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We show that an in-plane magnetic field can drive two-dimensional spin-orbit-coupled systems
under superconducting proximity effect into a gapless phase where parts of the normal state Fermi
surface are gapped, and the ungapped parts are reconstructed into a small Fermi surface of Bogoli-
ubov quasiparticles at zero energy. Charge distribution, spin texture, and density of states of such
“partial Fermi surface” are discussed. Material platforms for its physical realization are proposed.

Introduction— In recent years spin-orbit coupling
(SOC) is found to play an increasingly important role
in experimental and theoretical studies of superconduc-
tivity. The Rashba SOC is a key ingredient in creat-
ing Majorana bound states via superconducting proxim-
ity effect [1–8]. The Ising-type SOC can stablize two-
dimensional (2D) superconductivity against very large
in-plane magnetic fields [9–12]. Strong atomic SOC can
enhance p-wave pairing in inversion-symmetric metals,
leading to time-reversal-invariant topological supercon-
ductivity [13–17]. The interplay between SOC and su-
perconductivity continues to be a fruitful source of new
physics.

Rashba SOC also brings new twists to 2D supercon-
ductors under an in-plane magnetic field that couples to
electron spin. The Zeeman energy is pair breaking for s-
wave superconductivity. In the absence of SOC, a transi-
tion from superconducting to normal state should occur
when the Zeeman splitting exceeds the superconducting
condensate energy [18–20]. For 2D superconductors with
strong Rashba SOC, recent works [21–23] proposed that
superconductivity with finite-momentum pairing may be
stabilized at high field, thus leading to the Fulde-Ferrell-
Larkin-Ovchinnikov state.

In this work, we study the effect of Zeeman field on
2D spin-orbit-coupled electron systems, which are by
themselves non-superconducting but acquire a supercon-
ducting gap by proximity coupling to an external su-
perconductor. Such systems include—but are not lim-
ited to—superconductor-topological insulator (TI) [24–
27] and superconductor-InAs 2DEG hybrid structures
[28–30], where a hard proximity-induced superconduct-
ing gap at zero field has been observed. We show that an
increasing in-plane field can close the proximity-induced
gap and create gapless Bogliubov quasiparticles before
eventually destroying the parent superconductor. This
scenario is realized when the g-factor of the 2D system is
sufficiently larger than that of the parent superconductor,
or when the proximity-induced gap is sufficiently smaller
than the parent superconducting gap. Interestingly, in
the presence of strong Rashba SOC, the competition be-
tween proximity-induced pairing at zero total momentum
and pair-breaking Zeeman field partially gaps the elec-
tron Fermi surface, and reconstructs the ungapped seg-

ments into a banana-shaped Fermi surface of zero-energy
Bogoliubov quasiparticles. These Bogoliubov quasiparti-
cles are coherent superpositions of electrons and holes re-
siding on two arcs on opposite sides of the original Fermi
surface. We call the Bogoliubov Fermi surface “partial
Fermi surface”. We discuss charge distribution, spin tex-
ture and density of states of such partial Fermi surface
and generalize these results to 2D superconductors with
spin-nondegenerate Fermi surfaces exhibiting arbitrary
spin texture under in-plane Zeeman field.
Surface States of Topological Insulators— We

first consider the TI surface states in proximity with an s-
wave superconductor [1] and under an in-plane magnetic
field B. The Hamiltonian reads

H =
∑
k

c†k[vF (kxσy − kyσx)− µ− V σy]ck

+ ∆(c†k↑c
†
−k↓ + h.c.), (1)

where c†k = (c†k↑, c
†
k↓) is electron creation operator at

momentum k and with spin s =↑, ↓. Here vF is Fermi
velocity of surface states. µ is the chemical potential
measured from the Dirac point. ∆ is the induced s-wave
pairing potential, which is generally smaller than the gap
of the parent superconductor. V = gµB |B| is the Zeeman
energy induced by in-plane field B with g-factor g and
Bohr magneton µB . Without loss of generality, we choose
B to point along the −y direction.

In the absence of pairing, TI surface states exhibit spin-
momentum locking, i.e, a state on the Fermi surface de-
fined by |k| = |µ|/vF ≡ kF is spin-polarized along the
in-plane direction perpendicular to its momentum. As
a result, an in-plane magnetic field B displaces the en-
tire Fermi surface in the perpendicular direction in the
Brillouin zone. This is completely different from the case
of an ordinary metal without SOC, where Zeeman field
splits a spin-degenerate Fermi surface into two.

Now consider proximity-induced pairing in the pres-
ence of Zeeman field. Importantly, when |B| is smaller
than the upper critical field Bc2 that destroys the parent
s-wave superconductor, the proximity-induced pairing
potential ∆ on the TI surface states remains finite. Fur-
thermore, we consider low temperature cases where the
parent superconducting order parameter and hence in-
duced pairing potential ∆ do not have significant changes
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FIG. 1: a) Upper: The phase diagram of superconducting
topological insulator (TI) surface states described by Hamil-
tonian (1), in terms of magnetic field |B|. When |B| > Bc2
the whole system is in normal phase. The superconducting
(SC) phase in the region ∆

gµB
< |B| < Bc2 is gapless while

the SC phase in 0 < |B| < ∆
gµB

is fully gapped, with g-factor

g and Bhor magneton µB . Lower: Energy spectra of Hamil-
tonian (1) when ky = 0. The red, green and blue curves cor-
respond to V = 0, 0.6, 1.2 respectively, the solid and dashed
lines correspond to quasiparticles and quasiholes respectively.
For illustration the parameters are vF = 10, µ = 5,∆ = 1.
b) The partial Fermi surfaces in the gapless SC phase where
vF = 100, µ = 50, V = 1.2,∆ = 1. Colors denote the charge
distribution in unit of e. Inset: The zoom-in plot of partial
Fermi surface on the kx > 0 side where the arrows indicate
the spin polarization.

when external field |B| < Bc2 is applied [31–33]. For
weak field, the surface states remain fully gapped. The
proximity-induced gap is now anisotropic: the gap mini-
mum is located at ±kF x̂, where the Zeeman field B ‖ ŷ
creates the largest energy difference between electrons of
opposite momenta on the Fermi surface and thus has the
strongest pair breaking effect. At V = ∆, the gap at
±kF x̂ closes. For V > ∆, the spectrum of H becomes
gapless and exhibits two Fermi surfaces of zero-energy

Bogoliubov quasiparticles. The resulting phase diagram
in terms of |B| is shown in Fig. 1a.

The quasiparticle spectrum of the Hamiltonian H can
be calculated analytically under the physically realistic
condition ∆, V � |µ|. In this limit, we first diagonalize
the TI surface Hamiltonian with ∆ = V = 0, which we
denote by H0:

H0 =
∑
k

(vF |k| − µ)f†kfk + (−vF |k| − µ)d†kdk (2)

where f† and d† are associated with conduction and va-
lence bands respectively, defined by

f†k = (c†k↑ + ieiθkc†k↓)/
√

2, d†k = (c†k↑ − ie
iθkc†k↓)/

√
2,

with eiθk ≡ (kx+iky)/|k|. We further rewrite the pairing

and Zeeman term in the band basis using f†k, d
†
k. The

Zeeman term now reads

HZ ≡ c†k(−V σy)ck = iV (c†k↑ck↓ − c
†
k↓ck↑)

= − V

|k|
[kx(f†kfk − d

†
kdk) + iky(d†kfk − f

†
kdk)]

which involves momentum k due to the spin-momentum
locking. The pairing term now becomes

HP ≡ ∆(c†k↑c
†
−k↓ − c

†
k↓c
†
−k↑ + h.c.)

= ∆[ie−iθk(f†kfk − d
†
kdk) + h.c.]

Since only states in the vicinity of Fermi energy are
strongly affected by pairing and Zeeman fields in the limit
∆, V � |µ|, for the purpose of solving the quasiparticle
spectrum it suffices to keep terms involving conduction
(valence) band operators only for µ > 0 (µ < 0). As-
suming µ > 0, the original Dirac Hamiltonian H after
projection becomes a single-band model:

H ≈
∑
k

εkf
†
kfk − (V kx/kF )f†kfk

+
1

2
∆(ie−iθkf†kf

†
−k + h.c.) (3)

with εk = vF |k|−µ. Note that the original s-wave pairing
takes the form of a (px + ipy)-like pairing in the reduced
Hamiltonian [1], while the Zeeman field takes the form of
a vector potential Ax = V/kF . We note that the equiv-
alence bewteen an in-plane Zeeman field and a vector
potential is exact for 2D Dirac Hamiltonian.

Diagonalizing Eq.(3) yields the quasiparticle spectrum
of H near Fermi energy

H ≈
∑
k

Ekγ
†
kγk, γk = ukf

†
k + u∗−kf−k

Ek =
√
ε2k + ∆2 − V kx/kF for k ∼ kF , (4)
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where the complex wavefunction reads

uk = e
i
2 (π/2−θk)

kx
|kx|

√√√√1

2

(
1 +

kx
|kx|

εk√
ε2k + ∆2

)
. (5)

The quasiparticle energy Ek and its particle-hole part-
ner −E−k at different Zeeman fields V are shown in Fig.
1a for the special case where ky = 0. It can be found
that Zeeman field V tilts the quasiparticle spectrum Ek:
On one side (kx > 0) V lowers Ek while on the other side
(kx < 0) V increases Ek. This phenomenon will affect
density of states of the system as will be discussed in the
next section.

The Bogoliubov Fermi surface is thus given by Ek = 0,
and one banana-shaped Fermi surface and its particle-
hole partner are found located at two sides of the ky-axis
respectively as shown in Fig. 1b. Importantly, the partial
Fermi surface (kx > 0) is formed by electron and hole
Fermi arcs. In terms of polar coordinate, the electron
(+) and hole (-) arcs can be expressed as |k| = kF ±√
V 2 cos2 θ −∆2/vF where θ = tan−1(ky/kx) is the polar

angle of k. It can be seen that along the original Fermi
surface, two parts |θ± π/2| < π/2− θm are fully gapped
while the rest parts |θ| < θm and |π− θ| < θm are paired
together to form a new Bogoliubov Fermi surface, i.e. the
partial Fermi surface. Here θm = cos−1(∆/V ).

The partial Fermi surface found here is robust and
owes its existence to the sign change of the quasiparticle
spectrum Ek in momentum space. A different type of
Bogoliubov Fermi surface is theoretically shown to exist
in certain centrosymmetric superconductors with uncon-
ventional pairings that breaks time-reversal symmetry
[34, 35]. In that case, the combination of particle-hole
and inversion symmetry ensures that in Nambu space
the quasiparticle spectrum at every k comes in pairs,
(Ek,−Ek). For certain pairings, the quasiparticle band
crossing defined by Ek = −Ek = 0 leads to a Bogoliubov
Fermi surface. However, this type of Bogoliubov Fermi
surface is protected by inversion symmetry, and the band
crossing generally becomes anti-crossing if inversion sym-
metry is broken. On the contrary, the systems considered
here are non-centrosymmetric, and the partial Fermi sur-
face we found is completely robust against all perturba-
tions.

The charge and spin distributions of the partial Fermi
surfaces are encoded in the wavefunction uk. We de-
fine the charge Qk ≡ −e〈c†kck − h

†
khk〉 and spin Sk ≡

〈c†kσck − h†kσ
∗hk〉 of the state |γk〉 ≡ γ†k|GS〉, where

hk,s = c†−k,s is the hole creation operator with momen-
tum k and spin s =↑, ↓, |GS〉 denotes the ground state,
and 〈. . . 〉 = 〈γk| . . . |γk〉. It can be computed that

Qk

e
= − kx
|kx|

εk√
ε2k + ∆2

, Sk =
kxŷ − kyx̂
|k|

. (6)

The charge and spin distributions of partial Fermi
surface are shown in Fig. 1b. It is found that

along the same k direction, quasiparticles at the elec-
tron and hole arcs have opposite charges but the same
spin. In fact in terms of polar angle θ, the charge Q
and spin S distributions of electron (+) and hole (−)
arcs are Q±(θ) = ∓e

√
cos2 θ − cos2 θm and S±(θ) =

(− sin θ, cos θ, 0). Hence the total charge integrated over
the partial Fermi surface is zero. On the other hand, the
spin-momentum locking of partial Fermi surface is the
same as the original electron Fermi surface.
Density of States— The partial Fermi surface in the

gapless superconducting phase leads to nontrivial fea-
tures in the density of states. Recall that in a conven-
tional 2D s-wave superconductor without SOC, the in-
plane magnetic field below upper critical field will uni-
formly split Bogoliubov quasiparticle spectrum into two
by the amount of Zeeman energy. Thus the density of
states (DOS) in this case is the superposition of two
shifted BCS-type DOS [36].

For TI surface states with spin-nondegenerate Fermi
surfaces and strong spin-momentum locking in its normal
phase, instead of splitting Fermi surfaces, Zeeman field
behaves as the vector potential. In the superconducting
phase, Zeeman field changes the gap size and eventu-
ally creates gapless Bogoliubov quasiparticles as shown
in Fig. 1a. As a result, the DOS will be qualitatively dif-
ferent from that of conventional superconductors under
Zeeman field.

In Fig. 2, we numerically calculate the DOS N(E) =
−Im[trG(E,k)]/π of the gapless superconducting phase,
normalized by the normal state DOS N0 = 2πµ/v2F ,
where G(E,k) is Gor’kov Green’s function. It can be
found that when no field is applied V = 0, the con-
ventional BCS-type DOS is found for N(E) with energy
gap and coherence peak at the same position E = ∆.
When V increases the energy gap decreases as ∆−V un-
til V > ∆ while the energy of coherence peak increases
as ∆ +V . In quasiparticle spectra of Fig. 1a, the energy
gap corresponds to energy E(kF x̂) = ∆ − V while the
coherence peak corresponds to energy E(−kF x̂) = ∆+V .

When V = ∆, the system becomes nodal at ±kF x̂.
Near the nodal point kF x̂ we have E(p + kF x̂) =
1
2v

2
F (p2x/∆ + ∆p2y/µ

2), and hence close to zero energy
the DOS N(E) = N0/2 is a constant as shown in Fig. 2.

For larger magnetic field V > ∆, the system is gapless
with partial Fermi surface. The partial Fermi surface has
a much smaller k-space area than the original Fermi sur-
face, thus far from zero energy partial Fermi surface can
be regarded as point nodes, and N(E) behaves linearly
in E when V − ∆ < E < V + ∆, as shown in Fig. 2.
Close to zero energy, N(E) shows a plateau with height
N0 and width V − ∆, due to states near partial Fermi
surface.

Fig. 2 is obtained by assuming the proximity-induced
pairing ∆ is not affected by Zeeman energy V . This as-
sumption is justified at low temperatures for magnetic
fields smaller than the upper critical field [31–33]. For
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FIG. 2: Density of states (DOS) N(E) as functions of energy
E with Zeeman energy V = 0, 0.5∆,∆ and 1.5∆, and chemi-
cal potential µ = 90∆. Here N0 is the normal state DOS and
∆ is the pairing amplitude. Other parameters are the same
as Fig. 1b.

higher temperatures, the induced pairing order parame-
ter ∆ and hence DOS may change according to details of
the whole system.

Our results of TI surface states turn out to be quite
general and can be applied in 2D superconductors with
Rashba and even general SOC.

Two-Dimensional Rashba Systems— Recently,
2DEG with Rashba SOC and induced pairing has been
realized experimentally in quantum well systems such as
the Al/InAs heterostructures [28–30]. The induced su-
perconducting phase of such systems in the presence of
in-plane magnetic fields can also host gapless Bogoliubov
quasiparticles.

In the 2DEG with Rashba SOC there are two spin-split
Fermi surfaces in the normal phase, of which each one
is spin-momentum locked, similar to that of TI surface
states. When Rashba splitting energy is much larger than
the Zeeman energy and induced pairing, the couplings
between two Fermi surfaces can be neglected and we can
regard the system as two copies of TI surface states. As
a result, two partial Fermi surfaces in the gapless super-
conducting phase will be reconstructed from two original
Fermi surfaces respectively. And the total DOS will be
the sum of DOS from individual Fermi surfaces. When
the g-factors and induced pairing potentials are the same
for two Fermi surfaces, the normalized total DOS will be
the same as that of single Fermi surface, and the result
in Fig. 2 still applies.

For the typical Al/InAs heterostructure, the Rashba
SOC energy is about 0.2 eV, g-factor is |g| ∼ 10, and the
induced pairing is ∆ ∼0.1 meV [28]. Thus when in-plane
field |B| &0.5 T the Zeeman energy V can surpass ∆,
and the gapless superconducting phase is realized with
two partial Fermi surfaces.

General Spin-Orbit Coupling— The results for TI
surface states and 2D Rashba systems can be genralized
to 2DEG with induced pairing ∆, strong SOC with ar-
bitrary form and general in-plane Zeeman field. To be
specific, consider the following Hamiltonian

H =
∑
k

c†k[ξkσ0 + gk · σ + V · σ]ck

+ ∆(c†k↑c
†
−k↓ + h.c.), (7)

where ξk = |k|2/2m− µ is the kinetic energy with effec-
tive mass m and chemical potential µ, gk = −g−k is the
SOC vector and V = gµBB is the Zeeman field induced
by in-plane field B. If gk ∝ (−ky, kx, 0) the Hamilto-
nian describes the 2D Rashba system, and if in addition
m → ∞,V = −V ŷ the Hamiltonian becomes (1) for TI
surface states.

In general the Hamiltonian (7) yields two bands εk,± =
ξk±|gk| and hence inner and outer Fermi surfaces in the
normal phase V = ∆ = 0. When the SOC energy split-
ting εSO = minξk=0|gk| between two Fermi surfaces is
much larger than ∆, we can treat the two Fermi surfaces
separately.

Without loss of generality we focus on the states near
inner Fermi surface εk,+ = 0 and apply Zeeman field V
and induce pairing ∆. To start with, we consider the k
points where gk ‖ V and gk ⊥ V .

For k points where gk is anti-parallel to V , under Zee-
man field V the electron state with energy εk,+ will be
shifted to εk,+ − |V |, and its time-reversal hole state
at −k with energy −εk,+ will be shifted to −εk,+ −
|V |. When pairing ∆ is induced, the electron and hole
states will form a Bogoliubov quasiparticle with energy√
ε2k,+ + ∆2 − |V |, shifted by Zeeman energy |V |, just

as conventional superconductors without SOC. When
|V | > ∆ these quasiparticles will become gapless.

Unlike the previous case, when gk ⊥ V , the electron
state at k with energy εk,+ will be changed to Ek,+ =

ξk +
√
|gk|2 + |V |2, and its time-reversal hole state at

−k with energy −εk,+ will be changed to −Ek,+. Thus in
the superconducting phase the Bogoliubov quasiparticles
formed by these states always have the gapped spectrum√
E2k,+ + ∆2 up to leading order in Zeeman field [37, 38].

For the general k points, under physical conditions
∆, |V | � εSO we can work out the quasiparticle spec-
trum up to the first order in |V |:

Ek =
√
ε2k,+ + ∆2 + V · gk/|gk|, (8)
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which is generalization of (4). Thus from this spectrum,
the partial Fermi surface formed by electron and hole
Fermi arcs can be worked out. As TI surface states and
2D Rashba systems, the electron and hole arcs have op-
posite charge distributions and the same spin texture.

Conclusion— In this work, we show that an in-plane
magnetic field can drive the superconducting 2DEG with
strong in-plane SOC such as TI surface states into the
gapless superconducting phase, where a special type of
Bogoliubov Fermi surface called partial Fermi surface is
found. Reconstructed from ungapped part of the orig-
inal electron Fermi surface, the partial Fermi surface is
formed by electron and hole Fermi arcs whose charge dis-
tributions are opposite while spin textures are the same.
In terms of DOS, we predict that with increasing Zee-
man field, the energy gap will decrease to zero while the
energy of coherence peak will increase, which are both
linear in Zeeman energy. Properties of partial Fermi sur-
face can be further probed by quasiparticle interference
measurements under an in-plane magnetic field, and can
reveal useful information about the spin textures of elec-
tron Fermi surface in the normal state.
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