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Non-centrosymmetric EuTGe3 (T=Co, Ni, Rh, and Ir) possesses magnetic Eu2+ ions and antifer-
romagnetic ordering appears at low temperatures. Transition metal substitution leads to changes
of the unit cell volume and of the magnetic ordering. However, the magnetic ordering temperature
does not scale with the volume change and the Eu valence is expected to remain divalent. Here
we study the bulk electronic structure of non-centrosymmetric EuTGe3 (T=Co, Ni, Rh, and Ir) by
hard x-ray photoelectron spectroscopy. The Eu 3d core level spectrum confirms the robust Eu2+

valence state against the transition metal substitution with a small contribution from Eu3+. The
estimated Eu mean-valence is around 2.1 in these compounds as confirmed by multiplet calculations.
In contrast, the Ge 2p spectrum shifts to higher binding energy upon changing the transition metal
from 3d to 4d to 5d elements, hinting of a change in the Ge-T bonding strength. The valence bands
of the different compounds are found to be well reproduced by ab initio band structure calculations.

I. INTRODUCTION

Strongly correlated 4f -electron systems have been
a platform for studying various anomalous phenom-
ena, such as valence fluctuations, unconventional super-
conductivity, heavy fermion behavior and spin/charge
ordering1,2. The ground state property of these com-
pounds are characterized by competing Kondo effects
or Rudermann-Kittel-Kasuya-Yoshida (RKKY) interac-
tions. Both interactions originate from the interplay of
localized f electrons and itinerant conduction electrons,
though the former quenches the magnetic moments, while
the latter leads to magnetic ordering in the ground state.
The competition between Kondo effect and RKKY in-
teractions in Ce- and Yb-compounds are often discussed
within the Doniach phase diagram3. In the vicinity of the
quantum critical point (QCP), where the non-thermal
parameter controlled phase transition happens at abso-
lute zero temperature, particularly, quantum fluctuations
accommodate exotic phenomena4.

Eu-compounds exhibit very different phase diagrams
from Ce- and Yb-compounds, and an absence of a QCP.
Most of the reported Eu-compounds favor a Eu2+ (4f7,
J=7/2) valence state with an antiferromagnetic ground
state. However, the energy difference between Eu2+

and the non-magnetic Eu3+ (4f6, J=0) valence state
is not so large5 and is reachable by applying exter-
nal pressure or chemical substitution. Indeed, amongst
the most extensively studied Eu-compounds series with
the ThCr2Si2-type crystal structure, pressure or chemi-
cal substitution controlled first-order valence transitions

and valence fluctuations are frequently reported6. In the
Eu(Pd1−xAux)2Si2 system, EuAu2Si2 possesses a Eu2+

valence state and exhibits antiferromagnetic ordering be-
low the Néel temperature (TN) of ∼ 15.5 K7. Substitu-
tion of smaller Pd ions decreases the lattice parameter
and, by contrast, increases TN. Above x ∼ 0.25, the
magnetic transition is suddenly taken over by a first-
order valence transition to Eu3+.8 The Eu valence devi-
ates from integer values, to so called intermediate valence
states, and is ∼2.8 in EuPd2Si2 below 150 K9. A simi-
lar tendency is also reported for Eu(Pt1−xNix)2Si2

10 and
EuNi2(Si1−xGex)2

11 systems in such a way that the sub-
stitution by elements with small ionic radii works in the
same way as pressure and leads to a non-magnetic ground
state. Application of external pressure shows a consistent
behavior compared with chemical substitutions12. Due
to the different ionic size between Eu2+ and Eu3+, the
change of the Eu valence state is often assigned to Kondo
volume collapse effects13,14. In contrast, changes of the
Eu valence state and ground state property are found to
be independent of the volume effect in Eu(Rh1−xIrx)2Si2
system. The conversion from divalent EuRh2Si2 to
valence-fluctuating EuIr2Si2 involves only a ∼1.5% vol-
ume change, indicating its origins in electronic struc-
ture changes15. Very recently, exotic behavior has been
discovered in EuRhSi3 and Eu2Ni3Ge5

16–18 that cannot
be explained by the conventional phase diagram of Eu-
compounds. Both EuRhSi3 and Eu2Ni3Ge5 have mag-
netic Eu2+ ions and exhibit antiferromagnetism below
TN=49 K and 19 K, respectively, at ambient pressure.
Electrical resistivity measurements under pressure have
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reported the suppression of a magnetic ordering tem-
perature and a successive phase transition to a non-
magnetic heavy fermion state without a hint of a valence
transition17,18. These behaviors are similar to Ce- and
Yb-compounds and indicate the possible existence of a
QCP. These new aspects of Eu-compounds urge a sys-
tematic study of the electronic structure and its relation
to physical properties.

Eu-based ternary germanides EuTGe3 (T=Co, Ni, Rh,
Ir) and EuRhSi3 are isostructural, possess a BaNiSn3-
type structure (I4mm) which is similar to the ThCr2Si2-
type structure, though without centrosymmetry19. Mag-
netic susceptibility measurements19–22 and Mössbauer
spectroscopy23,24 report the presence of magnetic Eu2+

ions in all the compounds and localized Eu 4f mo-
ments order antiferromagnetically at similar temper-
atures. The magnetic moments order antiferromag-
netically along the c-axis at TN=15.4, 13.5 and 12.3
K for EuCoGe3, EuNiGe3 and EuIrGe3, respectively.
EuCoGe3 and EuIrGe3 exhibit additional magnetic tran-
sitions at 13.4 and 7.5 K, respectively, due to a
change of the antiferromagnetic structure19,22. Recently,
three antiferromagnetic phases have been discovered in
EuIrGe3 and a helical magnetic structure based on the
Dzyaloshinskii-Moriya interaction was proposed.25 Con-
versely in EuRhGe3, the magnetic moments order per-
pendicular to the c-axis at ∼12 K19,22. For each com-
pound, the effective magnetic moments are close to the
Eu2+ ionic value of 7.90 µB

19. All the transition met-
als are nonmagnetic in EuTGe3. Despite the variation
of transition metal substitution and the change in the
unit cell volume, the Eu ions seems to have a robust
Eu2+ valence state with TN being barely affected. In
the EuNi(Si1−xGex)3 system, transport measurements
reported a monotonous decrease of TN with an increase in
Ge substitution indicating its strong connection with the
volume change26. However, the change of TN in EuTGe3
by transition metal substitution does not show a propo-
tional change with the unit cell volume. This implies that
variation of the physical properties of the EuTGe3 by
transition metal substitution is rather dominated by the
change in electronic structure rather than the unit cell
volume effect. In order to study the transition metal sub-
stitution effect on the electronic structure of EuTGe3, we
performed hard x-ray photoelectron spectroscopy (HAX-
PES). By using the bulk sensitive HAXPES method, we
can unambiguously determine the Eu valence from Eu 3d
core level spectra and suppress the surface contribution.
The Eu 3d core level spectra confirmed that the Eu2+

valence state is robust against transition metal substi-
tution. The estimated Eu valence is close to 2.1. In
contrast, Ge 2p core level spectrum shifts to high bind-
ing energy by changing transition metal from 3d to 4d
to 5d elements. A similar trend was observed in the
Eu 4f spectrum in the valence band. We compare the
measured valence band electronic structure with ab initio

band structure calculations.
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FIG. 1. (Color online). Eu 3d core level spectra of EuTGe3
(T=Co, Ni, Rh and Ir). The experimental data are dis-
played using filled circles. The solid black lines represent the
simulated spectra from atomic multiplet calculations with a
4f7 configuration including plasmon satellites and an integral
background34. The arrows indicate the position of Eu3+ com-
ponents. The simulated Eu2+ spectrum (dark blue line) and
its plasmon satellites (light blue line) for EuCoGe3 are shown
in the bottom of the figure as an example. The difference
(purple line) spectrum obtained by subtracting the simulated
spectrum from the experimental one reveals the Eu3+ com-
ponents (purple area).

II. EXPERIMENTAL

HAXPES measurements were performed at the
GALAXIES beamline27,28 of the SOLEIL synchrotron.
The incident energy was selected by using the third or-
der of the Si(111) monochromator (hν=6.9 keV) yielding
a photon bandwidth of ∼ 200 meV. The photon beam
was linearly polarized with the electrical field vector in
the plane of the storage ring. Photoelectrons were col-
lected by using a hemispherical analyzer EW4000 (VG
Scienta). The binding energy of spectra was calibrated
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by measuring the Fermi edge of a Au film. The over-
all energy resolution was estimated to be ∼250 meV
from Au Fermi edge fitting. EuTGe3 (T=Co, Ni, Rh
and Ir) single crystals were grown by the metal-flux
method19. The grown crystals were characterized by x-
ray diffraction, magnetic susceptibility and electrical re-
sistivity measurements. The clean surfaces of the samples
were obtained by fracturing in-situ under vacuum (better
than 5×10−8 mbar) and immediately transferred into the
analysis chamber with a base pressure of 5×10−9 mbar.
The samples were aligned in a grazing incidence (normal
emission) geometry. In order to avoid irradiation dam-
age, all the measurements were performed at the lowest
reachable temperature of 30 K. The EuCoGe3 spectra
have been collected within 6 hours (multi bunch opera-
tion mode: 450 mA with using attenuator to reduce the
beam intensity down to 15%) and those for EuNiGe3,
EuRhGe3 and EuIrGe3 (single bunch operation mode:16
mA) have been collected within 12 hours after cleaving
under the pressure 5×10−9 mbar. In order to check for
oxidation or contamination, we have observed wide-range
and Eu 3d spectra for each compound just after the cleav-
ing and at the end of measurement which showed no re-
markable changes. Furthermore, the accumulation of Eu
3d and valence band spectra was divided to several sets
and reproducibility of the spectra has been checked.

III. RESULTS AND DISCUSSION

Figure 1 shows the Eu 3d core level spectra of EuTGe3
(T=Co, Ni, Rh and Ir) measured at 30 K. The Eu 3d
spectra are split into a 3d5/2 (1120-1145 eV) and 3d3/2
(1150-1175 eV) components due to spin-orbit interac-
tion. Each spin-orbit partner further splits into a Eu2+

component at lower binding energy and the Eu3+ com-
ponent at higher binding energy representing the Eu
4f7

→ c 4f7 + e and Eu 4f6
→ c 4f6 + e transitions,

respectively. Here, c denotes a 3d core hole and e the
outgoing photoelectron. Broad structures around 1140
and 1170 eV are attributed to plasmon statellites related
to the Eu2+ 3d photoemission process. Compared to the
Eu 3d spectrum of other divalent Eu compounds, such
as EuRh2Si2 (mean-Eu valence v ∼ 2.1 at 300-20 K)29

and EuNi2(Si0.21Ge0.79)2 (v ∼ 2.2 at 300 K)30, the rel-
ative intensity of Eu3+ components to those of Eu2+ is
small and buried in the tail of the Eu2+ components and
its statellite structures. As expected from magnetic sus-
ceptibility and Mössbauer measurements, the Eu valence
states in the EuTGe3 series are very close to Eu2+. In or-
der to elucidate Eu3+ contributions, a simulation analysis
was performed by carrying out atomic multiplet calcula-
tions to account for the lineshape of the Eu 3d core level
spectra. The Eu 3d spectra were simulated by using the
XTLS (version 9.01) code31 with a 4f7 (Eu2+) ground-
state configuration. The electrostatic and exchange pa-
rameters were obtained by Cowan’s atomic Hartree-Fock
program with relativistic corrections32. The exchange

parameters were scaled down to 86% of their Hartree-
Fock values. The calculated spectra are convoluted with
a Lorentzian function for lifetime broadening and a Gaus-
sian to account for the experimental resolution. The
broadening parameters as well as the values used for the
Coulomb and exchange multiplet interactions are listed
in Ref. 33. An example of the simulation for EuCoGe3
is shown in the bottom of Fig. 1. The plasmon satel-
lites (light blue line) are reproduced by broadening the
simulated Eu2+ atomic multiplet spectrum and shifting
in order to be in agreement with the experimental en-
ergy. Their relative intensity and the energy position to
the Eu2+ 3d components were calibrated using the Ge
2p peak and its plasmon position (see inset of Fig. 2
(b)). The solid black lines in Fig. 1 represent the sim-
ulated spectra including the atomic multiplet spectrum,
plasmon satellites and integral background34. The exper-
imental spectra are fitted by adjusting the intensity of the
calculated spectra such that the difference between the
experimental and the calculated spectra are minimized.
As seen in Fig. 1, the simulations can well reproduce the
multiplet structures of the experimental spectra. Since
the simulations only take into account the Eu2+ contri-
bution, the deviations from the simulated spectrum at
∼1135 and 1165 eV are assigned to the Eu3+ contribu-
tions. We extracted the Eu3+ component by subtracting
the simulated spectrum from that of experiment. A con-
tribution from the Eu3+ plasmon satellites to the Eu 3d
spectrum is negligibly small and therefore not considered
in this analysis. Some residual wiggling feature on the
difference spectrum (purple line) originates mostly from
tiny deviations in the peak positions and peak widths of
the multiplet structures. The Eu valence was estimated
by using the formula v = 2 + I3+/(I2+ + I3+). Here, I2+
and I3+ denote integrated spectral intensities of the sim-
ulated Eu2+ spectrum (dark blue line) and the extracted
Eu3+ component (purple area in Fig. 1), respectively.
The obtained Eu valences are v=2.11, 2.09, 2.08 and 2.09
(±0.01) for EuCoGe3, EuNiGe3, EuRhGe3 and EuIrGe3,
respectively. We should note that the estimated inelastic
mean-free path is ∼ 73 Å for 5.7 keV photoelectrons35,
therefore, the Eu3+ signal is not likely to be coming from
the surface states.

Figure 2(a) shows spectra with the Ge 2p3/2 compo-
nent for all the compounds. The inset shows the Ge 2p
complete spectra. The Ge 2p spectra tends to shift to-
wards higher binding energy upon going from 3d to 4d
to 5d elements. In order to precisely obtain this energy
shift, a fitting analysis was performed on the spectra by
using Gaussian and Lorentzian functions36. In addition,
a Mahan function37 with α= 0.16 is used to account for
the asymmetry of the line shapes. The result of the fit-
ting analysis is plotted in Fig. 2 (b) with an example of
such a fit in the inset. A large energy shift of ∼ 250 meV
is observed between EuCoGe3 and EuNiGe3. The energy
shift of the Ge 2p peak for EuRhGe3 and EuIrGe3 relative
to EuCoGe3 are ∼ 120 and 180 meV, respectively. We
note that the Fermi level (EF) was carefully checked just
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FIG. 2. (Color online) (a) Ge 2p3/2 core level spectra measured at 30 K. The inset shows the complete Ge 2p spectra. (b)
Binding energy of the Ge 2p3/2 peaks of EuTGe3 as a function of T (T=Co, Ni, Rh, and Ir). The inset shows an example of

the fit. The dashed line represents the integral background34 (BG).

before and after each measurement to correct for possi-
ble drift of the incident photon energy. The energy shift
between EuCoGe3 and EuNiGe3 can be understood as a
result of the energy shift of EF towards higher-energy in
the conduction bands with increasing 3d occupation.

In the related ternary compounds in the form of
RT2Ge2 (R: Rare earth, T : transition metal), the strong
T -Ge bonding based upon hybridization of T − d states
with Ge−sp states is reported38,39. In a similar vein,
a strong bonding between T -Ge can also be expected
in the EuTGe3 family as well. The energy shift of the
Ge 2p binding energy amongst EuCoGe3, EuRhGe3 and
EuIrGe3 indicates the change of bonding by transition
metal substitution.

In order to study the atomic orbital character of the va-
lence band electronic structure, we performed band struc-
ture calculations using the full-potential nonorthogonal
local orbital code (FPLO)40,41. The local density approx-
imation (LDA) with the Perdew and Wang flavor42 of
the exchange and correlation potential was chosen. Ad-
ditionally, the strong Coulomb replusion between the Eu
4f electrons was included in a mean-field way by ap-
plying the LDA+U method. The calculations were per-
formed for the experimentally obtained lattice parame-
ters reported in Ref. 19 with JH=0.7 eV and varying
U from 5 to 7 eV. It should be noted that varying U
only changes the energy separation between the filled
and unfilled Eu 4f states and does not change the results
qualitatively. The calculated total and partial density of
states (PDOS) are presented in Fig. 3. The europium
ions in the unit cell are configured such that they have
a ferromagnetic arrangement in the ab-plane and anti-
ferromagnetically aligned along the c-axis. Therefore,
the DOSs are symmetric for both the spin channels ex-
cept for Eu 4f . The DOSs in the minority-spin channel
are inverted and added together with the majority-spin

DOSs for comparison to experiments. The majority-spin
states of Eu 4f (solid red line) are fully occupied and ap-
pear as a localized sharp peak around 1 eV while the Eu
4f minority-spin states (dashed red line) remain unoccu-
pied. These results reflect the magnetic Eu 4f7 state in
all compounds. The Co and Ni 3d PDOSs appear cen-
tered at -1.5 eV and -2 eV, respectively. An increase of
the 3d electron number in EuNiGe3 shifts the center of
3d PDOS away from EF that decreases the hybridization
to Eu 4f . The Rh 4d and Ir 5d PODSs show a more
extended nature than 3d PDOS, appear from EF to -6
eV and then below -7 eV. The occupied Ge 4p PDOS
are mainly distributed from EF to -6 eV, hybridizing
with transition metal d and Eu 4f PDOSs. The Ge 4s
PDOS appears at -7 to -10 eV. Commonly in all four
compounds, a quasi-gap-like low DOS region appears ∼1
eV above EF.

The experimentally measured valence band spectra
after integral background correction34 are displayed in
Fig. 4. The HAXPES valence band spectra cannot
be directly compared to the theoretical DOSs, since the
photoionization cross-section of Eu 4f states is not the
only one to contribute to the spectrum. Therefore the
PDOSs are weighted with the corresponding photoion-
ization cross-sections extracted or interpolated from Ref.
43–45. Then, the simulated theoretical spectra were con-
voluted with a Gaussian function (FWHM: 0.3 eV) and
Fermi-Dirac function of 30 K. We consider the Eu 4f ,
T d, and Ge 4sp states as mainly contributing to the
valence band. The simulated spectra show good accor-
dance with experimental spectra. Note that we used the
DOS with U=5 eV for EuCoGe3 and U=6 eV for other
compounds, based on the agreement of Eu 4f peak po-
sition. In all the compounds, a localized Eu2+ 4f peak
is observed around 1 eV. A broad round shape of the Eu
4f peak is due to Eu2+ multiplet structures46. A peak
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FIG. 3. (Color online) Total and partial density of states (DOS) of (a) EuCoGe3, (b) EuNiGe3, (c) EuRhGe3 and (d) EuIrGe3
simulated by LDA+U (U=6 eV) method. Since all the compounds show symmetric DOS for two spin channels, the DOSs in
minority-spin channel are inverted and added together with the majority-spin DOSs, except Eu 4f DOS. The majority-spin
DOS of Eu 4f (solid red line) are fully occupied and the minority-spin DOS (dashed red line) are unoccupied.

around 2 eV in EuNiGe3, EuRhGe3 and EuIrGe3 cor-
responds to transition metal d states overlapping with
the Ge 4sp states. Due to the larger photoionization
cross-section of Ir 5d and Rh 4d compared to those of Ni
3d and Co 3d, the spectral weight of transition metal d
states is enhanced in EuIrGe3 and EuRhGe3. The broad
structure between 6-12 eV is mainly attributed to Ge 4s
states. The Eu 4f peak shows a similar tendency as that
of the Ge 2p spectrum, shifting to higher binding energy
by changing transition metal atoms. However, unlike the
Ge 2p spectrum, no significant energy shift was observed
between EuRhGe3 and EuIrGe3. As seen from Fig. 3,
the Eu 4f states are localized and do not hybridize with
the other structural components in a significant way for
all four compounds. The energy shift between the Eu
4f peaks between Co and Ni variants is due to the rigid
band shift of the entire valence band spectrum due to
the increase of one additional valence electron in Ni as
compared to Co. To the contrary, Rh and Ir variants
are isovalent with Co and therefore the Eu 4f peak re-

mains pinned to a similar energy position.The experimen-
tal valence band spectra have low DOS at EF, especially
for EuNiGe3. The result is consistent with the reported
transport measurements47. The decrease in DOS at EF

from EuCoGe3 to EuNiGe3 can also be understood as
a rigid-band shift due to an increase in 3d orbital occu-
pation by substitution of Co by Ni which shifts the 3d
states to higher binding energy.

Finally we comment on the pressure response of
EuTGe3. Recent temperature dependence of the electri-
cal resistivity studies under pressure reported a succes-
sive increase of TN for EuTGe3 (T=Co, Ni, Rh, Ir)25,47.
The antiferromagnetic ordering in EuTGe3 stably exists
up to 8 GPa and no sign of a Eu valence transition was
observed. Our valence band spectra give an explanation
to the robust Eu2+ magnetic states against pressure. The
dominant part of the Eu 4f DOS of EuTGe3 is local-
ized at ∼1 eV below EF which is deeper than other Eu-
compounds possessing an intermediate Eu valence state
or valence transition29,48. It hinders a charge transfer
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FIG. 4. (Color online) Valence band spectra (filled circles)
of EuTGe3 (T=Co, Ni, Rh and Ir) after integral background
correction34 and simulated spectra (lines). The majority- and
minority-spin DOSs are added together to compare with ex-
perimental spectra. Each PDOSs are multiplied by the cor-
responding photoionization cross-section and convoluted by a
Gaussian (0.3 eV: FWHM) and Fermi-Dirac functions at 30
K. The dashed lines denote the sum of the displayed PDOSs.
Note that the intensities of simulated EuIrGe3 spectra are
reduced to 50% relative to those of other compounds.

from Eu 4f to the conduction band that make up the
valence fluctuation or non-magnetic Eu3+ states. More-
over, the calculated DOS of EuTGe3 (see Fig. 3) has
a quasi-gap like region just above the EF that can also
prevent charge transfer. In divalent antiferromagnetic
EuFe2As2, the Eu2+ 4f states are localized at 1-2 eV be-
low EF

49. X-ray absorption spectroscopy under pressure
reported a change of antiferromagnetic to ferromagnetic
ordering above 8 GPa. Althoug the Eu valence gradually
increases, the Eu2+ magnetic moments remain up to 20
GPa50.

Notwithstanding the small energy difference between
Eu2+ and Eu3+ valence state, not all Eu contain-

ing compounds are readily manifesting valence tran-
sitions/fluctuations upon chemical substitution, pres-
sure, magnetic field, etc. For Eu-compounds contain-
ing non-magnetic transition metal ions, the main fin-
ger print to look for is the position of the Eu 4f va-
lence band. When the occupied 4f states are pinned
to the EF, they are more susceptible to possessing a
non-integral amount of 4f electrons and therefore a
valence transition upon chemical substitution/pressure
is highly probable. For example, the calculated and
measured valence band spectrum of valence fluctuating
EuNi2(P1−xGex)2 and EuNi2(Si1−xGex)2 respectively
corroborate this scenario.51,52 In this case, a strong cou-
pling of the magnetic ordering temperature of the Eu-
moments with substitution/pressure can be anticipated.
Alternatively, valence fluctuations remain rare in mate-
rials wherein the Eu 4f states are clearly half (integral)
filled and around 1 to 2 eV below the EF (i.e. the Fermi
level is pinned by the d states of the transition metal
ions or the p states of the ligands). The integral filling
combined with the energy position enhances the local-
ized character of the Eu 4f electrons and thereby the
RKKY exchange and weakens the valence fluctuations.
The EuTGe3 systems presented here belong to this lat-
ter category and naturally explains the insensitivity of
TN to the different chemical substitutions.

IV. CONCLUSIONS

We have performed bulk sensitive HAXPES and suc-
cessfully revealed the electronic structure of EuTGe3
(T=Co, Ni, Rh and Ir). The Eu 3d core level spectrum
revealed that the Eu valence states of all the compounds
are almost Eu2+ with negligible contribution of Eu3+.
The estimated Eu valence is close to 2.1. The Ge 2p
core level spectrum shows the chemical shift to higher
binding energy by changing transition metal from 3d to
4d and to 5d elements indicating the change of chemical
bonding between T and Ge. The valence band electronic
structure was systematically studied with the support of
ab initio band structure calculations. The experimental
valence band spectra shows good accordance with the
theoretical simulation. The Eu2+ 4f states are localized
at ∼1 eV below EF in all compounds. All the compounds
have a quasi-gap like region just above EF. This favours
the robust Eu2+ magnetic state against transition metal
substitution and also gives an explanation to its stability
against external pressure.
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