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Abstract

The ground state structural and energetic properties for rocksalt and cesium chloride phases

of the cesium halides were explored using the Random Phase Approximation (RPA) and beyond-

RPA methods to benchmark the non-empirical SCAN meta-GGA and its empirical dispersion

corrections. The importance of non-additivity and higher-order multipole moments of dispersion in

these systems is discussed. RPA generally predicts the equilibrium volume for these halides within

2.4% of the experimental value, while beyond-RPA methods utilizing the renormalized adiabatic

LDA (rALDA) exchange-correlation kernel are typically within 1.8%. The zero-point vibrational

energy is small and shows that the stability of these halides is purely due to electronic correlation

effects. The rAPBE kernel as a correction to RPA overestimates the equilibrium volume and could

not predict the correct phase ordering in the case of cesium chloride, while the rALDA kernel

consistently predicted results in agreement with the experiment for all of the halides. However,

due to its reasonable accuracy with lower computational cost, SCAN+rVV10 proved to be a good

alternative to the RPA-like methods for describing the properties of these ionic solids.
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I. INTRODUCTION

Alkali halides provide a useful benchmark for new theoretical methods to test their per-

formance in predicting equilibrium and non-equilibrium properties of ionic solids1–7. Among

the alkali halides, cesium halides are of particular interest in terms of their phase stability

and have been studied both experimentally as well as theoretically3,8–12. CsF is experimen-

tally stable in the B1 structure, while the Cl, Br, and I materials exist experimentally in

the B2 structure. In Strukturbericht notation, B1 corresponds to the rocksalt (NaCl) phase,

whereas B2 refers to the CsCl phase13. This difference in phase preference for the cesium

halides can only be understood through the inclusion of dispersion interactions3,8–12.

The unexpected stability of an ionic B2 phase was explained by London8 through the

presence of relatively large van der Waals interactions between the heavy Cs+ cation and

the heavier halide anions (Cl−, Br−, and I−). Since dispersion effects are proportional to

the polarizability and number of electrons in the anion, they are expected to become more

important as one moves down the halide column. Furthermore, the coordination number of

Cs in the B2 phase is higher than that in the B1 phase so there are locally more halide anions

with which to interact. Dispersion is a pure quantum mechanical effect due to instantaneous

or induced electronic multipole moments and is therefore difficult to capture with classical

models14. The simplest treatment of the dispersion interaction is modeled by simple pairwise-

additive interactions between atoms, but this type of approximation completely ignores any

nonadditive, nonlocal, and collective many-body effects14,15, which can be important in cases

where screening effects modify electron-electron interactions.

Rather than rely on classical models, ab initio calculations can be readily used to study

the details of these systems. The development of accurate approximations to the exchange-

correlation energy of density functional theory16 (DFT) has enabled it to become the default

electronic structure method for the computational molecular sciences. Approximations such

as the local density approximation17,18 (LDA) and the Perdew, Burke, Ernzerhof19 (PBE)

generalized gradient approximation (GGA) have been applied to a wide range of systems, but

they fail to deliver accurate results when non-local interactions are important. Global hybrid

density functionals, such as PBE020, often improve in situations with stretched bonds21,22,

but do not have any impact on dispersion interactions. By constructing meta-GGA (MGGA)

approximations that include the kinetic-energy density23–30, part of the dispersion interaction
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can be directly included in a semilocal calculation, however the long-range part is still

missing and must be included through other means. Incorporating the missing long-range

dispersion interactions into semilocal DFT calculations by adding empirical pairwise-additive

contributions has been an active topic of research for more than two decades31–38. More

recent formulations of these corrections go beyond pairwise contributions and can include

three-body terms39 or even some non-locality40–42.

The adiabatic-connection fluctuation-dissipation theorem (ACFDT) DFT formalism pro-

vides a non-empirical route to construct a nonlocal correlation energy that can be combined

with the self-interaction free exact exchange (EXX) energy to compute the total ground

state energy43–46. With improved algorithms47–51 and ever increasing computational power,

the Random Phase Approximation (RPA) has become an accessible alternative to semilo-

cal DFT and is the simplest approximation within ACFDT-DFT. Naturally accounting for

weak interactions, RPA has been demonstrated to yield accurate results for systems heav-

ily influenced by van der Waals interactions (vdW)52–56, as well as for covalently bound

systems57–63. Since RPA is determined from a Dyson-type equation, it also naturally incor-

porates non-pairwise-additive dispersion contributions64 that are missing from simple empir-

ical dispersion schemes45,65 and can be used as a benchmark for diverse physical and chemical

properties involving both van der Waals and covalent interactions in the literature58,66–68.

However the absence of an exchange-correlation (xc) kernel in RPA leads to an inaccurate

description of short-range correlation.69–72 Beyond-RPA (bRPA) methods including an ap-

proximate exchange-correlation kernel from time dependent DFT45,46,72–74 (TDDFT) correct

this deficiency of RPA while preserving the accurate description of long-range interactions.

In this work, we have assessed the performance of several semilocal functionals plus long-

range dispersion corrections, as well as ACFDT-based methods to determine the relative sta-

bility of the cesium halides in comparison to experiment. The importance of non-additivity

in these difficult ionic system was also tested. The impact of short-ranged interactions for

these systems was explored with a comparative study of RPA and beyond RPA methods.

The rest of the paper is organized as follows. The methods we used for this assessment are

discussed in Sec. II and computational details are given in Sec. III. The results are presented

in Sec. IV, followed by a brief discussion and some conclusions in Sec. V.
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II. METHODS

In this work, we have used several standard semilocal functionals to assess the ground

state properties of the cesium halides. Analogous to previous works3,75, we have used the

local density approximation17 (LDA) and the generalized gradient approximation of Perdew,

Burke, and Ernzerhof19 (PBE) as a starting point for comparing the performance of more

advanced methods. These two functionals do not explicitly include dispersion effects, though

sometimes error cancellation in the exchange and correlation energies can simulate the ef-

fects of including these additional attractive forces75. Previous results reported with these

functionals demonstrated that LDA predicts the correct phase ordering while PBE does not,

but adding a long-range dispersion correction to PBE corrects this fundamental failure3.

In practice dispersion corrections work well with the PBE0 global hybrid functional.

PBE0 itself has been effective in

predicting the stability of hydrogen-bonded ice polymorphs76. Long-range dispersion cor-

rections are, however, essential for an accurate predicition of structures for various systems.

In this case PBE0 without dispersion correction does not necessarily deliver the desired

accuracy as pointed out in Refs. 77–79. In order to explicitly include some dispersion at

the semilocal level, more advanced approximate functionals are needed, such as from the

MGGA “rung” of DFT23,80,81.

The strongly constrained and appropriately normed (SCAN) functional is one such ap-

proximation that incorporates intermediate-range dispersion interactions through its depen-

dence on the kinetic energy density24. SCAN is one of the most advanced non-empirical

semilocal functionals to date, satisfying all possible exact constraints that a MGGA can,

and has proven to be accurate for diversely bonded systems.24,75,82–84 Comparing the SCAN

results to those of previous non-empirical functionals should show clearly the impact that

including dispersion, if only partially, makes at the semilocal level for the ground state

properties of ionic materials.

Though SCAN includes intermediate-range vdW effects, it does not capture long-range

interactions which arise from electron density fluctuations. To incorporate these missing

contributions to the energy, we have utilized two correction schemes based on approximate

treatments of the dispersion interaction. The first route, Grimme et al.’s D339,85 method,

improves upon the previous D2 approach by incorporating three-body interactions and treat-
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ing effects from the local environment. We also tested the impact of including dispersion

through the non-local rVV10 correction41,42,82 in combination with SCAN24. The rVV10

correction naturally includes higher-order multipole moments, but does not capture non-

pairwise-additive effects82. Including the impact of these corrections is important since pre-

vious works used lower level approximations, such as D2, and found a large energy difference

between the B1 and B2 phases3.

In order to verify our semilocal results, we also utilized methods from the adiabatic-

connection fluctuation-dissipation theorem (ACFDT) formulation of DFT43,45,73,86. The

most common approximation of ACFDT-DFT, known as the Random Phase Approxima-

tion (RPA), was originally developed in the 1950’s87,88 for the uniform electron gas and has

received renewed interest more recently due to increased computational power and more

efficient algorithms.47,49,50,69,89–91 The detailed mathematical description of the ACFDT for-

malism, as well as its implementations, can be found in the review articles Refs. 45 and 46.

To summarize briefly, within the ACFDT-DFT the total energy is computed from the non-

local, self-interaction-error-free exact exchange (EXX) energy and a non-local correlation

energy,

EACFD = EEXX + EACFD
C . (1)

The total correlation energy itself can be exactly decomposed into two contributions72,

EACFD
C = ERPA

C + ∆EbRPA
C , (2)

where the second term accounts for all of the many-body effects not captured by RPA. Within

RPA, ∆EbRPA
C = 0 since the exchange-correlation kernel is explicitly neglected. The RPA

correlation energy naturally includes long-range dispersion and is non-perturbative, meaning

that it can be safely applied to zero-gap systems without diverging92. For this work, the

non-perturbative nature is important not because the band gaps are small, but because non-

perturbative methods capture non-pairwise-additive contributions to dispersion15,65. Con-

sequently, we can count on RPA to provide a quasi-benchmark with which to compare the

semilocal and dispersion-corrected results. However, if treating the short-ranged correlation

accurately is important for these ionic materials, RPA may not provide the desired accuracy

needed for a true benchmark, and more advanced methods beyond RPA are needed.

Due to neglect of the exchange-correlation kernel within RPA, the short-ranged corre-

lation is not accurately described70,71. To go beyond RPA, we have studied the impact of
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two approximate exchange-like kernels, rALDA93,94 and rAPBE95. These kernels are de-

rived from electron gas model kernels and are spatially renormalized in order to avoid the

divergence of the pair-density at the origin from adiabatic, local kernels in TDDFT.62,73,94

These kernels have been demonstrated to improve upon RPA for non-isogyric processes,

such as computing atomization or cohesive energies, while preserving the good performance

of RPA for covalent and dispersion bound systems.94–96 We have also used the CP0797

exchange-correlation kernel to determine if the exchange-like kernels are sufficiently accu-

rate for predicting the energy difference between the B1 and B2 phases. We did not explore

the structures with these exchange-correlation kernels since they are noticably more compu-

tationally demanding and Ref. 62 demonstrated that their performance for lattice constants

and bulk moduli of simple solids is only marginally different than that of rALDA and rAPBE.

Rather than compute the infinite-order response function, χλ, that includes the kernel44,73,86,

we utilize RPA renormalization72,74,98 (RPAr) to compute ∆EbRPA
C . To briefly describe these

approximations, within RPA renormalization the infinite-order expression for the bRPA

piece72,74 for a given kernel is

∆EbRPA
C [fxc] = −Re

∫ 1

0

dλ

∫ ∞
0

du

2π

〈
V χ̂λ(iu)fλxc(iu)χλ(iu)

〉
, (3)

where V is the bare Coulomb interaction, χλ = (1 − χ0(Vλ + fλxc))
−1χ0 is the interacting

density-density response function, χ̂λ = (1−χ0Vλ)
−1χ0 is the RPA response function, fxc is

the exchange-correlation kernel, iu is an imaginary frequency, though we take the Re part

of the integral, λ the adiabatic-connection coupling constant, and 〈A〉 indicates the trace

of matrix A. For periodic boundary conditions, this trace involves an integration over the

Brillouin zone and summation over the reciprocal lattice vectors.

RPAr to first-order, RPAr1, is obtained by replacing χλ with the RPA response function

χ̂λ

∆ERPAr1
C [fxc] = −

∫ 1

0

dλ

∫ ∞
0

du

2π

〈
V χ̂λ(iu)fλxc(iu)χ̂λ(iu)

〉
. (4)

Note that Eq. (4) differs from Eq.(3) by the hat on the second χλ. RPA renormaliation to

first-order (RPAr1) was previously demonstrated to account for ∼90 % of the total bRPA

correlation energy, delivering a consistent performance in comparison to the traditional

infinite-order approach72,92,98. In order to capture high-order correlation contributions, we

have also utilized an approximate second-order RPAr correction74 which we call the higher-
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order terms (HOT) approximation.99 This approximation makes up the difference between

RPAr1 and the infinite-order result

∆EHOT
C [fxc] = EbRPA

C − ERPAr1
C ≈ −1

2

∫ ∞
0

du

2π
〈V χ̂fxcχ̂fxcχ̂〉 , (5)

typically recovering the total infinite-order correlation energy to within 1% when added to

RPAr1. We have also utilized an approximation to RPAr1 called ACSOSEX72,74,98,100–102,

which neglects a certain set of third and higher-order contributions to the correlation energy

in comparison to RPAr198. This approximation is obtained by replacing one χ̂ with χ0 in

the RPAr1 correlation energy

∆EACSOSEX
C [fxc] = −

∫ 1

0

dλ

∫ ∞
0

du

2π

〈
V χ̂λ(iu)fλxc(iu)χ0(iu)

〉
, (6)

and was shown to be less systematic than RPAr1 due to the reintroduction of the non-

interacting KS response function.72,98 This is to be distinguished from the coupled-cluster

doubles approximation known as second-order screened exchange103–105 (SOSEX), how-

ever ACSOSEX and SOSEX have been shown to be analytically and numerically quite

similar.98,100 The differences in these approximations hinge on the differences in the response

functions used to evaluate the traces, which can be important for describing non-perturbative

dispersion interactions, since we cannot expect χ0 to contain any information beyond the

mean-field level. By studying the relative performance of these three methods we can un-

derstand the impact that the partial resummations of the correlation energy makes on the

ground state properties of these ionic materials.

III. COMPUTATIONAL DETAILS

Ground state LDA and PBE calculations were performed within the Projected Aug-

mented Wave (PAW) formalism106 as implemented in gpaw107–109. We used PBE input

orbitals for all of the RPA and beyond-RPA calculations, since they are evaluated non-

self-consistently. Calculations with the strongly constrained and appropriately normed

(SCAN) functional24 and its combination with the revised VV10 dispersion correction

(SCAN+rVV10)82 were obtained self-consistently with vasp110. A plane wave cutoff of 600

eV was used in conjunction with 6 × 6 × 6 Gamma-centered Monkhorst-Pack111 k-point

meshes to sample the Brillouin zone for semilocal and hybrid functionals. A higher plane
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wave cutoff of 800 eV and Brillouin zone sampling of 8×8×8 were used for the EXX and RPA

correlation energy calculations. Fermi-Dirac occupations corresponding to a temperature

of 0.01 eV were used throughout. gpaw calculations were performed using the 0.9.20000

datasets, while the vasp calculations utilized the sv and simple PP for Cs and halogens

respectively, modified to include kinetic energy density required for MGGA calculations112.

The non-interacting density response function can be computed from a sum-over-states

expression113 which is truncated at the number of bands determined by the plane wave

cutoff for the response function. Since the calculation of the response function converges

slowly with respect to the sum over unoccupied states, an extrapolation is needed to obtain

converged correlation energies from the adiabatic connection.52,69 We used a maximum cutoff

for the response function of 400 eV, and 4 smaller cutoffs in 5% increments of the maximum to

extrapolate the correlation energy according to Eq. (7) in Ref. 52. The frequency integral was

performed as in Ref. 52 using a 16 point Gauss-Legendre quadrature, and with a frequency

scale of 2.0 for non-metallic systems as recommended in Ref. 60. A Wigner-Seitz truncation

scheme114 was used for the EXX energy to treat the small wavevector divergence of the

Coulomb interaction, while the perturbative approach suggested in Ref. 113 was used for

the correlation energy. For the RPA correlation calculations we have used 8×8×8 Gamma-

centered k-point meshes, For the bRPA calculations we have used 6×6×6 meshes for both

phases because the kernel-corrected methods tend to converge faster than RPA with respect

to the k-mesh size, much like the original SOSEX method104. We have used a 350 eV cutoff

without extrapolation for these bRPA calculations. For the CP07 calculations, we used the

same settings as for the rADFT kernels, but evaluated the energy difference at only a single

volume for each phase near their respective minima as predicted by rALDA.

The atomic energies for the ACFD methods were computed using rectangular simulation

cells of 6Å×7Å×8Å for F and 7Å×8Å×9Å for Cs, Cl, Br, and I. Two cutoffs, 300 and

350 eV, were used to extrapolate the atomic results, since these cutoffs were previously

demonstrated to yield converged results for RPA.60 Atomic EXX energies were computed

using simulation cells of 12Å×12Å×12Å and an 1000 eV plane wave cutoff. The atomic

energies for SCAN and SCAN+rVV10 were calculated using a plane wave basis set with

maximum kinetic energies of 250–400 eV and a 20Å×20Å×20Å simulation cell.

We calculated the zero-point vibrational energy (ZPVE) from PBE using vasp and

phonopy115 to estimate thermal corrections to the ground state energy. The ZPVE calcu-
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lation includes the effect of LO-TO splitting within a polar solid116. The equilibrium prop-

erties of the bulk materials were determined from a fit to the third-order Birch-Murnaghan

equation of state using at least seven volume points around the minimum.

IV. RESULTS

A. Equilibrium Structural Parameters

The computed equilibrium volumes and bulk moduli are reported in Tables I and II re-

spectively. Beyond-RPA results are computed using rALDA. Experimental volumes were

obtained using the lattice constants reported in the literature117. PBE systematically over-

estimates the equilibrium volume while LDA underestimates it, and our results are in good

agreement with those of Refs. 3 and 12. On the other hand, a global hybrid PBE0 does im-

prove over PBE slightly, but still overestimates the equilibrium volume. In order to predict

accurate equilibrium volumes, some level of dispersion must be included. The equilibrium

volumes predicted by SCAN, SCAN+D3, and SCAN+rVV10 are much more accurate than

PBE or LDA, and tend to be quite close to one another and to the RPA results. The

beyond-RPA methods tend to be even more accurate than dispersion corrected SCAN or

RPA in comparison to experiment. The accuracy of the various methods to estimate the

bulk modulus follows essentially the same trends as for the equilibrium volumes.

B. Cohesive Energies

The cohesive energies per formula unit for the low-energy phases of the cesium halides are

presented in Table III. For the fluoride this corresponds to the B1 phase, while for the other

salts B2 is the low-energy phase. LDA and SCAN tend to overestimate the cohesive energies

for the fluoride and chloride salts and underestimate the cohesive energy for the iodide.

The bromide tends to be the halide where these semilocal functionals are closest to the

experiment. PBE universally underestimates the cohesive energies for all of the halide salts.

PBE0 still underestimates the cohesive energy providing only a slight improvement over

PBE. Adding dispersion to PBE improves the cohesive energies of these halides3,12. Similarly,

the D3 correction to PBE0 improves the equilibrium properties significantly, as presented in

Table S5 of the supporting information122. Adding long range dispersion from D3 or rVV10
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TABLE I. Equilibrium volumes per CsX functional unit in Å3. Experimental volumes correspond

to room temperature. LDA underestimates the lattice constants whereas PBE always overestimates

them. RPA along with SCAN (S), S+rVV10, and S+D3 are noticably more accurate for predicting

the equilibrium volumes than PBE and LDA, however the beyond-RPA methods using rALDA

(RPAr1, HOT, and ACSOSEX) yield the most accurate results.

V0 LDA PBE PBE0 SCAN S+D3 S+rVV10 RPA RPAr1 HOT ACSOSEX Expt.117

F-B1 49.299 58.096 55.844 53.783 53.443 52.849 53.566 54.118 53.959 54.027 54.270

F-B2 43.336 51.087 49.298 47.873 47.809 47.018 47.687 47.898 47.770 48.057

Cl-B1 76.719 89.031 87.188 85.863 84.929 84.116 83.128 82.324 82.104 81.826

Cl-B2 62.853 74.780 72.564 70.235 69.483 68.490 68.315 68.873 68.681 68.977 69.934

Br-B1 86.980 101.332 99.234 97.794 96.756 95.666 94.181 93.772 93.453 93.070

Br-B2 71.270 84.980 82.464 79.887 78.922 77.892 77.321 78.154 78.888 78.164 78.954

I-B1 104.001 121.620 119.266 117.978 116.913 115.045 113.348 112.582 112.160 111.715

I-B2 85.622 102.028 99.229 98.182 96.922 95.545 93.525 94.079 93.713 94.010 95.444

TABLE II. Computed bulk moduli (GPa) from the equation of state fits. The experimental values

of Ref. 118 are taken at 4.2 K, Ref. 11 and 119 were measured around liquid nitrogen temperature,

and the remaining were measured around room temperature. RPA and SCAN are quite accurate

in predicting the bulk moduli of these halides, however SCAN+rVV10 and the kernel-corrected

bRPA methods utilizing the rALDA kernel are still systematic improvements.

B LDA PBE PBE0 SCAN S+D3 S+rVV10 RPA RPAr1 HOT ACSOSEX Expt.

F-B1 33.2 19.8 22.5 27.7 28.4 29.6 25.4 27.5 27.8 27.9 25.0120

F-B2 41.2 23.7 26.4 33.3 29.1 34.7 28.1 31.6 31.9 31.2

Cl-B1 19.3 12.2 13.0 15.0 15.6 16.2 15.6 17.3 17.5 18.1

Cl-B2 24.7 14.3 15.7 19.4 19.7 21.4 20.4 20.6 20.8 20.9 22.9119

Br-B1 16.5 10.3 11.0 12.7 13.2 13.7 13.3 14.5 14.7 15.3

Br-B2 21.0 12.2 13.3 14.6 16.5 17.7 17.5 17.6 17.8 17.9 17.911, 18.4118

I-B1 13.3 8.2 8.7 10.0 10.4 11.0 10.8 11.8 11.9 12.4

I-B2 16.9 9.9 10.7 13.4 12.8 13.7 13.8 14.3 14.5 14.6 13.5121, 14.4118
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to SCAN systematically increases the cohesive energies, resulting in larger overestimates for

the fluoride and chloride, a little change for the bromide, and reducing the underestimation

of the iodide salt. RPA and the bRPA methods also have varied performances, tending to

yield overestimates for F and Cl, but underestimates for the Br and I salts. There is some

difference amongst the bRPA methods themselves for the cohesive energies since a free atom

is involved, and the different levels of RPAr recover different amounts of bRPA correlation.74

The short-ranged contributions captured by the bRPA corrections become important for the

heavier halides since the CsX bond is more covalent than the lighter halides, based solely on

electronegativity differences123. Thus RPA tends to be more accurate vs experiment for the

fluoride and chloride and less accurate for the bromide and iodide salts, whereas the bRPA

methods have the opposite trend.

Comparing the semilocal results against the ACFDT results indicates that the incorpo-

ration of dispersion is crucial, as expected. The dispersion corrected SCAN results agree

to a good extent with the higher level calculations, though whether they agree with RPA

or bRPA methods depends on the halide. For the fluoride, the ACFDT methods are likely

superior because they utilize the self-interaction error free exact exchange energy and cor-

rectly incorporate all ranges of dispersion, whereas the semilocal results (other than PBE)

are too large already without dispersion and only become larger with the addition of D3 or

rVV10. For the other halides, the difference between the dispersion corrected SCAN results

and the bRPA methods is around 300 meV per functional unit (∼3-5%) indicating an ade-

quate prediction by the lower-level methods. Though the magnitude of the cohesive energy

is important to compare with experiment, the difference in predicted cohesive energies is

also important for predicting the relative stability of the B1 and B2 phases.

The differences in the predicted cohesive energies between B1 and B2 phases, ∆Ecoh =

EB1
coh −EB2

coh, are summarized in Figures 1 and 2. Figure 1 contains the dispersion-corrected

semilocal results along with PBE0, and RPA. The bRPA results using rALDA are presented

in Figure 2. As in Ref. 3, both PBE and PBE0 predict all of the cesium halides to prefer

the B1 phase, whereas all the other methods predict CsF to prefer the B1 phase and CsCl,

CsBr, and CsI to prefer the B2 phase. LDA predicts the correct energetic orderings for all

of the halides in addition to accurately predicting the structural parameters. The PBE+D2

results of Ref. 3 correct the failure of PBE, but result in a large difference in cohesive energies

due to an inadequate description of dispersion effects in these ionic compounds. Both
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TABLE III. Computed cohesive energies (eV per formula unit) for the stable phases of the cesium

halides. The columns are labeled as they were for Table I. SCAN+D3 results were computed using

”zero” damping. The experimental values given by Ref. 10 are taken at room temperature.

Ecoh LDA PBE PBE0 PBE+D23 SCAN S+D3 S+rVV10 RPA RPAr1 HOT ACSOSEX Expt.10

F B1 8.28 7.19 6.91 7.94 8.09 8.14 8.24 7.51 7.68 7.81 7.82 7.48

Cl B2 6.97 6.07 6.08 6.84 6.874 6.94 7.08 6.865 7.12 7.24 7.40 6.74

Br B2 6.49 5.64 5.70 6.48 6.37 6.44 6.57 6.03 6.08 6.20 6.42 6.48

I B2 5.92 5.12 5.20 6.02 5.73 5.80 5.94 5.56 5.59 5.70 5.93 6.18

FIG. 1. Bar diagram representing ∆Ecoh = EB1
coh − EB2

coh obtained with various DFT methods.

PBE+D2 results are taken from Ref. 3. Positive ∆Ecoh corresponds to the B1 phase being preferred

as the ground state, whereas negative values indicate the preferred stability of the B2 phase. PBE

predicts all ground state cesium halides to be in the B1 phase whereas all other methods favor

the B2 structure except in CsF. Data for energy differences between cohesive energies between two

phases are presented by Table S1 in supplementary material122.
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RPA and SCAN predict the correct phase ordering, but the difference in cohesive energies

is noticably smaller than that of PBE+D2. RPA yields a consistent trend of increasing

∆Ecoh going down from Cl in the halide group, as do LDA and PBE+D23, but SCAN

does not yield the same trend, with the predicted energy difference for the iodide being

smaller than that for Cl and Br. Beyond RPA methods follow the RPA trend, but yield
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TABLE IV. Comparison of equilibrium volumes for CsCl obtained using rAPBE with other RPA

based methods.

Vol(Å3) rALDA rAPBE

RPA RPAr1 HOT ACSOSEX RPAr1 HOT ACSOSEX

CsCl-B1 83.128 82.324 82.104 81.826 87.080 87.476 87.257

CsCl-B2 68.315 68.873 68.681 68.977 74.732 75.448 75.074

consistently larger splittings between the phases. Since the bRPA methods contain proper

short- and long-ranged correlation effects, as well as a self-interaction error free exchange

energy, we prefer them for a benchmark in these systems. With that in mind, the SCAN

and SCAN+dispersion results yield reasonable predictions for each of the salts, though the

chemical trend is not reproduced. We found that the difference in ZPVE between the two

phases is 5 meV for CsF, and decreases to 0.1 meV as we go towards the heavier anions. No

imaginary vibrational modes were observed during phonon calculation. These thermal shifts

are negligible compared to the electronic energy difference3, thus the primary contribution

to ∆Ecoh comes from electronic correlation at 0 K and not from any temperature effects.

The beyond RPA results obtained with the rAPBE, CDOPs, and CP07 kernels for

CsCl are reported in Tables IV and V. Results for rAPBE are obtained using the

Birch−Murnaghan equation of state with an energy cutoff of 350 eV, while the others

were calculated close to the RPA minimum. Table IV shows that rAPBE significantly

overestimates the equilibrium volume, while Table V shows that it predicts both phases to

be iso-energetic, in contradiction to the experimental fact that CsCl prefers the B2 phase.

Both CDOPs and CP07 predict that CsCl prefers the B2 phase by at least 15 meV per

functional unit, supporting the assertion that the results obtained with the rALDA kernel

are more reliable than those of rAPBE.

V. DISCUSSION & CONCLUSION

Due to the lack of explicit treatment of weak, but important, van der Waals interactions

between the ions3,9,12, PBE and PBE0 are inaccurate for determining the equilibrium ground

state properties of the cesium halides. The correct ordering predicted by LDA, in addition to
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TABLE V. Beyond RPA results for equilibrium energy difference (∆Ecoh = EB1
coh − EB2

coh) with

rAPBE, CDOP, and CP07 kernels. The Birch-Murnaghan equation of state was fit to get the

rAPBE results, whereas the calculation was only done near the equilibrium volume obtained with

RPA for the others. Only rAPBE fails to predict the correct phase ordering. The HOT approx-

imation is not currently implemented for CP07 or CDOPs. RPA predicts a splitting of 0.0123

eV.

∆ECoh (eV/f.u.) rAPBE CPO7 CDOPs

RPAr1 0.003 -0.019 -0.035

HOT 0.001 — —

ACSOSEX 0.001 -0.019 -0.040

FIG. 2. Bar diagram representing ∆Ecoh = EB1
coh − EB2

coh obtained with beyond RPA methods

using rALDA kernel. Dispersion corrected results to SCAN (SCAN+D3 and SCAN+rVV10) and

RPA results are presented alongside for the sake of comparision between various beyond rALDA

approximations. Positive ∆Ecoh indicates the B1 phase is the preferred ground state, whereas

negative values indicate the preferred sability of the B2 phase. Data for energy differences between

cohesive energies between two phases are presented by Table S3 in supplementary material122.
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the accurate cohesive energies, is due to error cancellation between exchange and correlation,

and is not reliable in general for novel ionic materials. SCAN is a reliable semilocal functional

for these materials, since it incorporates some of the missing dispersion contributions absent
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in the other non-empirical functionals we tested. SCAN simultaneously provides an accurate

prediction of the structural properties and cohesive energies, but is unable to completely

capture the same trends as RPA with respect to the relative magnitudes of the cohesive

energies. Adding the long-range dispersion shifts the magnitude of the SCAN result, but

does not impact its underlying physical prediction. For the cesium halides, the rVV10

correction tends to be larger in magnitude, resulting in underestimated equilibrium volumes

and overestimated cohesive energies, while the D3 correction is smaller and yields overall

results in close agreement with the uncorrected SCAN.

The ACFDT-DFT methods delivered highly accurate structural results, though RPA is

more accurate for the cohesive properties of the lighter halogens and bRPA methods only

overtake RPA for the bromide and iodide. Since RPA naturally incorporates long-range

dispersion and the lighter halogens contain more ionic interactions, incorporating additional

short-ranged interactions through an xc kernel overestimates the cohesive energy difference

between the B1 and B2 phases. For the heavier halogens, the kernel is more important since

the interactions are less ionic. Of the kernels we tested, three indicated a clear preference for

the B2 phase for Cl, Br, and I, further validating our RPA and semilocal results. Though

rALDA and rAPBE both share very similar functional forms, the inability of rAPBE to

predict the correct phase ordering is puzzling, and will require further tests to understand.

Amongst the RPAr methods there is little difference in overall performance, indicating that

any reasonable treatment of bRPA effects should improve the RPA result. We prefer RPAr1

to ACSOSEX since it is a completely screened perturbation theory72,98.

Overall, the splitting between B1 and B2 in cohesive energies predicted by LDA, RPA,

SCAN, and SCAN+rVV10 ranges from 20 to 80 meV for the halogen series, whereas it ranges

from 80 meV to 210 meV for PBE+D23 (See Fig. 1). This large splitting in PBE+D2 is

due to the fact that it describes dispersion only through 2-body attractive dispersion with-

out taking effects from local environment into account and does not incorporate repulsive

3-body dispersion contributions to the cohesive energy in these halides124. The lower split-

ting in cohesive energy by RPA and SCAN can be attributed to the fact that RPA lacks a

proper description of short ranged dispersion whereas SCAN does not include long ranged

dispersion. The rALDA results are more accurate for the heavier halogens than RPA be-

cause short-ranged interactions are properly included through an exchange-like kernel. The

SCAN+rVV10 results also show systematic improvement over SCAN by adding missing
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long-range dispersion, resulting in energy differences that closely mimic the bRPA results of

rALDA. Results obtained with CP07 and CDOPs further support that the rALDA kernel

is sufficiently accurate for explaining the phase stability of these ionic solids. Due to their

lower computational cost, SCAN and dispersion-corrected SCAN methods can be a reliable

alternative to the ACFD methods for ionic systems, where treating the various distance

scales of electron-electron interactions are important. Benchmarking against RPA or bRPA

is reccommended though, if one is interested in chemical trends.
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49 M. Kaltak, J. Klimeš, and G. Kresse, Phys. Rev. B 90, 054115 (2014).
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