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Stabilization and control of Majorana bound states with elongated skyrmions
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We show that elongated magnetic skyrmions can host Majorana bound states in a proximity-
coupled two-dimensional electron gas sandwiched between a chiral magnet and an s-wave supercon-
ductor. Our proposal requires stable skyrmions with unit topological charge, which can be realized
in a wide range of multilayer magnets, and allows quantum information transfer by using standard
methods in spintronics via skyrmion motion. We also show how braiding operations can be realized
in our proposal.

I. INTRODUCTION

Majorana bound states (MBSs) offer a promising archi-
tecture for realization of a topological quantum computer
and memory. Such architecture uses non-Abelian anyons
to encode and manipulate quantum information1. Since
Kitaev’s toy model for creating MBSs using the unpaired
sites at the ends of a spinless p-wave superconducting
wire, it has been shown that a conventional s-wave su-
perconductor with spin-orbit coupling (SOC) subject to
a Zeeman or proximity-induced exchange field can have
effective p-wave pairing and thus can also support these
nonlocal quasiparticles2–10. In systems lacking an extrin-
sic SOC, an effective SOC can also be provided through
a nonuniform magnetic texture or field4,11,12. Recently,
it has been shown that a magnetic texture provided by a
skyrmion is suitable for stabilizing MBSs13.

Control of magnetic textures, such as domain walls,
bubbles and skyrmions, is a well-studied subject in spin-
tronics. MBSs bound to these metastable magnetic soli-
tons can be controlled by well-established methods in
spintronics. Among these topological magnetic struc-
tures, magnetic skyrmions have recently seen a surge
of interest since their first experimental observation14,15.
The ultralow threshold currents ∼ 105A/m2 required to
move skyrmions, and their ability to deform their shape
to move around defects, makes skyrmions an attrac-
tive alternative to magnetic domain walls in spintronic
applications16,17. Skyrmions can be driven by a wide
range of methods such as charge currents18 and gradi-
ents of temperature19–21 and magnetic field22. Skyrmions
have been experimentally driven close to 100m/s ve-
locities using spin polarized charge currents at room
temperature23.

Chiral magnets with Dzyaloshinskii-Moriya (DM)
interaction24,25 prefer skyrmions or antiskyrmions26 with
unit topological charge, i.e., single winding number
and single spin flip from core to outer region in the
radial direction. However, skyrmions with a wind-
ing number 2 can be stabilized in dipolar magnets27

and frustrated magnets28. In a case with rotational
symmetry, only skyrmions with even winding numbers
and high odd spin flip numbers can be used to stabi-
lize MBSs in a proximity-coupled conventional s-wave
superconductor13.

In this paper, we show that elongated skyrmions,
which can be stabilized in ordinary chiral
magnets26,29–33, can act as an effective “quantum
wire”, and under the right conditions realize Kitaev’s
toy model34, locally hosting a pair of Majorana bound
states at its ends. It is known that such effective
quantum wires can be also formed using a nonuniform
magnetic field generated by an array of magnetic tunnel
junctions (MTJs)12. However, this method allows
stabilization and manipulation of MBSs only in the
region containing active MTJs, which are fixed and
cannot be moved. Magnetic skyrmions, on the other
hand, remain stable once created and do not require
the presence of a fine-tuned, nonuniform external field.
Furthermore, they can be manipulated by injecting
uniform spin currents or applying field or temperature
gradients, which are standard experimental tools widely
available in spintronics.

This paper is organized as follows. In Section II, we
describe the physical setup we propose to realize MBSs
and the model we use to describe it. In the following
section, we give our numerical results. In Section IV, we
describe how to do braiding of MBSs. Finally, Section V
concludes the paper.

II. MODEL

We consider a 2D electron gas (2DEG) sandwiched be-
tween a conventional s-wave superconductor and a chiral
magnet nanotrack hosting a skyrmion, with a uniform
magnetic field applied along the z-axis (see Fig. 1). We
remark that in principle in our proposal it is also possible
to use a semiconductor wire in regions with ferromagnetic
nanotrack rather than a 2DEG10. The 2DEG is modelled
by the Bogoliubov–de Gennes (BdG) Hamiltonian

H =

[
p2

2m
− µ− αR

~
(ez × p) · σ

]
τz+

∆eiϕτ+ + ∆e−iϕτ− +
1

2
gµBBσz − Jn · σ (1)

in the Nambu spinor basis Ψ = (ψ†↑, ψ
†
↓, ψ↓,−ψ↑), where

ψ†α is the creation operator with spin α ∈ {↑, ↓}, p =
−i~∇, m is the effective electron mass, µ is the chemical



2

potential, αR is the strength of the Rashba SOC, ∆eiϕ is
the superconducting pairing potential, J and n = n(x, y)
are the strength and direction of the proximity induced
exchange field due to the presence of the ferromagnet,
µB is the Bohr magneton, and B is the strength of the
applied uniform magnetic field along the z-axis. σi and
τi are Pauli matrices that respectively act on spin and
particle-hole subspaces. In what follows, we will take
ϕ = 0 without loss generality. We will also focus on the
case of αR = 0 first.

Realization of Kitaev’s nonlocal Majorana fermions re-
quires a “spinless” system with p-wave pairing at the
Fermi level. These criteria can be satisfied in an s-wave
superconductor with spin-orbit coupling (SOC) with an
applied magnetic field6,8,34,35. The presence of a nonuni-
form magnetic texture in Eq. 1 provides an effective SOC.
This can be seen by going into a reference frame in which
the effective “exchange field” M ≡ −Jn + gµBBez/2
is uniform and aligned with the z-axis by making a lo-
cal gauge transformation M → R̂M ≡ Mez. Spatial
and temporal dependence of the magnetic texture in-
duces the covariant derivative ∂µ → ∂µ + Û∂µÛ

†, where

Û = eiσyMθ/2eiσzMφ/2 is the SU(2) representation (in

the spin space) of the real-space rotation matrix R̂ and
Mφ,Mθ are components of M in spherical coordinates,
resulting in a texture-dependent shift in momentum. In
the rotated frame, this gauge potential can be interpreted
as the SU(2) vector field,

H =

[
(p− eA)2

2m
+ eφ− µ

]
τz + ∆τx +Mσz, (2)

where the four-vector potential is determined by the mag-
netic texture as A ≡ i~Û∇Û†/e, φ ≡ −i~Û∂tÛ†/e .
The terms linear in momentum can be interpreted as
an effective SOC, which in turn allows the formation
of MBSs4,11,12. For a slowly changing magnetic tex-
ture, which we require in order to avoid excitations that
can destroy MBSs, spin scalar potential φ can be ne-
glected. This leads to a restriction on the maximum
velocity of skyrmion motion, ~vx/Rxc � ∆, where vx
is the skyrmion velocity and Rxc is the skyrmion core
radius along the x-direction. The adiabaticity assump-
tion further restricts the skyrmion speed. Since we are
concerned with MBSs well below the topological gap,
we can get a rough estimate for transitions36 by using
the Landau-Zener formula37,38, which yields the condi-
tion Jvx/R

x
c � (E1 − E0)2/~, where E0 and E1 are the

energies of the ground state and the first excited level.
To estimate the position of MBSs we study the topo-

logical gap. For a system with a nonuniform exchange
field, the gap is approximately given by12

Eg ≈ 2

M −
√(

µ− ~2(∂iM)2

8mM2

)2

+ ∆2

 , (3)

when the effective exchange field M is smooth. The lin-
ear closing and reopening of the gap as M , µ, ∆ vary

is indicative of a topological phase transition3,10. Re-
gions with positive gap (Eg > 0) are in topological phase,
which may host MBSs depending on the geometry of the
region12,13 (see Fig. 2).

The magnetization on the ferromagnet side is described
by the free energy F =

∫
d2rF where the free energy

density is given by

F =
A

2
(∂in)2 + (D̂ei) · (n× ∂in)−Keff

u n2
z + µ0MsHnz.

(4)

Here, A is the ferromagnetic exchange strength, n de-
notes the direction of the spin density vector, D̂ is the
DM tensor26, Keff

u ≡ Ku − µ0M
2
s /2 is the effective per-

pendicular easy-axis anisotropy with contributions from
magnetocrystalline anistropy and dipolar interactions,
and µ0H is the strength of the applied magnetic field
along the z-axis. Chiral magnets which can often be de-
scribed by Eq. (4) can host triangular- and square-lattice
skyrmions (commonly called skyrmion crystal or SkX
phase) depending on the strength of the anisotropy and
magnetic field14,15. Isolated skyrmions can also be gen-
erated as metastable quasiparticle excitations. In both
cases, symmetries of skyrmions reflect the underlying
symmetries of the system. In particular, systems with
broken either surface- or bulk-inversion symmetry pre-
fer rotationally symmetric Néel (hedgehog-like) or Bloch
(vortex-like) type skyrmions, respectively. Additional
asymmetries, which can be due to the cutting angle of
the sample or applied strain26,39,40, can induce interest-
ing deformations, such as elongation of skyrmions along
a fixed axis or even skyrmions with negative charge, i.e.,
antiskyrmions26.

For the proposal described below, it is important that
magnetic skyrmions can be driven by spin currents, as
well as by gradients of magnetic field, temperature, and
stress. One of the advantages of skyrmions over domains
walls in spintronic memory device applications is their
flexibility, which allows them to deform their shapes to
avoid defects. Due to this flexibility, when the expected
size of the skyrmion is larger than the width of the race-
track, skyrmions adapt to the presence of this repulsive
force by becoming elongated. This way of generating
elongated skyrmions has the advantage that the axis of
elongation can be controlled by moving the skyrmion
through sections of the racetrack (see Fig. 1). We confirm
elongation of skyrmions due to constrictions with micro-
magnetic simulations using mumax341. Mentioned above
dynamical properties of skyrmions will be employed in
this proposal in order to manipulate MBSs.

III. RESULTS

For our setup, we consider a skyrmion hosted in
the chiral ferromagnetic layer similar to13,42. We
model the magnetic texture with the ansatz n =
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FIG. 1. (Color online) Spin density n. Arrows show the
in-plane component and contours show the out-of-plane com-
ponent.

(sinnθ cosnφ, sinnθ sinnφ, cosnθ), where the compo-
nents of the spin density are given by nφ = φ, nθ =
2 arctan(R2

c/r
2)43, Rc ∼ R/2 is the core radius where

spins become parallel to the plane, and R is the skyrmion
radius. We model elongation as stretching of a rota-
tionally symmetric skyrmion, as shown in Fig. 1. We
ignore the back-action of the superconductor on the chi-
ral magnet, and numerically solve the BdG equation for
the eigenenergies and corresponding wavefunctions using
the ansatz for a given fixed magnetic texture44. We will
use the following definitions to express the parameters
in dimensionless units: B̃ ≡ gµBB/2∆, J̃ ≡ J/∆, and
µ̃ ≡ µ/∆.

A pair of Majorana bound states can be localized at
the ends of a topologically non-trivial region which works
as an effective quantum wire, as shown in Fig. 2 with the
white line. There are two cases we consider, one with no
extrinsic Rashba SOC and one which includes extrinsic
Rashba SOC. Figure 2 shows the squared amplitude for
the case with no extrinsic Rashba SOC which has been
tuned to achieve Majorana bound states. Figure 3 shows
the squared amplitude and energy spectrum for this case,
as well as for the case with extrinsic Rashba SOC. When
extrinsic Rashba SOC is included, MBSs have improved
localization, and the squared amplitude along the hor-
izontal between the two MBSs flattens considerably as
compared to the case with no extrinsic SOC.

We find that such MBSs can be stabilized over a wide
range of elongation, once the strength of the external
magnetic field is tuned with regards to the exchange in-
teraction. The spacing between the MBSs is then deter-
mined by the amount of elongation.

There is flexibility in parameter tuning for our setup.
Figure 3 shows how the ground state energy level and
the first excited energy level change as the elongation
is varied. Zero modes are achieved for a skyrmion with
a vertical core radius of Ryc = 50nm, ∆ = 0.25meV,

B̃ = 0.87, J̃ = 1 for simplicity, and µ̃ = 0.2, and Rxc in
the range from 400nm to 1000nm. The magnitude of the
energy gap E1 − E0 in units of the superconducting gap
∆ is around 0.08 over this range. Note that the energy
levels and the gap can be scaled as H → λH through
replacements M → λM , µ → λµ, αR →

√
λαR, ∆ →

λ∆, {x, y} → {x, y}
√
λ, which can be useful in order to

find the best material parameters12. These values are
within reasonable range10,12,13.
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FIG. 2. (Color online) Squared amplitude |Ψ|2, length in units
of a with a = 10nm for a skyrmion with a core radius of Ry

c =
50nm, Rx

c = 490nm, ∆ = 0.25meV, B̃ = 0.87, J̃ = 1, and µ̃ =
0.2. White solid line is the border between topological and
non-topological regions as determined by Eq. 3. Black solid
lines indicate the boundaries on the ferromagnetic nanotrack.

Obtaining MBSs using different values for J̃ is pos-
sible, as long as Eq. (3) admits closing and reopening
of the gap. We remark, however, that using a different
value for J̃ changes the size of the MBSs. This is impor-
tant because the size of the ellipse-like topological region
shown in Fig. 2 should be adjusted such that it hosts one
and only one mode on each side. A too narrow topologi-
cal region does not allow MBSs to form, and a too wide
topological region allows multiple MBSs which hybridize.
For a given J̃ , the shape of the topological region can be
adjusted by choosing a different Rcy with a constriction
of a different size, as well as tuning µ and B.

In Fig. 3(c), we also plot the energy levels as a function
of the distance between MBSs. As the overlap integral
between two neighboring MBSs decays exponentially36

(this behavior is also true for MBSs hosted at the ends of
two different skyrmions, as shown in Fig. 4), we observe
that the ground state energy becomes small for large Rxc .
However, it should be noted that the gap also decays in
a similar manner, which makes too large Rxc undesirable.
As indicated in Eq. (2) and the discussion that follows,
the gradient of the magnetic texture ∂iM provides an ef-
fective SOC which is required to stabilize MBSs4,11,12.
The gap’s exponential decay observed in Fig. 3(c) is
caused by the weakening of the effective SOC which is
provided by the texture gradient (A ∼ ∂in ∼ 1/Rxc ) as
the size of the skyrmion increases along the horizontal di-
rection. The presence of an extrinsic SOC stabilizes the
gap and improves the localization, which leads to better
ground state energetics as shown in the lower plots in
Fig. 3.

Figs. 3(c) and (f), taken along with the scaling rela-
tions, show the stability of the MBSs for skyrmions with
different aspect ratios and sizes. In the absence of an ex-
trinsic SOC, we observe that perturbations in skyrmion
size can lead to energetic instabilities. On the other hand,
an extrinsic SOC provides a stable operation regime for
aspect ratios greater than ≈ 10 : 1.
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FIG. 3. (Color online) a) Squared amplitude |Ψ|2 in units of 1/a2 along the middle horizontal line for Rx
c = 490nm, using

parameters given in the caption of Fig. 2. The large peaks correspond to the MBSs localized at the edges of the elliptic
topological region. b) Energy spectrum En for Rx

c = 490nm. c) Ground state (E0) and first excited energy levels (E1) as a
function of the horizontal core radius Rx

c in units of a. d-f) Similar plots for αR = 2.5meVnm.
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FIG. 4. (Color online) Hybridization energies Γij of two MBSs
hosted by two different skyrmions in the presence of Rashba
SOC, as a function of spatial separation between skyrmions
along the x-axis, d (skyrmion radius taken to be Rx

c ).

γ1 γ2 γ3 γ4

FIG. 5. A double-braiding of two MBSs at the ends of two
topological regions in a typical p-wave superconductor in the
presence of a vortex, corresponding to two sequential elemen-
tary braiding operations given in Eq. (9). Note that the topo-
logical regions cross each other at intermediate times during
the process.

IV. REALIZATION OF BRAIDING

A. Through Coulomb interaction of Majorana
modes

Realization of a topological quantum computer re-
lies on nonabelian operations through braiding of MBSs.

Since implementation of a nontrivial quantum gate re-
quires more than two MBSs, we will discuss braiding op-
erations in a setup with two elongated skyrmions. A typ-
ical way of braiding MBSs at the ends of two topological
regions involves different regions crossing each other6, as
illustrated in Fig. 5. However, this is not possible with
our “rigid” regions because such a crossing would involve
driving one skyrmion through the other, which would de-
stroy the skyrmions and MBSs. We will instead use an
array of Cooper pair boxes, which are superconducting
arrays coupled to a large superconductor using a split
Josephson junction, such that the magnetic flux through
the hole can be used to tune the Josephson energy EJ .
Such a setup can be used to realize non-abelian braid-
ing operations45,46, and we reproduce the details here for
completeness.

For our proposal, the setup would consist of an elon-
gated skyrmion on each Cooper pair box, with the direc-
tion of elongation controlled by the nanotrack on each
box. One possible configuration is shown in Fig. 6.

The effective low energy Hamiltonian of such a trijunc-
tion can be written as46

Heff =iEM (γ′1γ
′
2 cosα12 + γ′2γ

′
3 cosα23 + γ′3γ

′
1 cosα31)

− i
3∑
k=1

Ukγkγ
′
k (5)

where EM is the tunnel coupling, Uk ∝ e−
√

8EJ/EC

is the Coulomb coupling, EJ = 2E0 cos(πΦ/Φ0) is the
Josephson coupling with E0 as the strength of the cou-
pling, EC = e2/2C is the single-electron charging en-
ergy with C as the capacitance, Φ0 = h/2e is the flux
quantum, and the phase differences αij are given by
α12 = −(π/2Φ0)(Φ1+Φ2+2Φ3), α23 = (π/2Φ0)(Φ2+Φ3),
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FIG. 6. Schematic depiction of the three Cooper pair boxes
connected at a trijunction. Each Cooper pair box hosts a
pair of MBSs and is connected to a bulk superconductor via
split Josephson junctions. Coulomb coupling strength can be
modulated by changing the applied magnetic flux Φi at each
junction.

α31 = (π/2Φ0)(Φ1 + Φ3). The Coulomb coupling Uk ∈
[Umin, Umax] decays exponentially with the applied flux,
thus Umax � Umin for the “on” and “off” states. It is fur-
ther assumed that the Coulomb coupling is weaker than
the tunnel coupling (EM � Uk). As a result, in such a
scheme three modes are fused and the four useful modes
are γ1, γ2, γ3, and (γ

′

1 + γ
′

2 + γ
′

3)/
√

3.
After the flux-controlled Coulomb couplings are turned

on and off as depicted in Fig. 6, the unitary adia-
batic time evolution takes Majorana operators from γi
to Û†γiÛ in the Heisenberg picture, where

Ûij =
1 + γiγj√

2
+O(ε) (6)

is the unitary braiding operator47 and ε = Umin/Umax
46.

Since [Ûij , Ûjk] = γiγk, such operations can be used to
realize quantum gates using an array of MBSs.

To braid γ2 and γ3 in Fig. 6, the following sequence
needs to be performed: first, to ensure adiabaticity, Φ3

must be −Φmax at the beginning of the protocol (where
Φmax < Φ0/2); turn Φ1 to Φmax, turn Φ3 off, turn Φ2

to Φmax, turn Φ1 off, turn Φ3 to −Φmax, turn Φ2 off46.
During the braiding operation, γ1 and γ′1 act as ancillary
MBSs, which ensure that there is at least one coupling on
and one off at each step, such that a two fold degeneracy
in the system is maintained.

B. Using measurements

Aside from the setup which uses Cooper pair boxes
described in the previous section, it is also possible to
realize measurement-based braiding in different setups.
This is achieved by coupling a pair of MBSs to a qubit
or a quantum dot. For example, the state of the MBSs
can then be projected by measuring the qubit. Various
methods for measuring MBSs have been suggested48–51.

The basic building block of the measurement-based
protocol in48 is to perform projective measurements of

the operator iγiγj . Such measurements can be realized in
Majorana SQUIDs, MBSs connected with metal bridges
forming closed loops48, either by measuring the persistent
current in the SQUID loop through flux measurements,
or by measuring the conductance48. The operation pro-
ceeds only if the results of all measurements are +1. A
measurement can be described by the operator

P̂ (±)
γiγj =

1± iγiγj
2

(7)

which acts as identity (null) operator on the ±1 (∓1)
eigensubspace of iγiγj . For example, the following se-
quence of measurements leads to a nontrivial quantum
operation

P̂
(+)

γ
′
1γ1
P̂

(+)

γ
′
1γ

′
3

P̂
(+)

γ
′
2γ

′
1

|ψ〉 =
1

23/2
Ûγ′

2γ
′
3
|ψ〉 , (8)

where

Ûij =
1 + γiγj√

2
(9)

is the unitary braiding operator for γi and γj . Since

[Ûij , Ûjk] = γiγk, such operations can be used to realize
quantum gates using an array of MBSs.

For applications in quantum information, we have to
limit ourselves to even or odd parity states. This is due
to parity conservation (we neglect quasiparticle poisoning
or stray quasiparticle tunneling in and out of the system),
i.e., the total fermion number of the system remains even
or odd52,53. Since the operation Ûij involves two “halves”
of the two fermions hosted in each skyrmion, it mixes
their states.

Since skyrmions can be moved by a variety of meth-
ods, we mention that it is possible to move our MBSs
by moving the skyrmions which host them. For the set
of parameters used for numerical calculations in the pre-
vious section, we estimate that the Landau-Zener con-
dition limits the skyrmion velocity as vx � 1.2km/s.
This is well above the typical velocities for a skyrmion
driven by a current or a temperature gradient. In ad-
dition, the skyrmion motion should not be too slow as
driving skyrmions at vx ∼ 0.1m/s over the length of 1µm
would take ∼ 10µs. This time needs to be well below the
decoherence times36,54.

V. CONCLUSION

We have proposed a way to create Majorana bound
states using a conventional s-wave superconductor and
elongated skyrmions in a typical chiral magnet with
Dzyaloshinskii-Moriya interaction. Despite the current
lack of experiments coupling magnetic skymions with su-
perconductors, we expect our proposal can be realized in
the foreseeable future given that superconductors have
been coupled to ferromagnets55. A qubit based on such
realization should benefit from the topological stability of
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skyrmions and robustness of quantum operations based
on Majorana bound states. Elongated skyrmions can be
readily created and manipulated in nanotracks of chiral
magnets. While the magnetic texture induced effective
SOC is sufficient to realize MBSs, we find that only a
setup with extrinsic SOC results in a robust behavior
suitable for practical applications, in terms of energy gap
and localization of MBSs. Braiding of the MBSs can be
realized through the Coulomb interaction of MBSs or a
sequence of projective operations.

Disorder may hinder the formation of MBSs by creat-
ing additional zero modes localized at random locations.

Several possible solutions have been suggested, e.g., using
superconductors with weakened disorder, using a tunnel-
ing barrier between superconductor and semiconductor,
or using a large gap superconductor56–58. It might also
be necessary to use smaller skyrmions, which should be
possible as the size of skyrmions can be tuned over a wide
range.
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N. S. Kiselev, C. Melcher, and S. Blügel, Nat. Commun.
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