.0 - 5.0 include hybridized t2g weight on oxygen bands 59 0.1 1 · 10−8 450 (150) 14.0

5-band d-dp-model −10.0 - 5.0 t2g and eg bands with hybridizations 49 0.2 1 · 10−8 200 (150) 7.0

H = Hloc +Hbath (1)

Hloc =
∑
mσ

εm0nm0σ +HDD +HSF-PH

HDD = U
∑
m

nm0↑nm0↓

+ (U − 2J)
∑

m′>m,σ

nm0σnm′0σ̄

+ (U − 3J)
∑

m′>m,σ

nm0σnm′0σ

HSF-PH = J
∑
m′>m

(
c†m0↑cm0↓cm′0↑c

†
m′0↓ + h.c.

)
− J

∑
m′>m

(
c†m0↑c

†
m0↓cm′0↑cm′0↓ + h.c.

)
Hbath =

∑
mlσ

εmlnmlσ + Vml

(
c†m0σcmlσ + h.c.

)
.

Here, c†mlσ (cmlσ) creates (annihilates) an electron in or-
bital m, with spin σ at site l (site zero is the impurity).
nmlσ are the corresponding particle number operators.
εm0 is the orbital dependent on-site energy of the impu-
rity and εml as well as Vml are the bath on-site energies
and the bath-impurity hybridizations, respectively.
The interaction part of Hamiltonian (1), HDD +HSF-PH,
is parametrized by a repulsive interaction U and the
Hund’s coupling J . For each of the models presented
in Tab. I, we choose these parameters ad hoc in order to
obtain qualitatively reasonable results. In addition, for
the full 5-band d-dp model we also estimate them quan-
titatively via a comparison to an experiment.
Within DFT+DMFT, a so-called double counting (DC)
correction is necessary, because part of the electronic cor-
relations are already accounted for by DFT. For general
cases, exact expressions for the DC are not known, al-
though there exist several approximations26–29. In the
present work we use the fully-localized-limit (FLL) DC
(Eq.(45) in Ref. 30). When needed, we adjust it to ac-
count for deviations from the true, unknown DC. Note

that in the d-only models, the DC is a trivial energy shift
that can be absorbed into the chemical potential28, which
is already adjusted to obtain the correct number of elec-
trons in the Brillouin zone. This step, as well as all other
interfacing between DFT and DMFT, is performed using
the TRIQS/DFTTools package (v1.4)5,31–33.

C. CTQMC + MaxEnt

We compare some of our results to CTQMC data at
an inverse temperature of β = 40 eV−1 obtained with the
TRIQS/CTHYB solver (v1.4)17,34. We calculate real-
frequency spectra with an analytic continuation using the
freely available Ω-MaxEnt implementation of the Maxi-
mum Entropy (MaxEnt) method35. However, the ana-
lytic continuation fails to reproduce high-energy struc-
ture in the spectral function, as we have shown in Ref.20

on the example of SrVO3. This is especially true when
the imaginary-time Green’s function is subject to statis-
tical noise, which is inherent to Monte Carlo methods.
There are in general two quantities for which one can per-
form the analytic continuation. First, one can directly
calculate the real-frequency impurity Green’s function
from its imaginary time counterpart (as done in Fig. 7).
Second, one can perform the continuation on the level
of the impurity self-energy36 and then calculate the local
Green’s function of the lattice model (as done in Fig. 8).
In the latter case, the DFT band-structure enters on the
real-frequency axis, which increases the resolution of the
spectral function.

D. FTPS

For all models studied we employ FTPS20. This re-
cently developed impurity solver uses a tensor network
geometry which is especially suited for AIMs. The first
step of this temperature T = 0 method is to find the ab-
solute ground state including all particle number sectors
with DMRG37. Then the interacting impurity Green’s
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function is calculated by real-time evolution. Since en-
tanglement growth during time evolution prohibits ac-
cess to arbitrary long times38, we calculate the Green’s
function up to some finite time (see Tab. I) and predict
the time series using the linear prediction method20,39 up
to times O(100eV −1). The linear prediction could poten-
tially produce artifacts in the spectrum, and therefore we
always make sure that every spectral feature discussed in
this work is already present in the finite-time Green’s
function without linear prediction.
The main approximations that influence the result of
the FTPS solver are the broadening ηFT used in the
Fourier transform40, and the truncation of the tensor
network20. The former corresponds to a convolution
with a Lorentzian in frequency space making its in-
fluence predictable, while the truncation can be con-
trolled by including more states. This control over
the approximations allows us to analyze spectral func-
tions in greater detail than what would be possible with
CTQMC+MaxEnt. The parameter values for our FTPS
calculations are listed in Tab. I.
Note that we choose ηFT larger than in our previous
work20. The reason for doing this is two-fold: First,
some of the calculations we show in this work have a
large bandwidth, which lowers the energy resolution if
we keep the number of bath sites fixed. Second, FTPS
uses a discretized bath to represent the continuous non-
interacting lattice Green’s function Gcont

0 . When calcu-
lating the self energy Σ = G−1

0 − G−1, we can either
use the discretized version of Gdiscr

0 or the continuous
one, Gcont

0 . In this work we choose Gdiscr
0 , which is for-

mally the correct choice. This then requires to use a
larger broadening to obtain causal self-energies that do
not show finite discretization effects from invertingGdiscr

0 .
However, when calculating the final impurity spectral
function shown in all figures, we employ a very small
broadening of ηFT = 0.01 eV in order to obtain optimal
resolution.
The real-frequency approach of FTPS allows to re-
solve spectral features with higher precision than
CTQMC+MaxEnt. This is especially true for high en-
ergy multiplets. On the other hand, with FTPS and
real-time evolution it is difficult to obtain perfect gaps,
since the results are less precise at small ω, encoded in
the long-time properties of the Green’s function which
we obtain only approximately using linear prediction39.
With FTPS we calculate the greater and lesser Green’s
functions separately20. Since the greater (lesser) Green’s
function has no contribution at ω < 0 (ω > 0) we re-
stricted the contributions of the calculated Green’s func-
tions in frequency space.
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FIG. 2. 3-band d-only calculation: t2g correlated spectral
function for U = 4.0 eV and J = 0.6 eV, as well as eg DFT-
DOS. The t2g spectrum shows a Mott insulator at half-filling
with pronounced lower and upper Hubbard bands.

−5 0 5
0

0.2

0.4

0.6

0.8

ω (eV)

A
(ω

)

t2g
eg

FIG. 3. 5-band d-only calculation: correlated spectral func-
tion of the eg and the t2g orbitals for U = 4.0 eV and J =
0.6 eV.

III. RESULTS

A. d-only models

First we focus on d-only calculations using a projective
energy window with a lower energy boundary of −2.0 eV
for the Wannier-function construction, neglecting the oc-
cupied Mn-3d weight at lower energies (see Tab. I and
middle graph of Fig. 1). With this choice of the corre-
lated subspace, the occupation of the eg orbitals is nearly
zero and the three degenerate t2g orbitals are half-filled.

3-band calculation

Considering only the t2g subspace, the resulting impu-
rity spectral function (Fig. 2) is gapped for the chosen
interaction values. The peaks of the lower and upper
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Hubbard bands are separated by 5.0 eV in energy, which
is roughly U + 2J = 5.2 eV, as expected from atomic
physics41.
Contrary to SrVO3, where a distinct 3-peak multiplet
structure in the upper Hubbard band is present20, both
SrMnO3 Hubbard bands show only one dominant peak.
The structure observed in SrVO3 was well explained by
the atomic multiplets of the interaction Hamiltonian Hloc

in Eq. 1 for a ground state with one electron occupying
the t2g orbitals. The absence of such an atomic multiplet
structure in this model for SrMnO3 can be understood
in a similar way: The large Coulomb repulsion in com-
bination with Hund’s rules (due to the density-density
interaction strengths U , U − 2J and U − 3J) lead to
a ground state |ψ0〉 which consists mostly of the states
|↑, ↑, ↑〉 and |↓, ↓, ↓〉 on the impurity. Adding a particle,
when calculating the Green’s function, produces a single

double occupation, e.g., c†1,↓ |ψ0〉 = |↑↓, ↑, ↑〉. This state
is an eigenstate of the atomic Hamiltonian, because it
is trivially an eigenstate of HDD, and both the spin-flip
and pair-hopping terms annihilate this state. Hence, all
t2g single-particle excitations from the ground state have
the same energy, and as a consequence, only one atomic
excitation energy is observed.
Although not included in the low-energy model, the un-
correlated states still need to be taken into account for
the single-particle gap of SrMnO3. On the unoccupied
side, the onset of the eg orbitals leads to a reduction
of the single-particle gap to about half the size of the
t2g gap (see Fig. 2). On the occupied side, depending
on U and J , either the lower Hubbard band or the O-
bands (at about −1.5 eV) determine the gap size, and
thus also the type of the insulating state (Mott or charge
transfer insulator42). For SrMnO3 to be clearly classified
as Mott insulator, U + 2J < 3.0 eV would be required.
However, it is questionable if the d-only picture is cor-
rect, as in this case the lower Hubbard band is not influ-
enced by the t2g/O-2p hybridizations between −6.0 eV
and −2.0 eV (see Fig 1). We will discuss the effect of
these hybridizations in detail in Sec. III B and Sec. III C.

5-band calculation

Next, we add the eg orbitals to the correlated subspace,
which now comprises the full Mn-3d manifold. The re-
sulting impurity spectral functions of the eg and t2g or-
bitals are shown in Fig. 3. The t2g spectral weight does
not change much compared to the 3-band calculation.
This is to be expected, because the eg orbitals remain
nearly empty during the calculation of the t2g Green’s
function.
The eg spectral function, on the other hand, becomes
much broader in comparison to the DFT-DOS, showing
spectral weight above 4.5 eV. The unoccupied part of the
spectrum is encoded in the greater Green’s function, i.e.,
adding a particle in an eg orbital to the ground state.
If we again assume |ψ0〉 ∝ |↑, ↑, ↑〉 + |↓, ↓, ↓〉 as the t2g
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FIG. 4. 3-band d-dp model: spectral functions for different
J (top) and different U (bottom). All interaction parameters
are given in eV. Upon increasing both parameters the gap
increases. Changing J shifts the peak at around −6.0 eV,
while changing U only shifts the one at −8.0 eV.

ground state, we can add a particle to the eg orbitals
either in a high-spin or low-spin configuration:

c†eg↑ |ψ0〉 ∝ |↑, ↑, ↑〉︸ ︷︷ ︸
t2g

⊗ |↑, 0〉︸ ︷︷ ︸
eg

+ |↓, ↓, ↓〉 ⊗ |↑, 0〉 . (2)

Using the Kanamori Hamiltonian, the high-spin configu-
ration (first term in Eq. 2) generates a single atomic ex-
citation energy, while the low-spin configuration (second
term in Eq. 2) leads to two energies (due to the spin-flip
terms). According to this atomistic picture, the splitting
of the eg peaks is proportional to Hund’s coupling J (see
Fig. 3). Their position relative to the upper t2g Hub-
bard band is influenced by the crystal field splitting and
J . From this clear atomic-like structure we see that even
empty orbitals need to be included in the correlated sub-
space because of correlation effects with other occupied
orbitals.

B. 3-band d-dp model

In the energy region where the lower Hubbard band is
located, we also find t2g weight stemming from the Mn-
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3d/O-2p hybridization (see middle plot of Fig. 1). This
suggests that those states should be included in the con-
struction of the projective Wannier functions, i.e., a d-dp
model. In the following we will use the term High Energy
Spectral Weight (HESW) to denote the Wannier func-
tion weight on the oxygen bands (located below −1.5 eV).
The first and most obvious consequence of a larger pro-
jective energy window is an increased bandwidth of the
Wannier DOS. To obtain a similar insulating behavior
as in the d-only model we increase U and J . Secondly,
now also the DC correction has a non-trivial effect, since
it shifts the correlated t2g states relative to the oxygen
bands. The t2g weight on the oxygen bands is rather
small, which means that the effect of the DC correction
on the HESW is equally low. Thirdly, in the 3-band d-dp
model the impurity occupation grows (the exact value
depending on U and J), changing the character of the
ground state to a mix of states with mainly three and
four particles on the impurity, while in the 3-band d-only
calculation the occupation of the impurity was three elec-
trons. Due to the increased complexity of the ground
state, we expect a richer dependence of the spectrum on
the interaction parameters U and J .

In Fig. 4 we compare calculations for different values
of J (top) and different values of U (bottom). Overall,
the spectral functions consist of a (smaller) lower Hub-
bard band connected to states from the hybridized oxy-
gen bands and an upper steeple-like Hubbard band of
similar shape as in the d-only calculation. By comparing
the two peaks at −6.0 eV and −8.0 eV, we observe that
they behave differently when changing U or J . While
the former is only affected by J , the latter is not, but
shifts with U . The resolution of the structure in the
lower-Hubbard-band/HESW complex demonstrates the
capabilities of the FTPS solver.
The t2g gap grows when increasing either U or J , which is
a typical sign of Mott physics at half filling41. Neverthe-
less, in the d-dpmodel the gap size increases slowly: when
increasing U by 1.0 eV, the gap only grows by about half
of that. Considering also the uncorrelated eg orbitals, we
observe that the single-particle gap is not much affected
by the interaction values studied. An artificial lowering
of the DC correction by −0.5 eV, which corresponds to a
relative shift in energy between the correlated subspace
and the uncorrelated states, also increases the t2g gap
(Fig. 5). This growth of the gap is mostly due to a shift
of the t2g upper Hubbard band, since the chemical po-
tential is pinned by the eg bands43. The first excitation
below EF has a mix of t2g and O-p character. This indi-
cates that in this model, SrMnO3 is not a pure Mott in-
sulator, but a mixture between Mott- and charge transfer
insulator. This classification is consistent with previous
results8,9,11,13.

Let us employ a simple toy model to qualitatively un-
derstand this intermediate regime. We use a correlated
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FIG. 5. 3-band d-dp model: effect of the DC correction.
Top: FLL DC, Bottom: FLL DC with an additional shift of
−0.5 eV. U = 5.0 eV and J = 0.7 eV are used as interaction
parameters. Contrary to all other figures, in this plot we
show the spectrum of the correlated local Green’s function.
The occupation of the t2g orbitals changes from 0.55 (No DC
shift) to 0.54 (DC shift =−0.5 eV) indicating that the t2g
occupation is not much affected by the DC. The DFT-DOS
(Fig. 1) already gives an occupation of 0.54.

site coupled to only one non-interacting site:

H =U(n0,↑ − 0.5)(n0,↓ − 0.5)

+
∑
σ

V1(c†0,σc1,σ + h.c.) + ε1n1,σ (3)

The purpose of the non-interacting site is to mimic
the effect of the HESW. We set the on-site energy to
ε1 = −2.0 eV and use a coupling to the impurity of
V1 = 1.0 eV. Since we want to understand the occu-
pied part of the spectrum, we focus on negative energies
only. In Fig. 6 we show the resulting spectral functions
(ω < 0) for various values of the interaction strength U
(full lines). The atomic excitation spectra of this model
(corresponding to V1 = 0), whose peaks are positioned
exactly at −U/2, are indicated by dotted lines. This toy
model shows three important features:
First: The peak highest in energy (above −2.0 eV) cor-
responds to the lower Hubbard band for small values of
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FIG. 6. Spectrum of a one-band AIM with one interacting
site coupled to a single non-interacting site (Eq. 3). The
spectrum is calculated with the absolute ground state over
all particle number sectors. The on-site energy ε1 is shown
as gray dashed-dotted vertical line. The gray dashed lines
visualize the evolution of the location of the three peaks as
a function of the interaction strength U . The colored dotted
peaks show the atomic spectrum with peaks at −U/2. The
upper Hubbard band (additional peak at ω > 0) is not shown.
All spectra have been broadened by ηFT = 0.2 eV.

U44. We see that it does not cross the on-site energy
ε1 with increasing U , but approaches it asymptotically.
The bath site repels this level and upon increasing U its
weight decreases.
Second: The peak lowest in energy shows the opposite be-
havior. The uncorrelated site repels it towards lower en-
ergies and the spectral weight increases when we increase
U . For large U this level asymptotically approaches the
atomic limit at energy −U/2 and eventually becomes the
lower Hubbard band. These two peaks together form
what one could call a split lower Hubbard band.
Third: The excitation at the on-site energy ε1 shifts to
lower energy and splits under the influence of U . Upon
increasing U , one part develops into the lower Hubbard
band discussed above, and the other approaches ε1 from
below, with diminishing weight.
The DMFT spectral functions (Fig. 4) also show roughly
a 3-peak structure, where the peaks at about −1.5 eV
(−8.0 eV) could be the first (last) peak of the split lower
Hubbard band of our toy model. The region in between
then corresponds to the small, middle peak in the toy
model stemming from the HESW.
The repulsion of the first peak explains why increasing U

(Fig. 4 lower graph) has only a relatively weak effect on
the size of the gap. On the other hand, effectively shift-
ing the oxygen bands with the DC correction to lower
energies (Fig. 5) corresponds to shifting the bath energy
ε1. This means that the repulsion gets weaker, which
explains the growth of the gap. Furthermore, when in-
creasing U we find that the peak highest in energy gets
smaller, while spectral weight is transferred to the low-
est energy peak, which is also shifted to lower energies
(Fig. 4). Additionally, a lowering of the DC correction
leads to an opposite behavior, where the first peak below
EF grows at the expense of the lowest one in energy. Note
that the middle region of our DMFT spectrum shows a
J-dependence (Fig. 4 top), which cannot be explained
by a one-orbital toy model. Using a similar toy model
with two orbitals and Kanamori interaction, we indeed
observe a splitting proportional to J in the spectra (not
shown here). Since the effect is small we will refrain from
discussing it in more depth.
We emphasize that the close relation between the toy
model and the actual impurity Green’s function of
SrMnO3 in the d-dp model suggests that the HESW has
the effect of splitting the lower Hubbard band into two
bands; their separation increases with the hybridization
strength. Therefore, including the oxygen states in the
model strongly influences the size of the gap.

C. 5-band d-dp model

From the DFT-DOS in Fig. 1, we see that the eg or-
bitals are actually not empty. They possess additional
spectral weight at around −7.0 eV, stemming from hy-
bridizations with the oxygen bands. Similarly to the pre-
vious section where we included hybridizations of t2g and
O-2p, we now also include the hybridizations of eg and
O-2p.
As mentioned at the beginning, only approximations to
the DC correction are known. For the present 5-band
calculation we find that using the FLL DC does not pro-
duce a pronounced gap. This can be traced back to the
additional hybridizations of eg with O-2p (see discussion
below). Furthermore, the FLL formula is based on five
degenerate orbitals. In the case at hand we find an ap-
proximately half filled t2g impurity (〈nt2g0σ〉 ≈ 0.5) and
about one electron in total on the eg part of the impu-
rity (〈neg0σ〉 ≈ 0.2). One therefore needs to adapt the
DC correction to reproduce experimental results. In or-
der to obtain a pronounced gap, we decrease the FLL DC
energy by 2.0 eV. Note that it has been argued that very
often the FLL-DC is too high26. A reduction of the DC
can also be accomplished by adjusting U in the FLL for-
mula13,27. While we find that the t2g occupation is not
much affected by the DC (similar to Fig. 5), its effect on
the eg occupation is much stronger. Without a DC-shift,
we find 〈neg0σ〉 ≈ 0.30, while for a shift by −2.0 eV the
occupation is 〈neg0σ〉 ≈ 0.19 compared to 〈neg0σ〉 ≈ 0.28
in the DFT calculation.
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FIG. 7. Comparison of the spectral functions for the 5-band
d-dp model between FTPS and CTQMC+MaxEnt using the
impurity Green’s function. Top: eg orbitals. Middle: t2g
orbitals. For both calculations we use U = 6.0 eV and J =
0.8 eV. Bottom: Combined spectral function.

Fig. 7 shows the spectral function of the full 5-band d-dp
calculation with adjusted DC as well as the respective
spectral function obtained by a DMFT calculation using
CTQMC and performing the analytic continuation for
the impurity Green’s function. Overall, the FTPS spec-
trum is in good agreement with the CTQMC+MaxEnt
result. However, FTPS provides a much better energy
resolution at high energies, which is especially apparent
from the pronounced peak structure in the eg spectrum.
Instead of calculating the real-frequency spectrum of the
impurity Green’s function as in Fig. 7, one can use the an-
alytic continuation for the self-energy Σ(ω), and calculate
the local Green’s function of the lattice model directly
for real frequencies. This way, the dispersion of the DFT
band structure enters on the real frequency axis directly,
which increases the resolution of the CTQMC result, but
is suboptimal for FTPS45. The resulting spectral func-
tion for the eg orbitals is shown in Fig. 8. As expected,
we find that some features shown by the FTPS solver

−15 −10 −5 0 5 10
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0.1

0.2

0.3

0.4

A
(ω

)

CTQMC eg
FTPS eg

FIG. 8. Comparison of the eg spectral functions of the local
lattice Green’s function for the 5-band d-dp model between
FTPS and CTQMC+MaxEnt, when the analytic continua-
tion is performed for the self-energy. To obtain the plot with
FTPS we used ηFT = 0.25. Using the band structure on the
real-frequency axis enhances the resolution of the CTQMC re-
sult at energies where the imaginary part of the self-energy is
small, and increases its agreement with FTPS in the occupied
part of the spectral function.

are now also present in CTQMC, but the J-multiplet in
the unoccupied part of the spectrum still cannot be re-
solved. To calculate the FTPS self-energy, used to obtain
the spectrum in Fig. 8, a broadening of ηFT = 0.25 was
used, which explains the difference to Fig 7.
From these comparisons we also see that the sharp, step-
like shape of the eg spectrum at EF is not an artifact of
the FTPS solver. We note that for the 5-band calculation
presented in Fig. 7, FTPS (720 CPU-h) and CTQMC
(600 CPU-h) need similar computational effort for one
DMFT iteration46.
The unoccupied part of the total spectrum (sum of the
eg and t2g spectra shown in the bottom plot of Fig. 7)
consists of a three peak structure with alternating eg-
t2g-eg character, which is much more pronounced than
in the 5-band d-only calculation (Fig. 3). Compared to
the 3-band d-dp model we find differences mainly in the
occupied part of the t2g spectral function (Fig. 10). This
is especially apparent in the lowest peak, which seems to
be shifted from −9.0 eV to −13.0 eV. Although this high
energy excitation is small, the FTPS solver can reliably
resolve it.

The differences in the position of this peak are again
similar to the behavior of a toy model. Here we use a
two-orbital AIM with a single bath site for each orbital:

H =Hint +
∑

m∈(t2g,eg)

Emn0,m+

∑
σ

Vm(c†0,m,σc1,m,σ + h.c.) + εmn1,m,σ. (4)

For the interaction Hint we choose the Kanamori Hamil-
tonian. As before, we use a single bath site for each
orbital to mimic the effect of the HESW. We are inter-
ested in the influence of the hybridizations of eg and O-2p
on the t2g spectral function. In Fig. 9, we compare the
spectrum without eg-HESW states (Veg = 0) with the

one obtained from Veg = 2Vt2g
47. Although one would
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FIG. 9. Effect of the eg hybridizations on the t2g spectrum
of the toy model (Eq. 4). Parameters (in eV): U = 10.0,
J = U/10, Et2g = −U/2, Eeg = −U/2 + 1.0, εt2g = εeg =
−5.0 and Vt2g = 1.5. The grey dashed dotted line shows
the bath energy levels. All spectra have been broadened by
ηFT = 0.2 eV.

expect the eg hybridization to only have a minor influence
on the t2g spectrum, we observe a rather surprising be-
havior. The additional hybridization leads to a stronger
repulsion of the lowest energy peak from the bath en-
ergy, qualitatively explaining the shift from −9.0 eV to
−13.0 eV in Fig. 10.
Additionally, this toy model provides an explanation for
the necessary adjustment of the DC correction in the 5-
band calculation: The peak highest in energy in Fig. 9 is
repelled more strongly with the additional eg hybridiza-
tions, therefore the gap decreases. If we would want
to obtain a similar t2g gap as with Veg = 0, the inter-
action in the toy model would need to be increased to
U ≈ 20 eV (keeping J = U/10). Since this is unphysical,
the only other option is to shift the bath site energies of
the toy model. In the DMFT calculation this corresponds
to a shift in the DC correction, effectively shifting the
HESW to lower energies. This behavior can be observed
in Fig. 10, where we compare the spectra of the 3- and
5-band d-dp models. The onset of the lower-Hubbard-
band/HESW complex is exactly at the same position in
both spectra, although the DC shift differs by 2.0 eV.

IV. COMPARISON TO EXPERIMENT

Equipped with a good understanding of the
model-dependent effects on the spectral function,
we are finally in a position to compare our results
to experiments. Several studies concluded that the
unoccupied part of the spectrum consists of three peaks

−15 −10 −5 0 5 10
0

0.2

0.4

0.6

ω (eV)

A
(ω

)

3-band d-dp, no DC shift

5-band d-dp, DC shift = -2.0eV

FIG. 10. Comparison of the t2g spectral functions of the 3-
band d-dp and 5-band d-dp calculations at U = 6.0 eV and
J = 0.8 eV, taken from Figs. 4 and 7. In the 5-band calcu-
lation we shifted the double counting by −2.0 eV to increase
the gap. The influence of the number of bands is most ap-
parent in the high-energy features. The increased repulsion
of the first peak of the lower-Hubbard-band/oxygen complex
(Fig. 9) makes a shift in the DC necessary, if the single particle
gap should remain the same.

with alternating eg- t2g- eg character10–12. As we have
shown, with DMFT+FTPS we are able to resolve such
a structure when including the eg states as correlated
orbitals in a genuine 5-band model. Additionally, we
need to choose the energy window, i.e., whether the
HESW should be included in the construction of the
projective Wannier functions. The nature of the insulat-
ing state (Mott or charge transfer) has been debated in
the literature8,9,11,13, but it is likely that SrMnO3 falls
in an intermediate regime where a clear distinction is
difficult. In the present work we have come to the same
conclusion. This implies that the lower Hubbard band
and the O-2p bands are not separated in energy, which
favors the use of a d-dp model. We therefore conclude
that a 5-band d-dp model is necessary to fully capture
the low-energy physics of SrMnO3.
Having decided on the model for the correlated subspace,
we still need to determine the interaction parameters
U and J as well as the DC. To do so we use PES and
XAS data for the Mn-3d orbitals obtained by Kim
et al.12 and compare to our total impurity spectrum
(6At2g (ω) + 4Aeg (ω) from Fig. 7). According to Ref. 12,
the XAS (PES) spectrum can be considered to represent
the unoccupied (occupied) Mn-3d spectrum. In the
measured spectrum the chemical potential is in the
middle of the gap. In all our calculations, the chemical
potential is determined by the onset of the unoccupied
eg spectrum. However, the absolute position in energy is
not exactly known in XAS48. Our calculation is in good
agreement with the experiment when we use a rigid
shift of the XAS spectrum by 0.8 eV to lower energies.
Additionally, we deduce from the peak positions in
the experiment that the interaction parameters used
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FIG. 11. Photo Emission Spectroscopy (PES) and X-ray Ab-
sorption Spectroscopy (XAS) compared to the 5-band d-dp
DMFT-FTPS results (U = 5.0 eV and J = 0.6 eV). The
experimental curves are reproduced from Ref. 12, Fig. 5.
We normalized the experimental curves to

∫ 0

−9
APESdω =∫ 0

−9
AFTPSdω and

∫ 6

0
AXASdω =

∫ 6

0
AFTPSdω. FTPS as well

as the experiments show a 3-peak structure of alternating
eg- t2g- eg character in the unoccupied part of the spectrum
(indicated by arrows). For the arrow labels we adopted the
notation of Ref. 12, where e↑g means an excitation into the

eg spectrum with majority spin, while t↓2g and e↓g are exci-
tations into the t2g and eg spectrum with minority spin (see
also Eq. 2).

for the calculations presented in Fig. 7 are too high.
The separation of the two eg peaks (∼ J) and also
the relative position of the t2g upper Hubbard band is
different than in the experiment. Therefore, we decrease
the interaction parameters to U = 5.0 eV and J = 0.6 eV
but keep the static shift of the FLL DC by −2.0 eV.
Note that these parameters are similar to the ones used
in other DFT+DMFT studies on SrMnO3

13,14.
The resulting spectral function for the new set of
parameters is compared to the experimental spectrum
in Fig. 11. Notably, the bandwidths of both, the
unoccupied and the occupied spectrum, agree very
well with the experiment. The unoccupied part of the
experimental spectrum (XAS) shows that the first eg
peak is just a shoulder of the t2g upper Hubbard band,
and that the separation of the two eg peaks is about
3.2 eV, which is in agreement with our result. Since this
separation is proportional to the Hund’s coupling, we
conclude that J ≈ 0.6 eV for this compound. The t2g
upper Hubbard band at 2.0 eV is still slightly too high
in energy.
The experiment also shows a lower-Hubbard-
band/oxygen complex with two main peaks at about
−6.0 eV and −2.0 eV. As discussed in the previous
sections (bottom plot of Fig. 7), our results identify the
first peak at −2.0 eV to have mainly t2g character and to
correspond to the largest part of the split lower Hubbard
band, whereas the second peak at −6.0 eV has both eg
and t2g character and stems from the hybridizations with

the oxygen bands. We note that the region between these
two peaks has larger spectral weight in the experiment
than in our calculations. Importantly, no prominent
spectral features are observed in the experiment around
−8.0 eV, strengthening our conclusion that the 3-band
d-dp model is not sufficient to describe the experiment
(see also Fig. 10).

V. CONCLUSIONS

We have studied the influence of the choice of the corre-
lated subspace, i.e. the number of bands and the energy
window, on the DFT+DMFT result for the strongly cor-
related compound SrMnO3. For d-only models (neglect-
ing p-d hybridizations), we have shown that the empty eg
orbitals should be included in the correlated subspace be-
cause interactions with the half-filled t2g bands affect the
spectrum, leading to a multiplet structure and a broad-
ening of the eg DFT-DOS. Including the Mn-3d/O-2p
hybridizations in a 3-band model for the t2g bands only,
i.e., the 3-band d-dp model, we found a situation similar
to avoided crossing, which leads to an interesting inter-
play of atomic physics (lower Hubbard band) and Mn-
d/O-p hybridizations. In SrMnO3, the lower Hubbard
band hybridizes with the t2g Wannier-weight on the oxy-
gen bands, giving rise to a spectrum that can be approx-
imated by three peaks. This result provides new per-
spectives on an intermediate regime, where both Mott
and charge transfer physics are found. By performing
a 5-band calculation including the p-d hybridization, we
investigated the effect of the eg hybridization on the t2g
spectrum. The splitting due to avoided crossing is heav-
ily increased, which strongly affects the 3-peak structure
and also decreases the gap. Equipped with a good un-
derstanding of the different correlated subspaces and the
effects of the model parameters (U , J , DC) we were able
to obtain a spectral function in good agreement with ex-
perimental data. We conclude that the choice of a suit-
able model for the correlated subspace is important, since
the inclusion of both the O-2p hybridizations and the eg
states is essential for a correct description of the observed
spectral function in SrMnO3.
Finally, we would also like to stress that we have shown
that FPTS is a viable real-time impurity solver for real
material calculations with five bands.
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