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The time dependent full counting statistics of charge transport through an interacting quan-
tum junction is evaluated from its generating function, controllably computed with the inchworm
Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore
the effect of electron–electron interactions on the time-dependent charge cumulants, first-passage
time distributions and n-electron transfer distributions. We observe a crossover in the noise from
Coulomb blockade- to Kondo-dominated physics as the temperature is decreased. In addition, we
uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by
correlations between single electron transfer events.

I. INTRODUCTION

Mesoscopic quantum dots, molecules in junctions and
other small quantum systems coupled to baths are of-
ten studied in transport experiments. It is possible to
measure not only the electronic current through such
systems, but also its noise and higher order moments.
The complete set of moments determines the full count-
ing statistics (FCS) of the system, which grants direct
access to otherwise concealed properties: for example,
the entanglement entropy, the fidelity, and thermoelec-
tric efficiency fluctuations.

Apart from special limits, theoretical modeling of
FCS in fermionic systems has so far been restricted to ei-
ther noninteracting situations, or approximations whose
accuracy is difficult to gauge. This difficulty is exacer-
bated in the experimentally relevant cases where strong
electron–electron correlations and nonequilibrium ef-
fects are in play. A controlled and fully quantum de-
scription of the current and its moments is therefore
sorely needed.

In this paper, we provide such a description for a
model of interacting fermions in a junction, within
a numerically exact inchworm quantum Monte Carlo
(iQMC) calculation. By computing the generating func-
tion of lead population change (Fig. 1) we gain ac-
cess to all moments of population transfer, first passage
time distributions (FPTDs) and n-electron transfer dis-
tributions. We analyze Fano factors and consider the
shapes of the distributions, which provide remarkably
detailed information about the dynamics of single tun-
neling events. We extract indications of queuing effects
in the presence of strong interactions.

The paper proceeds as follows. Section II will mo-
tivate the full counting statistics, and Section III pro-
vide a brief overview of the main definitions and con-
cepts used in FCS. In Section IV we describe how FCS
can be obtained within iQMC, specializing to a particu-
lar model. Next, we present results for non-interacting
(Sec. V) and interacting (Sec. VI) systems. The effect of
interactions, temperature and voltage on the first and
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Figure 1. Real and imaginary parts of the generating func-
tion of lead population change Z (λ, t) at inverse temperature
β = 50/Γ, for a strongly correlated quantum junction in the
zero-bias (left) and finite-bias (right) cases.

second charge cumulants is discussed, and we further
explore how first passage times and n-particle passage
probabilities depend on the initial preparation. Finally,
we discuss our conclusions in Section VII.

II. BACKGROUND AND MOTIVATION

The transfer of charges across a small system, such as
a molecular electronic junction or a mesoscopic quan-
tum dot, is fundamentally a stochastic process [1]. Like
any stochastic process, it is fully characterized by time
dependent probability distributions [2]; in this case,
P (∆n, t), where ∆n is the number of charges trans-
ferred by time t [3]. Fluctuations in the electron cur-
rent have long been known to provide experimentally
accessible information not contained in the expectation
value of the current [1, 4], such as dwell times [5] and
transmission probabilities [6].

Current noise, the second moment of the current, has
been of interest as a way to investigate reflection pro-
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cesses and traversal times in molecular junctions [7–
10] and propagation of correlated electron–hole pairs in
photon-assisted transport [11–13]. A great deal of work
has focused on fluctuations in periodically driven sys-
tems, including the prediction [14, 15] and discovery [16]
of noiseless Lorentzian pulses, or “levitons”. Quantum
noise has also been used to extract effective quasipar-
ticle charges e∗ of transmitted electrons due to Cooper
pair formation in superconducting junctions (e∗ = 2e)
[17–19], the quantum Hall effect (e∗ = e/3) [20], or two-
particle inelastic backscattering processes in the Kondo
regime (e∗ = 5e/3) [21–26].

The noise-to-signal ratio, also known as the Fano fac-
tor F , can be used to characterize charge transfer statis-
tics. It takes the value F = 1 when the charge transfer
is Poissonian (completely uncorrelated), as generally oc-
curs for small transmission probabilities [27] and weak
coupling between the molecule and bath [28]. Super-
Poissonian shot noise (F > 1) has been observed in sin-
gle [29] and double [30, 31] quantum dot junctions and is
generally associated with strong electron bunching and
quasiparticle formation [1] that may occur in the tran-
sient [32] or steady state [24, 26] regimes. In addition,
the Fano factor can be tuned so that it is sub-Poissonian
(F < 1) in quantum dot [33, 34] and graphene nanorib-
bon [35] structures.

Instead of focusing only on the second moment of the
current, it is possible to consider the full counting statis-
tics (FCS) associated with the individual charge transfer
events from an underlying moment-generating or char-
acteristic function [2], and recover all higher-order mo-
ments and cumulants. This idea was pioneered by Levi-
tov and Lesovik [14, 36], who evaluated the steady state
FCS for noninteracting systems.

The FCS formalism for charge can be connected to en-
tanglement entropy [37] and fidelity [38] in noninteract-
ing systems, and was also generalized to a heat and work
FCS giving access to efficiency fluctuations in thermo-
electric junctions [39, 40]. Parallel with the development
of the field of spintronics, the FCS of spin currents has
been developed in regular metallic lead junctions [41–
44] and magnetic tunnel junctions (MTJs) [45–47], and
can be applied, for example, to the detection of spin-
singlet pairs in the electron counting statistics [42, 48].
In the steady state, the second cumulant can be used
to compute the zero-frequency current power spectrum
[49, 50], and in recent years a theory of FCS has been
proposed which also gives access to frequency-dependent
noise spectra [34, 51, 52]. Theoretical [53–55] and exper-
imental [56] investigations have demonstrated that the
generating function satisfies steady state fluctuation–
dissipation relations equivalent to the condition for de-
tailed balance, although recent work indicates violation
of detailed balance when bound states are established
with circular probability currents in the steady state
[57] and modification of detailed balance when the sys-
tem is undergoing transient evolution [58]. It has also
been shown that for noninteracting electrons, the zeros
of the generating function all lie on the negative real

axis [59–61], so that the position of zeros in the com-
plex plane can shed light on interaction effects in the
transport [62].

Recently, the time dependence of higher-order cumu-
lants has become accessible to experiment [52, 63, 64],
motivating the study of transient cumulant generating
functions and related objects which reveal more infor-
mation on dynamics than the current or particle num-
ber. One such quantity, which is closely related to
the generating function, is the waiting time distribu-
tion (WTD). The WTD is the probability distribution
characterizing the time separating successive charge de-
tection events [65–67]. Experimentally, WTDs can be
used to study the effect of coherence [68] and complex in-
ternal molecular structures such as double quantum dot
[69–72] or normal–superconducting junctions exhibiting
Andreev reflection [73–75], as these effects can alter the
traversal times for electrons crossing the system. At the
level of practical quantum electronics, these dynamical
effects determine the maximum operation rate for de-
vices [76].

Despite this flurry of theoretical activity, computing
the FCS for generic interacting fermionic systems has so
far proven to be challenging. In noninteracting systems,
there now exist robust approaches to the study of both
steady state and transient FCS, including an appeal-
ing coherent state path integral nonequilibrium Green’s
function formalism (PI-NEGF) [45, 77–79] which can
be perturbatively extended to interacting cases [79–81].
Exact results are available for steady state FCS and
noise characteristics of the AIM in the Fermi liquid
regime and at the Toulouse point [22, 23, 82–85]. The
Fermi liquid theory is, however, valid only for low volt-
ages and temperatures [21, 84, 86–89]. Several approx-
imate approaches to FCS in interacting systems have
been successfully employed in appropriate regimes: a
noncomprehensive list includes various pertubative ex-
pansions [39, 48, 50, 53, 83, 88–94] and quantum master
equation approaches [51, 55, 57, 66, 68, 95–101]. Non-
perturbative numerical approaches also exist, but for
models which do not capture the full complexity of in-
teracting fermionic transport. These include hierarchi-
cal equations of motion in the spin-boson model [102] at
high temperatures, and the density matrix renormaliza-
tion group for the interacting resonant level model at its
self dual point and at zero temperature [103–105]. Also,
an equilibrium determinant QMC method was recently
applied to cold atomic gases [106].

To date, no numerically exact method has accessed
FCS in a generic nonequilibrium interacting fermionic
model; nor is a method currently available which is
(even in principle) suitable for arbitrary temperatures,
bias voltages and interaction strengths. In fact, this is
largely true even for the calculation of the second cumu-
lant, or noise. In this paper, we provide such a numeri-
cally exact method for computing the FCS, based upon
the recently developed inchworm diagrammatic quan-
tum Monte Carlo (iQMC) method [107].
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III. FCS: THEORY AND GENERAL
CONSIDERATIONS

In a charge detection experiment, one studies a sys-
tem in which some regions, labeled `, are called “leads”.
Lead ` is found to contain n`(t) electrons on any given
measurement of its total population at time t. The
change in charge ∆n` = n` (t) − n` (t0) on the lead is
measured between some initial time t0 and the measure-
ment time t > t0. The FCS formalism aims to construct
a generating function Z (λ, t) for the probability distri-
bution characterizing ∆n`, determined by the associ-
ated operator ∆N̂` (we suppress lead index ` from now
on). For this purpose, an auxiliary counting field λ is
introduced, such that

Z (λ, t) ≡
〈
eiλ∆N̂

〉
=
∑

∆n∈Z
P (∆n, t) eiλ∆n. (1)

Here, P (∆n, t) is the probability that the measured
number of electrons has changed by the integer ∆n af-
ter time t. The distributions P (∆n, t) can be obtained
from the generating function via

P (∆n, t) =

∫ π

−π
dλZ(λ, t)e−iλ∆n, (2)

and all moments Mk (t) and cumulants Ck (t) can be
extracted by taking successive derivatives with respect
to λ:

Mk (t) ≡
〈(

∆N̂
)k〉

= lim
λ→0

∂kZ (λ, t)

∂ (iλ)
k
, (3)

Ck (t) ≡ lim
λ→0

∂k lnZ (λ, t)

∂ (iλ)
k

. (4)

The Mk and Ck contain equivalent information; in par-
ticular we note that C1 = M1 and C2 = M2−M2

1 relate
the first and second moments. Of particular interest
[45, 77] is the probability distribution for no charges
passing across the junction, which defines the idle time
probability Π (t):

Π (t) ≡ P (0, t) =

∫ π

−π
dλZ (λ, t) . (5)

This can be used to extract the first passage time dis-
tribution W (t):

W (t) = −dΠ (t)

dt
, (6)

which describes the probability distribution of the time
separating initialization of the counting experiment
from the first detection of a charge transfer event [66].

The counting statistics of any operator Â (t) can be
evaluated by way of an effective Hamiltonian transfor-
mation originally formulated by Levitov and Lesovik
[36]. We will primarily be interested in the special case
Â (t) = N̂L. The generating function for the moments

of a change ∆a in the value associated with ∆Â (t) is
given by [49]

Z (λ, t) = Tr
[
ρ̂0Û

†
−λ2

(t, t0) Ûλ
2

(t, t0)
]
, (7)

in terms of the modified, operator-specific propagator
Ûγ (t, t0), which is defined by [49]

Ûγ (t, t0) ≡ eiγÂ(t)Û (t, t0) e−iγÂ(0). (8)

The modified propagator itself can be written as a
time-ordered integral with respect to a modified Hamil-
tonian:

Ûγ (t, t0) = T exp

[
− i
~

∫ t

t0

dτ Ĥγ (τ)

]
, (9)

where

Ĥγ (t) = eiγÂ(t)Ĥ (t) e−iγÂ(t) − ~γ∂tÂ (t) . (10)

This satisfies the relation i~∂tÛγ (t, t0) =

Ĥγ (t) Ûγ (t, t0). We express the generating func-
tion of Eq. (7) as a time ordered integral over the full
Keldysh contour C = (C+, C−), composed of an “upper”
branch C+ and a “lower” branch C− [108]. Using the
contour representation, Z (λ, t) is given by the compact
form

Z (λ, t) = Tr
{
ρ̂0T̂C

[
exp

(
− i
~

∫
C

dz Ĥγ (z)

)]}
, (11)

where T̂C orders times later on the contour to the left.
The auxiliary field γ takes a different value on each

branch:

γ (z) =
λ

2
, z ∈ C+,

γ (z) = −λ
2
, z ∈ C−.

(12)

When λ = 0, it is immediately apparent that the gener-
ating function Z (λ, t) = 1 for all t. In general, Z (λ, t)
is periodic in λ with a periodicity of 2π. Any value of
λ 6= 2πj for j ∈ Z means that the Hamiltonian depends
on the contour branch, such that time reversal symme-
try is explicitly broken.

IV. MODEL AND MONTE CARLO
ALGORITHM

A. Model and observables

We now specialize the discussion to the concrete case
of the nonequilibrium Anderson impurity model (AIM)
[109]. The model’s Hamiltonian can be written as fol-
lows:

Ĥ = ĤD + ĤB + ĤV . (13)
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ĤD describes a small, interacting “dot” subsystem; ĤB

depicts a set of large, noninteracting lead subsystems;
and ĤV is a hybridization Hamiltonian coupling the dot
and the leads. These three terms take the following
form:

ĤD =
∑
σ

εσd̂
†
σd̂σ + Ud̂†↑d̂↑d̂

†
↓d̂↓, (14)

ĤB =
∑
kσ,`

εkσ,`â
†
kσ,`âkσ,`, (15)

ĤV =
∑
kσ,`

(
Vkσ,`â

†
kσ,`d̂σ + H.c.

)
. (16)

Here, the d̂σ denote dot annihilation operators labeled
by a spin index σ, while the âkσ,` operators signify lead
annihilation operators labeled by a spatial index k, spin
index σ and lead index `. We assume two leads, de-
noted ` = L,R. The εσ represent dot level energies,
and the charging energy U determines the strength of
Coulomb repulsion between electrons. In this paper,
we set εσ = −U2 (the particle–hole symmetric case, to
which our method is not in any way limited). The hy-
bridization parameters Vkσ,` couple the lead states to
the dot and the εkσ,` enumerate the energies of lead
states. The system is initially prepared in the state
ρ0 = ρL ⊗ ρD ⊗ ρR, a decoupled equilibrium state of
Ĥ0 ≡ ĤD + ĤB in which the chemical potential in the
leads is given by µL = V/2, µR = −V/2. ρD is chosen to
be in one of the four eigenstates of HD: the empty state
|0〉; the singly occupied spin up and spin down down
states, |σ〉, with σ =↑, ↓; and the doubly occupied dot
state |↑↓〉. These states will be denoted by the label φ
in what follows.

The εkσ,` and Vkσ,` are completely determined by the
coupling density

Γ` (ω) = π
∑
k

|Vk,`|2 δ (ω − εkσ,`) . (17)

We choose this to be a flat band with a smooth cut-off
[110]:

Γ` (ω) =
Γ`(

1 + eν(ω−Ωc)
) (

1 + e−ν(ω+Ωc)
) . (18)

In what follows, we set Γ` = 1
2 such that Γ ≡

∑̀
Γ` = 1

determines our unit of energy. We take the leads’ band
cutoff Ωc to be 10Γ, and their edge width 1

ν to be 0.1Γ.
At the initial time t0 = 0 of the simulation, a coupling

quench is performed and the subsystems are suddenly
coupled by the introduction ofHV into the Hamiltonian.
This kind of switch-on is often referred to as the parti-
tioned approach, and has been contrasted in the quan-
tum transport literature to partition-free approaches
(such as a voltage quench) in which the dot–lead cou-
pling is established before a bias is added to the lead
energies [111]. We note in passing that a partition-free
voltage quench has also been explored within inchworm

QMC [112], by augmenting the finite Keldysh branches
with an imaginary time Matsubara branch, thus obtain-
ing the full Konstantinov–Perel’ contour [113].

In the present context, we are interested in the FCS
for this model. We therefore set Â (t) → N̂L in
the modified Hamiltonian of Eq. (10), where N̂L ≡∑
kσ â

†
kσ,Lâkσ,L is the particle number operator in lead

L. This counting function describes the moments of
population changes (rather than currents), but also pro-
vides access to the mean time-dependent current flow-
ing out of the lead, IL (t) =

〈
dN̂L (t) /dt

〉
, by way of

a time derivative. The current noise and higher order
cumulants can only be accessed at steady state. For
example, the noise

SLL (ω = 0) ≡ lim
t→∞

∫
dτ
〈

∆ÎL (t+ τ) ∆ÎL (t)
〉
, (19)

where ∆IL = IL−〈IL〉, is related to the long time limit
of the second cumulant [49]. We can therefore write:

lim
t→∞

IL (t) = lim
t→∞

C1 (t)

t
, (20)

SLL (ω = 0) = lim
t→∞

C2 (t)

t
. (21)

From the first and second cumulants, one can define the
time-dependent Fano factor for the population [114]

F (t) =
C2 (t)

C1 (t)
. (22)

In the long-time limit, this converges to the Fano factor
(up to a scaling factor of 2q) [5, 34] for the current,

SLL
2qIL

=
SLL
SP

= lim
t→∞

F (t)

2q
. (23)

This is the Fano factor usually observed in steady state
transport experiments, where q is the charge of an in-
dividual carrier and SP = 2qIL is the Poisson value of
the shot noise [1, 5, 29].

B. FCS with inchworm Monte Carlo

Within the modified Hamiltonian picture of Sec. III,
the problem of evaluating a generating function can be
mapped onto that of evaluating the time dependence
of a unit operator propagated by the modified Hamil-
tonian. For the AIM with N̂L as the counting field,
using the Baker–Hausdorff lemma and the fact that N̂L
commutes with Ĥ0 one can show [45] that the modi-
fied Hamiltonian of Eq. (10) is equivalent to the AIM,
but with lead–molecule coupling terms that acquire a
branch-dependent phase:

Ĥγ (z) = eiγ(z)N̂LĤe−iγ(z)N̂L

= Ĥ ({Vkσ,` (z;λ)}) ,
(24)
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Figure 2. Diagrammatic expansion of the full propagator
(upper half of the panel) and the corresponding term in the
propagator with contour branch indices exchanged. Thick
lines denote a full propagator, thinner lines a bare propaga-
tor, wiggly lines a pair of hybridization events, and the “X”
the fold in the Keldysh contour. The elements marked in
red are those modified by the counting field, resulting in the
breaking of time-reversal symmetry for λ 6= 0.

Vkσ,` (z;λ) =

{
Vkσ,`e

iλ2 δ`L , z ∈ C+,
Vkσ,`e

−iλ2 δ`L , z ∈ C−.
(25)

The generating function in Eq. (11) may then be eval-
uated by a standard Keldysh hybridization expansion
[110, 115, 116]. Whereas usually in such expansions an
operator corresponding to some observable is applied at
the fold of the Keldysh contour, here no such opera-
tor is needed, and the full counting statistics are given
directly in terms of a modified propagator:

Zφ (λ, t) = pφφ
(
t+, t−;λ

)
. (26)

In this expression, pφφ′ (z1, z2;λ) is analogous to the
dressed restricted propagators used in propagator non-
crossing approximations [117–119], in bold-line QMC
[120–124], and in inchworm QMC [107, 112, 119, 125,
126], but modified to include the auxiliary field via
Eq. (25):

pφφ′ (z1, z2;λ) ≡ 〈φ|TrB

{
ρ0e
−i

∫ z1
z2

Ĥλ(z)dz

}
|φ′〉 ,

Ĥλ (z) ≡ Ĥ0 + ĤV ({Vkσ,` (z;λ)}) .

(27)

When pφφ′ (z1, z2;λ) is expressed in the interaction
picture and expanded in powers of the hybridization, it
becomes a weighted sum over configurations C, defined
by the set of contour times at which hybridization events
(including dot and lead operators) occur. Each configu-
ration sampled at a given diagram order n corresponds
to the insertion of n hybridization lines connecting 2n
“kink” times on the Keldysh contour where a particle
of given spin σ is added to or removed from the dot.
We illustrate a diagram of order n = 0 and another of
order n = 3 in Fig. 2, where the full propagator is repre-
sented by a thick black line, the bare atomic propagator

by a thin black line and paired hybridization events by
wiggly lines.

The full propagator can then be rewritten as a sum
over diagrams, which can be stochastically sampled by
diagrammatic Monte Carlo algorithms [127]:

pφφ′ (z1, z2;λ) =

∞∑
n=0

∑
C

w
(n)
loc (C)w

(n)
hyb (C;λ) . (28)

Here the first summation is over the expansion order
n and the second summation is over all configurations
C = {z1, . . . , z2n} corresponding to the 2n kink times
at a given order. The wloc are products of interacting
(but purely local) atomic state propagators:

w
(n)
loc (C) = (−i)(n+−n−)

×
2n−1∏
i=0

p
(0)
φiφi+1

(zi, zi+1) ,

p
(0)
φφ′ (z1, z2) = 〈φ|TrB

{
ρ0e
−i

∫ z2
z1

HDdz
}
|φ′〉 .

(29)

Their sign depends on the number of kinks on each
branch of the contour, n+ and n− = 2n−n+. The whyb

denote a determinant given by a sum over all possible
lead operator pairingsX. Each term in this sum is given
by the product of hybridization functions ∆̃λ =

∑
` ∆̃λ

`
at the corresponding set of time pairs, with the sign
given by the permutation generating that pairing [127]:

w
(n)
hyb (C;λ) =

∑
X

sign (X)

n∏
i=0

∆̃λ (zi, zXi) . (30)

These hybridization functions, which are dressed by
the counting field in a contour-time dependent manner,
must be specified on the z1 and z2 axes:

∆̃λ
` (z1, z2) = e−iλ(1−δνν′ )δ`LθC (z1 − z2) ∆>

` (z1, z2)

+ eiλ(1−δνν′ )δ`LθC (z2 − z1) ∆<
` (z1, z2) .

(31)
Here, θC is the Heaviside function ordering times along
the Keldysh contour; ν, ν′ ∈ {C+, C−} are the branch
indices of z1 and z2, respectively; and L is the lead
for which FCS is being evaluated. Due to the modified
coupling in Eq. (25), the phase factors in the dressed
hybridization function Eq. (31) cancel when z1 and z2

lie on the same branch, such that only hybridization
lines that cross the folding time tmax of the Keldysh
contour are modified by the counting field (see the red
elements in Fig. 2). The undressed lesser and greater
hybridization components,

∆<
` (t1, t2) = −i

∫ ∞
−∞

dω

π
e−iω(t1−t2)

× Γ` (ω) f (ω − µ`) ,

∆>
` (t1, t2) = i

∫ ∞
−∞

dω

π
e−iω(t1−t2)

× Γ` (ω) [1− f (ω − µ`)] ,

(32)
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can be expressed in terms of the level width function
Γ` (ω) as defined in Eq. (17), and are parametrized only
by the physical times t1 and t2 corresponding to the
contour times z1 and z2.

Exact numerical approaches to the investigation of
dynamics in quantum many-body systems typically suf-
fer from an exponential scaling of computational cost
with time. In real time Monte Carlo methods, this man-
ifests in the dynamical sign problem: an exponential
growth of stochastic errors with increasing time. How-
ever, the inchworm algorithm, as applied to the real time
hybridization expansion [110, 115, 116, 121, 127, 128],
has been shown to bypass the dynamical sign problem
in a wide variety of parameters. This was not only
shown for the AIM [107, 112], but also in the spin–boson
model [119, 125] and—within the dynamical mean field
approximation—for lattice models [126].

Here, the inchworm algorithm is used to efficiently
sum the expansion described above, by reusing data
obtained from propagators on shorter time intervals to
construct propagators on longer time intervals [107]. In
the top panel of Fig. 3, a snapshot of an intermedi-
ate step in the inchworm procedure is illustrated for
a branch-independent Hamiltonian without a counting
field. Each of the z1 and z2 axes shown consists of
an “unfolded” Keldysh contour containing times ordered
according to the structure

[
t+0 , ..., tmax, ..., t

−
0

]
. In each

inchworm step, propagators are extended along one time
direction (this is called “inching”), marked by the green
arrows going to the right. In dark gray, we show time
points unneeded for the calculation (as we can always
select one contour time to appear later on the con-
tour than the other). The white squares correspond to
equal time propagators, which can be evaluated analyt-
ically. The blue squares correspond to time arguments
for which the propagator is already known from previ-
ous steps, while the light red squares correspond to ar-
guments at which the propagator may be evaluated im-
mediately, given the currently known propagators. The
dark red squares represent values to be computed at a
later steps. In light gray, we show time points which
can be obtained from reflection about the z1 = −z2 axis
(marked by a white dashed diagonal line), which can
be seen as time reversal symmetry : the propagators on
one side of this symmetry element can be obtained from
those on the other via the relation

pφφ′ (z1, z2) = p∗φ′φ (z̃2, z̃1) . (33)

Here, a contour time argument marked by a tilde, z̃,
denotes the same physical time as that of z, but on the
opposite contour.

Due to time reversal symmetry, in the original formu-
lation of the inchworm algorithm the total number of
propagators computed is 1

4

(
t
∆t

)2, as only one quadrant
of the two time plane needs to be explicitly evaluated.
Extending a propagator to the right in the quadrant
used is identical to extending a symmetrically placed
propagator up in the mirrored quadrant, so that time

Figure 3. Schematic illustration of an intermediate step
in the inchworm in the inchworm propagation scheme when
(top) time-reversal symmetry applies, and (bottom) when
it is broken by the counting field. Here, each square de-
notes a propagator restricted to lie between two time ar-
guments. Dark gray squares are unnecessary propagators,
white squares are trivial propagators, blue squares are known
propagators from previous steps, and red squares are un-
known propagators. The lighter red squares are propa-
gators which can be calculated in the present step, with
the green arrows representing propagation direction. The
dashed white line marks the symmetry element of time-
reversal, and the white circles are two propagators connected
by time reversal, as illustrated diagrammatically in Fig. 2.

reversal symmetry is also maintained in the inching di-
rection.

In diagrammatic terms, time reversal symmetry is il-
lustrated by in Fig. 2. In the upper part of 2, the
cross-branch hybridization line corresponds to a fac-
tor of ∆> (tb, ta) in the propagator, which depends
only on physical times and not on the branch indices.
When the contour branches of all times appearing in
this diagram are flipped, one obtains the expansion
in the lower part of Fig. 2. For example, the hy-
bridization factor ∆> (ta, tb) is replaced by ∆> (tb, ta) =
− [∆> (ta, tb)]

∗. All other factors are similarly conju-
gated, and so Eq. (33) holds.

By contrast, in the presence of the counting field
we evaluate the propagator for nonzero λ, and the
two contour-reflected diagrams are modified as illus-
trated by the red elements in Fig. 2: the dressed cross-
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branch hybridization factor, denoted by the red wig-
gly line, is replaced by eiλ∆> (ta, tb) (upper diagram)
and eiλ∆> (tb, ta) = −eiλ [∆> (ta, tb)]

∗ (lower diagram).
Due to the unconjugated prefactor eiλ, Eq. (33) is no
longer valid, and the two quadrants to either side of the
z1 = −z2 line must be evaluated separately, as illus-
trated in the lower panel of Fig. 3. Since we no longer
mirror the data or enforce the symmetry, an additional
spurious numerical breaking of time reversal symmetry
due to the asymmetry in inching direction can occur.
To avoid this, we inch to each time point from the two
possible directions and set the result to the average (il-
lustrated by the green arrows, now going both right and
up). This increases the number of simulations by an
additional factor of two, so that

(
t
∆t

)2 are needed in to-
tal, but the overall quadratic scaling with the time step
remains. We have found that bidirectional inching gen-
erally provides higher quality data for a given amount
of computer time, even without the counting field.

V. BENCHMARK AND VALIDATION FOR
THE NON-INTERACTING SYSTEM

A. Noninteracting FCS

In the absence of interactions (when U = 0), the FCS
following the coupling quench can be exactly obtained
by the path integral nonequilibrium Green’s function
(PI-NEGF) method, which provides an exact solution in
the absence of electron–electron interactions [45]. The
generating function for a noninteracting AIM is given
by the ratio of two Fredholm determinants:

Z (λ, t) = det
(
G̃−1 (z1, z2)

)
/ det

(
G−1 (z1, z2)

)
. (34)

Here, G is the matrix of two-time Green’s functions
for the full molecular junction in Keldysh-rotated space
[108, 129], such that the times z1, z2 correspond to pairs
of times on the Keldysh contour with a folding point at
tmax = t. The Green’s function is given by

G−1 (z1, z2) = g−1 (z1, z2)−∆L (z1, z2)−∆R (z1, z2) ,
(35)

where g denotes the Green’s function of the isolated dot
and G̃ = G−

(
∆̃L −∆L

)
is a modified Green’s function

that depends upon the counting field λ in the left lead.
When expressed in the Keldysh-rotated representation,
the two hybridizations are related via

∆̃` (z1, z2) = exp

(
iσx

λ

2

)
∆` (z1, z2) exp

(
−iσx

λ

2

)
,

(36)
where σx is the Pauli spin matrix. It is easy to show
that this is equivalent to Eq. (31) when the Keldysh
rotation is reversed. Further details on the implementa-
tion of Eq. (34) can be found in Refs. 45, 77, and 78. It
was also shown in these works that the expression (34)
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Figure 4. Real and imaginary parts of the generating func-
tion from iQMC (left) compared to the exact result (right)
at U = 0Γ, V = 0Γ and β = 50/Γ.

correctly reduces to the Levitov–Lesovik formula for the
generating function in the long-time limit [14, 36], which
can be written as

Z (λ, t) = exp

{
t

∫
dω

2π

∞∑
k=1

(−1)
k+1

k
Tr [T (ω) (37)

×
[(
eiλ − 1

)
(1− fR (ω)) fL (ω)

+
(
e−iλ − 1

)
(1− fL (ω)) fR (ω)

]]k}
.

Here, f` denotes the Fermi function of lead ` and T (ω)
is the transmission probability for electrons to pass
through the molecule.

In this work, the PI-NEGF generating function is
computed for the noninteracting case without spin de-
generacy, as in Ref. 45. However, we are interested
in the AIM. The U = 0 generating function for the
AIM can be constructed from that of the single-electron
model as a product:

Z
(AIM)
σ,σ′ (λ, t) = Z(dot)

σ (λ, t)Z
(dot)
σ′ (λ, t) . (38)

The σ, σ′ subscripts denote the two spins. In the cases
to be shown here, the system is initially decoupled from
the leads with the dot in the unoccupied state |0〉, such
that in the noninteracting calculations, each indepen-
dent model begins with an unoccupied dot. The dot–
bath coupling is then turned on at the quench time
t0 = 0.

B. QMC results for the non-interacting system

To verify the correctness of the iQMC method, we
begin by performing calculations for the noninteract-
ing case U = 0 and comparing the results with exact
results obtained from the PI-NEGF method. This for-
malism provides us with an independent verification of
the new method: as the iQMC calculation is based on
a hybridization (rather than an interaction) expansion,
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Figure 5. Real and imaginary parts of the generating func-
tion from iQMC (solid red) compared to the exact result
(dashed black) at U = 0Γ, V = 0 and β = 50/Γ.

the noninteracting case is nontrivial and embodies a rig-
orous test of the method’s accuracy [115]. In Fig. 4 we
present the time evolution of Z (λ, t). The two panels on
the left are generated from iQMC, while the two panels
on the right are exact results. As might be expected,
Z (λ = 0, t) = 1 is satisfied to within the numerical er-
rors. The following symmetry relations are also appar-
ent:

Re [Z (λ, t)] = Re [Z (π − λ, t)] ,
Im [Z (λ, t)] = −Im [Z (π − λ, t)] .

(39)

We note that the time evolution of both real and imag-
inary parts of Z exhibit monotonic decay towards zero
after a transient timescale on the order of 1/Γ.

In order to explore the correspondence between the
numerical data and the exact result in more detail, we
plot a series of cuts across the data in Fig 5. Each curve
shown here corresponds to a different value of λ in the
interval [−π, π]. The results from iQMC are shown in
solid red, together with exact data in dashed black. The
two sets of curves appear to be in very good agreement,
with slight numerical deviations (on the order of 1%) in
the iQMC results visible at long times.

The introduction of a finite voltage causes the com-
ponents of the generating function to strongly oscillate
as a function of time, as shown in Fig. 6. This indi-
cates oscillations in cumulants of all orders, reflecting
a universal phenomenon predicted by Flindt et al. in
Ref. 63 and later observed experimentally [64]. Physi-
cally, the introduction of a finite bias enhances the short-
time “ringing” behavior, as has previously been observed
for the lowest cumulant (the current) [118, 130]. As the
FCS in the presence of a voltage bias is substantially
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Figure 6. Real and imaginary parts of the generating func-
tion from iQMC (left) compared to the exact result (right)
at U = 0Γ, V = 10Γ and β = 50/Γ.

−0.5
0.0

0.5

1.0

1.5

R
e[

Z
]

λ = 0

λ = ±π

iQMC
Exact

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

tΓ

−1.0

−0.5

0.0

0.5

Im
[Z
]

λ = 0,±π

Figure 7. Real and imaginary parts of the generating func-
tion from iQMC (solid red) compared to the exact result
(dashed black) at U = 0Γ, V = 10Γ and β = 50/Γ.

richer, it is instructive to consider a detailed compari-
son of specific cuts again (see Fig. 7). Remarkably, it
is observable from this figure (which used less compu-
tational resources than Fig 5) that at higher voltages
it is easier to converge the numerics. This is a notable
property of real time iQMC [122, 131], which makes its
regime of efficient applicability different from that of,
e.g., low-energy wavefunction methods.

Knowledge of the generating functional provides ac-
cess to all moments and cumulants in principle, but the
numerical exercise of obtaining them in practice may not
be trivial. One of the main technical difficulties stems
from the fact that within iQMC, the relative error in
this data is generally larger at small λ values. This is
for two reasons: first, part of the statistical iQMC er-
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ror is independent of the value of the observable. This
source of error is strongly mitigated by the inchworm
algorithm, but not completely removed, and results in
noisy numerical derivatives. Second, there is a small
systematic error due to the time discretization. This
error is difficult to fully converge, and can sometimes
be significant: for example, consider how the imaginary
part of Z (0, t) visibly deviates from its exact value of
zero in the lower panel of Fig. 5.

Therefore, if we evaluate λ derivatives of Z (λ, t)
in the limit of small λ by a finite difference formula
limλ→0

dZ(λ,t)
dλ ' Z(∆λ,t)−Z(0,t)

∆λ , the value of ∆λ can-
not easily be taken to zero without investing unjustified
amounts of computer time. Furthermore, the oscillatory
form of the function hints that an increasingly small
value will be needed as one propagates to longer times.

However, the dependence of the moments and cumu-
lants on ∆λ can be understood at long times by consid-
ering the Levitov–Lesovik formula for the current cu-
mulant generating function S (λ) ≡ lim

t→∞
lnZ(λ,t)

t , with
Z (λ, t) given by Eq. (37). If this is inserted into the
finite difference derivative with respect to a small shift
∆λ, and the integrand is expanded to linear order in
∆λ, one arrives at the following expressions for the log-
arithmic and direct derivatives:

d lnZ (λ, t)

d (iλ)

∣∣∣∣
λ=0

= lim
∆λ→0

t

∫
dω

2π
(40)

× Tr [T (ω) (fL (ω)− fR (ω))] ,

dZ (λ, t)

d (iλ)

∣∣∣∣
λ=0

= lim
∆λ→0

1

i∆λ
(41)

×
[
exp

{
i∆λt

∫
dω

2π
Tr [T (ω)

× (fL (ω)− fR (ω))]} − 1] .

Thus, for finite but small ∆λ the first cumulant (which
corresponds to Eq. (20)) exhibits no dependence on ∆λ,
whereas the first moment oscillates at long times as
exp (∼ i∆λt). This implies that numerical derivatives
taken from lnZ will converge at a finite ∆λ in the long
time limit, while the error in numerical derivatives taken
directly from the generating function will diverge.

To see this in practice, consider Fig. 8. Here, dot
populations normalized by time (C1 (t) /t) are plotted.
These plots were obtained from both the logarithmic
(thick black lines) and direct (dashed black lines) deriva-
tives with a symmetric bias of V = 1Γ. Cumulants
are obtained from both derivatives for ∆λ = 0.6 and
compared with the exact result (red crosses) obtained
from PI-NEGF at ∆λ = 0.001. This is done for high
temperatures (β = 0.4Γ, upper panel) and low tem-
peratures (β = 50Γ, lower panel). As suggested by the
preceding analysis, the convergence to the ∆λ→ 0 limit
is substantially faster when logarithmic derivatives are
taken. While the direct and logarithmic derivatives are
in agreement at short times, the direct derivative di-
verges from the exact result at long times. Without per-
forming a full error analysis, it is difficult to determine
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Figure 8. First cumulants of the particle number in the
noninteracting case U = 0 are shown, as obtained from
iQMC. Finite difference derivatives of lnZ (thick lines) and
of Z (dashed lines) are plotted against the essentially exact
benchmark PI-NEGF logarithmic derivative for ∆λ=0.001
(red crosses). The inverse temperatures are β = 0.4/Γ (top)
and β = 50/Γ (bottom).

whether the logarithmic derivative differs significantly
from the exact result. At low temperatures convergence
is slower, and the steady state value (equivalent to the
long time limit of the left current) increases.

We repeat this analysis for the normalized second cu-
mulants C2 (t) /t of the population in Fig. 9. The second
cumulant C2 (t) increases linearly with time [49, 63], and
is related at long times to the current noise in the left
lead SLL via Eq. (21). The cumulant extracted from
the iQMC data is in excellent agreement with the exact
result event for relatively large values of ∆λ when the
cumulant is obtained from the logarithmic derivative,
but requires convergence to decreasing ∆λ at smaller
times when the direct derivative is used. We note that
due to the symmetry of Eq. (39), it is in principle only
necessary to evaluate lnZ (λ, t) at one value of λ to eval-
uate both the first and second cumulants. In practice
we used λ = 0 and λ = 0.6 to eliminate some of the
systematic errors due to the finite time discretization.

VI. RESULTS IN THE PRESENCE OF
INTERACTIONS

We continue to discuss quantities of physical interest,
as obtained from our calculations. In what follows, we
will show noninteracting results for comparison, which
could be compared to the PI-NEGF data as in the pre-
vious section. Such comparisons were performed and
agreement was found, but for the sake of brevity this is
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Figure 9. Second cumulants of the particle number in the
noninteracting case U = 0Γ are shown, as obtained from
iQMC. Cumulants obtained from finite difference deriva-
tives of lnZ (thick lines) and of Z (dashed lines) are plotted
against the essentially exact benchmark PI-NEGF logarith-
mic derivative for ∆λ=0.001 (red crosses). The inverse tem-
peratures are β = 0.4/Γ (top) and β = 50/Γ (bottom).

no longer shown from here onwards. Furthermore, we do
not perform the full (and costly) error analysis needed
to rigorously define confidence intervals in the inchworm
algorithm [107, 112], but roughly estimate that numer-
ical errors are on the order of several percent.

A. FCS and Shot noise

The FCS in the presence of interactions is shown at
two voltages in Fig. 1, at equilibrium and in the presence
of a bias voltage. At first glance, this looks only sub-
tly different from the noninteracting results in Figs. 4)
and 6). However, these seemingly small changes in the
contour plot encode entirely different physics. To see
this, we will explore some of the properties that can be
derived from the FCS.

First, we study the effect of interactions and tem-
perature on the noise and Fano factor. Fig. 10 shows
the evolution of the time-normalized second moment
C2 (t) /t in the upper panel. In the lower panel, the pop-
ulation Fano factor F (t) defined in Eq. (22) is shown,
at fixed voltage V = 1Γ and for the initially empty
dot state. The high (low) temperature plots are shown
in red (black), and the interacting (noninteracting) re-
sults are distinguished by solid (dashed) lines. To the
right extreme of the plot, the asymptotic values of the
noise and Fano factor are shown. These were obtained
from the coefficient of a linear fit to the first and sec-
ond cumulants C1 (t) and C2 (t), in accordance with the
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Figure 10. Evolution of C2 (t) (upper panel) and the Fano
factor F (t) = C2 (t) /C1 (t) (lower panel) for voltage V = 1Γ
and initial condition |0〉. To the right extreme of the plot,
we show the asymptotic values of these quantities, obtained
from linearly fitting the cumulants at long times. The ex-
act values of the noninteracting noise and Fano factor from
Levitov–Lesovik theory are shown as filled circles.

definition of the steady state current and noise defined
in Eqs. (20) and (21). In addition, filled circles mark
the Levitov–Lesovik values for the noninteracting quan-
tum noise and Fano factor, obtained from the standard
Landauer–Büttiker theory [1, 10] via Eqs. (37) and (38).
We note that the linear fits (which are not shown here)
give reliable values to within 1% in this case, and in
the noninteracting case are perfectly consistent with the
Levitov–Lesovik values. The quality of the fits improves
with the length of time simulated. In addition we note
that asymptotic values shown to the right of Fig. 10 are
independent of the initial condition.

At high temperatures (red lines), the absolute magni-
tude of the noise, and also the Fano factor, is enhanced
with respect to the low temperature (black lines) case.
This is due to the contribution to the second cumulant
of thermal or Nyquist noise, which vanishes at small val-
ues of kBT [1, 10]. We note that at high temperatures
there is an asymptotic divergence between the solid and
dashed red curves in the upper panel, as the noise ap-
pears to be suppressed by the presence of interactions.
In the low temperature case, the interacting shot noise
is enhanced with respect to the noninteracting value,
thus we observe a crossover from noise suppression to
enhancement as the temperature is reduced. At low
temperature the quantum noise is mainly attributed to
the presence of a finite bias [1, 17]. While the thermal-
to-shot noise crossover is well described by scattering
theory in the noninteracting case, it is far more com-
plex in the presence of strong interactions.
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The low-temperature data corroborates well-known
theoretical results by Lesovik [132] and others [133–135],
later confirmed by experiment [136], that the presence
of inelastic scattering processes in the junction causes
excess noise at low temperatures and finite voltages.
In particular, inelastic cotunneling processes have been
considered, in which electrons tunnel onto and off the
dot simultaneously with the creation of a virtual dot
state. These leave the dot in an excited state, and
have been shown to enhance the noise [97, 137, 138].
When these virtual tunnel states involve correlated elec-
trons of opposite spin, a Kondo singlet is formed [139].
At high temperatures, the interaction induces Coulomb
blockade on the dot, reducing the number of available
transport channels. This suppresses both the current
and the noise, such that the Fano factor takes a similar
value to that in the noninteracting case (lower panel, red
lines). The presence of a large temperature suppresses
the formation of coherent states required for inelastic
spin-flip and cotunneling processes to occur [140–142].
However, as the temperature is lowered, we enter the
Kondo regime. The Kondo effect increases the inelastic
spin-flip rate and facilitates spin fluctuations on the dot,
enhancing the noise and resulting in an overall increase
in the Fano factor compared to the noninteracting case
(solid black lines in Fig. 10).

B. First passage time distribution

In Figs. 11–12 we plot the FPTD, as defined in
Eq. (6), in the unbiased (V = 0) and biased (V = 10Γ)
cases. The inverse temperature in all plots is β = 50/Γ,
and the dynamics for four different initial states of the
dot are shown. Note that the initially half-occupied
states |σ〉 are collected into the same line (shown in red),
as the particle–hole symmetric parameters ensure their
physical equivalence. Within our data, the two half-
filled initial conditions are indeed identical to within
numerical errors (not shown).

We begin with the noninteracting problem, Fig. 11.
Here, a maximum occurs at Γt of order ∼ 1, correspond-
ing to the most probable first passage time τfp, i.e. the
time at which it is most likely to measure the first change
in the left lead’s occupation. The first passage probabil-
ity decays to zero at long times, as the likelihood that
the first particle transfer has been detected at very long
times becomes vanishingly small. In the unbiased case
(top panel), the effect of initial condition on the first
passage time distributions is minimal. In particular,
the unoccupied (black) and fully-occupied (green) ini-
tial conditions are identical in the presence of particle–
hole symmetry. This is not the case for the biased sys-
tem (bottom panel), where electrons are driven out of
the left lead. The bias voltage breaks the symmetry
between the left and right leads. Therefore—since we
are examining the FPTD of the left lead—the symme-
try between the doubly occupied and unoccupied initial
states is also broken. As the initial occupation of the
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Figure 11. The FPTD W (τ) at inverse temperature β =
50/Γ for U = 0Γ, at V = 0 (upper) and V = 10Γ (lower).
Insets show the integral over the data.

dot increases in going from the |0〉 to the |σ〉 and |↑↓〉
states, the probability density shifts to longer times. A
second peak appears in the distribution, corresponding
to the first tunneling event on the left lead occurring af-
ter an electron has traveled from the dot onto the right
lead. This demonstrates an initial condition dependent
“queuing” effect in the FPTD, which is reminiscent of
classical queuing [143].

The insets of Fig. 11 display the integral over W (τ),
which by Eq. (5) is equal to the probability 1− P (0, t)
that when the total charge of the left lead is measured
at time t, it has changed from its initial value. In an un-
biased system the electron flow across the terminals, as
well as the probability that the electron count in the left
lead has changed from its initial value, is due entirely
to thermal fluctuations and the delocalization dynam-
ics of the wavefunction, and may saturate at a value
between one and zero (see upper inset). As the bias
V is increased, however, the active driving causes this
probability to reach unity rapidly (as in the the lower
inset).

Fig. 12 is identical to Fig. 11, except for the pres-
ence of a finite Coulomb repulsion energy U = 8Γ.
At very short times, when the time dependence is lin-
ear, the symmetrized interaction has essentially no ef-
fect on the FPTD. However, this changes dramatically
at timescales substantially smaller than 1/Γ. Compar-
ing the interacting unbiased case, shown in the upper
panel, with the corresponding noninteracting result in
Fig. 11, it is clear that the magnitude of the resonant
peak and the value of τfp are increased for the dou-
bly occupied and unoccupied initial states |0〉 and |↑↓〉,
whereas both quantities are decreased for the half occu-
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Figure 12. The FPTD W (τ) at inverse temperature β =
50/Γ for U = 8Γ, at V = 0 (upper) and V = 10Γ (lower).
Insets show the integral over the data, with the upper inset
also containing a result at higher temperature (dashed line).

pied initial states |σ〉. This can be understood in terms
of Coulomb blockade physics: at short times, involving
the transfer of the first electron, no difference between
the initial conditions is observed. However, in the |σ〉
case, the suppression of the even charge states by the
interaction causes the transfer of a second electron in
the same direction to be energetically unfavorable. The
opposite occurs in the |0〉 and |↑↓〉 states.

Another striking difference between the interacting
case and its noninteracting counterpart (top panels of
Fig. 12 and Fig. 11, respectively) is the long tail ap-
pearing in the FPTD of the initially magnetized states
|σ〉. The effect of this tail is prevalent in the inset, where
very slow relaxation to unity is observed (we show times
up to t = 8/Γ to emphasize the slow relaxation). This
can be attributed to the stabilization of local moments
[144] and slow spin dynamics [145] associated with the
Kondo regime, to which the system is equilibrating at
these parameters. For comparison, the red dashed line
in the upper inset of Fig. 12 shows dynamics for the |σ〉
initial states at β = 1/Γ, where the Kondo effect is sup-
pressed by temperature; the relaxation is then faster.

In the lower panel of Fig. 12 we apply a bias volt-
age of V = 10Γ to the interacting system. At such a
large voltage, electrons are chiefly injected into the dot
from the left lead and ejected into the right lead, sim-
plifying the analysis of the effects of interaction on the
queuing. In the case of the half occupied initial con-
ditions |σ〉, the first peak is suppressed relative to the
second in the presence of interactions, because the en-
ergy penalties discussed above decrease the likelihood of
electron injection from the left lead before the original
electron escapes into the right lead. Similarly, the first
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Figure 13. The time dependent probabilities for ∆n = 1
(upper) and ∆n = 2 (lower), for the interacting case U = 8Γ
(solid lines) and noninteracting case U = 0Γ (dashed lines),
with initial conditions shown in the inset. Bias and inverse
temperature are set to V = 10Γ and β = 50/Γ, respectively.

peak for the doubly occupied initial condition becomes
larger than the second, because the process where two
electrons are ejected on the right before the first elec-
tron is injected on the left is energetically suppressed.
Remarkably, the slow spin relaxation related to Kondo
physics is substantially reduced in the inset for the |σ〉
initial states at this high voltage. This is consistent with
claims that a small remnant of Kondo physics can sur-
vive at high voltages [124, 146, 147], but requires further
investigation.

C. n-particle probabilities

The FPTD, related to P (0, t), sheds light on the dy-
namical response of the system to all possible particle
tunneling events. It does not distinguish between events
in which different numbers of particles are transported.
However, the full counting statistics contain much more
information: it is possible to access P (∆n, t) for ev-
ery ∆n. It is of interest to search for manifestations of
correlated transport in these detailed distributions. We
also consider the most probable time at which the par-
ticle number changes by ∆n, given by the maximum of
the corresponding distribution. We denote this time by
τ

(∆n)
mp .
In Fig. 13, we begin by considering the probability for

the particle number in the left lead to have changed by
∆n = 1 after time t, for each possible initial condition
and for the interacting (solid lines) and noninteracting
(dashed lines) cases. We once again apply a bias volt-
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age of V = 10Γ, so that it is energetically favorable
to move charges from the left lead onto the dot, and
charges from the dot to the right lead. Regardless of
the presence of interactions, the peak of the probabil-
ity distributions P (1, t) for the different initial condi-
tions is shifted to longer times by an increasing number
of electrons initially on the dot. In the noninteracting
case, this simply reflects the fact that the empty dot
has more transport channels open to electron traversal
events than a partially or fully filled dot. If the initial
state is fully occupied, transport of the first electron is
forbidden by the Fermi rule until at least one dot elec-
tron has tunneled to (with high probability) the right
lead. The effect of Coulomb charging depends on the
initial occupation: when the dot begins empty, interac-
tion does not change the position of the maximum, but
somewhat enhances the total probability that a single
tunneling event was measured at any time, reflecting a
reduction in the probability of detecting higher values of
∆n. In this case there is no initial “queue” for electron
tunneling onto the dot, and the interaction makes the
first electron tunneling event more energetically favor-
able, then suppresses the second. For all other initial
states, the Coulomb repulsion shifts the distribution to
longer times, as electrons on the left lead cannot enter
the dot without “queuing” for electrons on the dot to
first tunnel to the right lead.

In the lower panel of Fig. 13, we repeat the above
analysis for the probability that at time t, a change
∆n = 2 in the particle number is measured on the left
lead. P (2, t) is shifted to longer times by the interac-
tion for all initial conditions, because the transfer of the
second electron must be preceded by that of the first,
such that it always encounters some Coulomb repulsion.

The top panel of Fig. 14 shows a sequence of P (∆n, t)
for ∆n = 0, ..., 6, focusing on the unoccupied initial
state. At short times, we see perfect agreement between
the interacting and noninteracting results, as no inter-
action can take place before some electrons occupy the
dot. Increasing the value of ∆n shifts the ∆n > 1 peaks
to longer times, which makes sense physically since a
change involving ∆n = N electrons implies all processes
leading to a change of ∆n = N−1 electrons have already
occurred. We note that we do not show backscattering
events ∆n < 1, which have a small but finite probability
even in the presence of a large voltage. In the unbiased
system (not shown), backscattering events are of equal
importance to the forward scattering events.

The rich, detailed information on population densities
shown in Fig. 14 lends itself to a quantitative analysis
of electron transfer processes. In the lower panel of the
same figure, we study the variation of the distance be-
tween maximally probable times τ (∆n)

mp − τ (∆n−1)
mp as a

function of ∆n, for the interacting (black curve) and
noninteracting (red curve) cases. As we propagate to
longer times, this quantity can be considered a proxy
for queuing effects at the single electron level at steady
state: it describes the typical waiting time between sub-
sequent tunneling events. As ∆n increases, the peak-
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Figure 14. Top panel: The probabilities P (∆n, t) with ∆n =
0, . . . , 6, for the unoccupied initial state |0〉, at V = 10Γ and
β = 50/Γ. The solid lines correspond to the interacting case
U = 8Γ, and dashed lines correspond to the noninteracting
case U = 0. Bottom panel: The inter-peak distance τ (∆n)

mp −
τ

(∆n−1)
mp as a function of ∆n, for U = 8Γ (black) and U = 0Γ
(red).

to-peak distance stabilizes to a roughly constant value.
The long-time value in the noninteracting case is of or-
der 1/Γ, as might be expected for a simple rate pro-
cess where the only relevant timescale is the coupling
between the dot and baths. However, the peak-to-peak
distance in the interacting case is significantly larger: as
each electron enters the dot, it suppresses the next elec-
tron from entering by virtue of the Coulomb repulsion.
Interestingly, while the point at which each distribution
begins to differ significantly from zero is only weakly
modified by the interaction, the width of the distribu-
tions and the weight at their tail end are almost imme-
diately enhanced. This may indicate that fluctuations
play an increasingly important role in the population
transfer dynamics as the strength of the interaction is
increased.

VII. CONCLUSIONS

We presented the first numerically exact calculation
of full counting statistics for a non-integrable model of
interacting fermions, in this case the nonequilibrium An-
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derson impurity model. Using the inchworm quantum
Monte Carlo method, we obtained the generating func-
tion Z(λ, t) at a variety of physical parameters rang-
ing from the noninteracting case to the strongly corre-
lated Kondo regime. This provides access to currents,
which have been accessed before by numerically exact
methods; but also to other experimentally measurable
quantities which were not. This includes the current
noise at steady state, the Fano factor, all higher mo-
ments and cumulants of population transfer event, and
the complete time-dependent probability distributions
for n-electron transfer events.

The method was applied to a coupling quench, where
a dot is suddenly attached to the leads at time zero and
allowed to evolve to equilibrium or to a nonequilibrium
steady state. After performing benchmark comparisons
in the noninteracting limit to verify the accuracy of our
results, we explored the effects of electron–electron in-
teractions and nonequilibrium bias voltage on the full
counting statistics and the properties derived thereof.
We observed the signatures of the Coulomb blockade
and Kondo effects in the noise and Fano factor, and
found transient queuing effects depending on the choice
of initial condition in the FPTD. By considering the
individual, time-dependent probability distributions for
the occurrence of n tunneling events, we were further
able to argue that such queuing effects persist at steady
state. Rather than simply being associated with a lower
effective tunneling rate, the rapid widening of the prob-
ability densities in the presence of interactions suggests
that fluctuations play a significant role in the interacting
dynamics.

With the availability of a reliable scheme for calcu-
lating the full counting statistics of generic interacting
impurity models, a variety of important research ques-
tions can now be addressed. Some immediately relevant
examples include quantum thermodynamic topics, such
as the verification of quantum fluctuation–dissipation
theorems and the calculation of efficiency fluctuations
in quantum devices; and the evaluation of noise and
Fano factors beyond the Fermi liquid regime. We ob-
served queuing effects, but it would also be interesting
to look for bunching effects in the presence of an ef-
fectively attractive interaction. As the noninteracting

physics enters entirely through the hybridization func-
tion, it is also feasible to consider the counting statistics
of impurities embedded in more realistic noninteracting
models of materials and nanosystems, one interesting
example being magnetic impurities in graphene nanorib-
bons [148, 149].

Spin-dependent FCS in quantum junctions has only
recently been treated in the noninteracting case [46],
and spintronic applications are anticipated. The
method we have presented can easily be generalized to
access spin-dependent counting statistics and multi-lead
moments: one could then go beyond the analysis of
Fig. 14 to consider the time-dependent probability that
the left lead lost (e.g.) one spin up electron, while si-
multaneously the right lead gained two spin down elec-
trons. In this context, the long-term survival of spin
fluctuations at timescales where the mean magnetiza-
tion has died out would embody a remarkably clear sig-
nature of strong correlation physics. Generalization to
include bosonic degrees of freedom is also possible, en-
abling treatment of thermoelectric systems or coupling
to an optical continuum. The method could further be
extended to frequency dependent power spectra and re-
lated conductance spectra [150, 151], which can be used
to study photon absorption and emission processes [152–
155]. Additionally, noise in periodically-driven systems
with interactions could now be investigated, enabling
performance tuning of correlated nanoelectronic devices
[156].

To summarize, the full counting statistics of strongly
correlated nonequilibrium quantum impurity problems
can now be obtained numerically. This provides un-
precedented insight into the stochastic nature of elec-
tronic transport at the resolution of single tunneling
events, and allows simulation of a variety of experiments
for which no systematic theory was previously available.
Acknowledgements We are grateful to Michael

Galperin for directing our attention to this problem.
G.C. acknowledges support by the Israel Science Foun-
dation (Grant No. 1604/16). M.R. was supported by
the Raymond and Beverly Sackler Center for Computa-
tional Molecular and Materials Science, Tel Aviv Univer-
sity. E.G. was funded by DOE ER 46932. This research
was supported by grant No. 2016087 from the United
States-Israel Binational Science Foundation (BSF).

[1] Y. M. Blanter and M. Büttiker, Physics reports 336,
1 (2000).

[2] N. V. Kampen, Stochastic processes in physics and
chemistry (North Holland, 2007).

[3] A. Braggio, J. König, and R. Fazio, Physical review
letters 96, 026805 (2006).

[4] R. Landauer, Nature 392, 658 (1998).
[5] C. Beenakker, C. Schönenberger, et al., Physics Today

56, 37 (2003).
[6] R. Vardimon, M. Klionsky, and O. Tal, Physical Re-

view B 88, 161404 (2013).

[7] Y. Selzer and U. Peskin, The Journal of Physical
Chemistry C 117, 22369 (2013).

[8] P.-Y. Yang, C.-Y. Lin, and W.-M. Zhang, Physical
Review B 89, 115411 (2014).

[9] M. A. Ochoa, Y. Selzer, U. Peskin, and M. Galperin,
The journal of physical chemistry letters 6, 470 (2015).

[10] M. Ridley, A. MacKinnon, and L. Kantorovich, Phys-
ical Review B 95, 165440 (2017).

[11] V. S. Rychkov, M. L. Polianski, and M. Büttiker,
Physical Review B 72, 155326 (2005).



15

[12] F. Battista, F. Haupt, and J. Splettstoesser, Physical
Review B 90, 085418 (2014).

[13] R. Zamoum, M. Lavagna, and A. Crépieux, Physical
Review B 93, 235449 (2016).

[14] L. S. Levitov, H. Lee, and G. B. Lesovik, Journal of
Mathematical Physics 37, 4845 (1996).

[15] J. Dubois, T. Jullien, C. Grenier, P. Degiovanni,
P. Roulleau, and D. Glattli, Physical Review B 88,
085301 (2013).

[16] J. Dubois, T. Jullien, F. Portier, P. Roche, A. Cavanna,
Y. Jin, W. Wegscheider, P. Roulleau, and D. Glattli,
Nature 502, 659 (2013).

[17] V. Khlus, Zh. Eksp. Teor. Fiz 93, 2179 (1987).
[18] F. Lefloch, C. Hoffmann, M. Sanquer, and D. Quirion,

Physical review letters 90, 067002 (2003).
[19] A. Braggio, M. Governale, M. G. Pala, and J. König,

Solid State Communications 151, 155 (2011).
[20] L. Saminadayar, D. Glattli, Y. Jin, and B. c.-m. Eti-

enne, Physical Review Letters 79, 2526 (1997).
[21] E. Sela, Y. Oreg, F. von Oppen, and J. Koch, Physical

review letters 97, 086601 (2006).
[22] A. Golub, Physical Review B 73, 233310 (2006).
[23] A. Golub, Physical Review B 75, 155313 (2007).
[24] O. Zarchin, M. Zaffalon, M. Heiblum, D. Mahalu, and

V. Umansky, Physical Review B 77, 241303 (2008).
[25] Y. Yamauchi, K. Sekiguchi, K. Chida, T. Arakawa,

S. Nakamura, K. Kobayashi, T. Ono, T. Fujii, and
R. Sakano, Physical review letters 106, 176601 (2011).

[26] M. Ferrier, T. Arakawa, T. Hata, R. Fujiwara, R. De-
lagrange, R. Weil, R. Deblock, R. Sakano, A. Oguri,
and K. Kobayashi, Nature Physics 12, 230 (2016).

[27] L. Levitov and M. Reznikov, Physical Review B 70,
115305 (2004).

[28] Y. Bomze, G. Gershon, D. Shovkun, L. Levitov,
and M. Reznikov, Physical review letters 95, 176601
(2005).

[29] S. Safonov, A. Savchenko, D. Bagrets, O. Jouravlev,
Y. V. Nazarov, E. Linfield, and D. Ritchie, Physical
review letters 91, 136801 (2003).

[30] I. Djuric, B. Dong, and H. Cui, Applied Physics Let-
ters 87, 032105 (2005).

[31] G. Kießlich, E. Schöll, T. Brandes, F. Hohls, and
R. Haug, Physical review letters 99, 206602 (2007).

[32] Z. Feng, J. Maciejko, J. Wang, and H. Guo, Physical
Review B 77, 1 (2008).

[33] S. Gustavsson, R. Leturcq, B. Simovič, R. Schleser,
T. Ihn, P. Studerus, K. Ensslin, D. Driscoll, and
A. Gossard, Physical review letters 96, 076605 (2006).

[34] C. Emary, D. Marcos, R. Aguado, and T. Brandes,
Physical Review B 76, 161404 (2007).

[35] J. Tworzydło, B. Trauzettel, M. Titov, A. Rycerz, and
C. W. Beenakker, Physical Review Letters 96, 246802
(2006).

[36] L. S. Levitov and G. B. Lesovik, Pis’ma Zh. Exsp. Teor.
Fiz. 58, 225 (1993).

[37] I. Klich and L. Levitov, Physical review letters 102,
100502 (2009).

[38] G. Lesovik, F. Hassler, and G. Blatter, Physical review
letters 96, 106801 (2006).

[39] M. Esposito, M. A. Ochoa, and M. Galperin, Physical
Review B 91, 115417 (2015).

[40] B. K. Agarwalla, J.-H. Jiang, and D. Segal, Physical
Review B 92, 245418 (2015).

[41] A. Di Lorenzo and Y. V. Nazarov, Physical review let-
ters 93, 046601 (2004).

[42] A. Di Lorenzo and Y. V. Nazarov, Physical review let-
ters 94, 210601 (2005).

[43] A. Di Lorenzo, G. Campagnano, and Y. V. Nazarov,
Physical Review B 73, 125311 (2006).

[44] J. Fransson and M. Galperin, Physical Review B 81,
075311 (2010).

[45] G.-M. Tang and J. Wang, Physical Review B 90,
195422 (2014).

[46] T. Gaomin, X. Fuming, M. Shuo, and W. Jian, arXiv
preprint arXiv:1712.00215 (2017).

[47] G. Tang, X. Chen, J. Ren, and J. Wang, arXiv preprint
arXiv:1705.10025 (2017).

[48] T. Schmidt, A. Komnik, and A. Gogolin, Physical
Review B 76, 241307 (2007).

[49] M. Esposito, U. Harbola, and S. Mukamel, Reviews
of modern physics 81, 1665 (2009).

[50] R. Sakano, A. Oguri, T. Kato, and S. Tarucha, Phys-
ical Review B 83, 241301 (2011).

[51] C. Flindt, T. Novotnỳ, A. Braggio, M. Sassetti,
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