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The main candidate for the superfluid pathways in solid 4He are dislocations with Burgers vector
along the hcp symmetry axis. Here we focus on quantum behavior of a generic edge dislocation
which can perform superclimb – climb supported by the superflow along its core. The role of the
long range elastic interactions between jogs is addressed by Monte Carlo simulations. It is found
that such interactions do not change qualitatively the phase diagram found without accounting for
the long-range forces. Their main effect consists of renormalizing the effective scale determining
compressibility of the dislocation in the Tomonaga-Luttinger Liquid phase. It is also found that the
quantum rough phase of the dislocation can be well described within the gaussian approximation
which features off-diagonal long range order (ODLRO) in 1D for the superfluid order parameter
along the core.

PACS numbers: 67.80.bd, 67.80.bf

I. INTRODUCTION

Dislocations are linear topological defects in crystals.
These objects determine the amazing variety of proper-
ties of real materials (see in Ref.1). In most cases dislo-
cations are described as classical strings producing long
range strain and stress around their cores. This stress
is responsible for interactions between dislocations and,
correspondingly, for the emerging collective structures
and the strongly non-linear dynamics – classical plas-
ticity. A complete description of dislocation ensembles
remains a tantalizing technological problem which is also
of fundamental importance.

The role of quantum mechanics in dislocation dynam-
ics has also been discussed. Generating kink-antikink
pairs along dislocation by quantum tunneling under
stress has been described in Ref.2. However, beyond
this result the role of quantum mechanics in disloca-
tion induced plasticity in technological materials remains
largely an open question. In metals, edge dislocation
has been proposed to induce superconductivity by strain
within some radius from its core3. This model is based
on a phenomenological form of the minimal interaction
between isotropic strain and scalar superconducting or-
der parameter. The experimental observation consistent
with the proposal has been reported in Ref.4. It is worth
mentioning that the main role of the dislocations in this
effect is to create a strain which lowers locally the tem-
perature of the superconducting transition, with the dis-
location dynamics remaining irrelevant.

Simulations of screw dislocation along the C6 symme-
try axis in solid 4He have revealed that its core can be
superfluid at low temperature and pressures close to the
melting line5. Symmetry of the problem indicates that
the interaction between the strain field and superfluid or-
der parameter must be of second order with respect to the

strain6. A significant difference with the situation in su-
perconductors is that in solid 4He the same particles form
crystalline order (modified by the dislocation topology)
and participate in forming algebraic off-diagonal correla-
tions. In this sense a crystal containing such a dislocation
represents an example of a supersolid phase of matter.
The experimental observation7 of the supercritical flow
through the solid 4He is consistent with the simulations5

– at least at the qualitative level.

The most dramatic effect where quantum mechanics
impacts dislocation dynamics has been observed in simu-
lations of the edge dislocation with Burgers vector along
the C6 axis8. The dislocation dynamics turned out to
be strongly intertwined with the superfluidity along the
dislocation core which results in the so called superclimb
effect – the dislocation climb supported by the superflow
along the core. This effect is essentially a mechanism for
injecting 4He atoms into the solid from superfluid with
the help of the vycor ”electrodes” – in line with the ex-
perimental observation of the so called syringe effect9.
According to the superclimb mechanism one dislocation
climbing across a sample can build or remove one layer
of atoms.

As discussed in Ref.8 within the gaussian approxima-
tion, a generic superclimbing dislocation (that is, tilted
in the Peierls potential) is characterized by excitation
spectrum which is parabolic in the momentum along the
core. Thus, such a dislocation represents an example
of non-Luttinger liquid10. However, recent analysis11 of
a generic superclimbing dislocation beyond the guassian
approach has found that quantum fluctuations can re-
store the Tomonaga- Luttinger Liquid (TLL) behavior
of the dislocation. This effect implies that superclimb
of the dislocation is suppressed in the limit of zero tem-
perature. In other words, the dislocation undergoes a
transition/crossover from thermally rough to quantum
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smooth state. Furthermore, the phase diagram of the
dislocation in the plane of the crystal shear modulus G
and the superfluid stiffness ρs along the core features a
line of the quantum phase transition between TLL and
insulator, where the superflow along the core becomes
impossible.

The analysis11 was based on the string model of dis-
location coupled to the superfluid phase8 which ignores
long range elastic forces between dislocation shape fluc-
tuations. At this juncture it is important to emphasize
the crucial role the long range forces play in quantum
glide of a dislocation12. It was found that arbitrary small
long range interaction between kinks of the dislocation
aligned with Peierls potential suppresses the quantum
roughening transition. This transition is essentially the
same which occurs in a TLL confined in a lattice with
integer filling. The analogy with the superclimbing dis-
location, which also undergoes such a transition11, raises
the question if long range forces between jogs should also
eliminate the transition and produce insulating phase of
the superclimbing dislocation.

In this paper we analyze a superclimbing dislocation
with long range forces between jogs. Our main result is
that, in a sharp contrast with the gliding dislocation12,
all the features observed in Ref.11 for superclimbing dislo-
cation remain qualitatively unaltered by the long range
forces. The role of the long-range forces is reduced to
the renormalization of the dislocation compressibility as
a function of the shear modulus and strength of the long-
range forces into a single master curve featuring a scaling-
type dependence.

II. LINEARIZED ANALYSIS OF THE
SUPERCLIMB WITH COULOMB-TYPE

INTERACTION

A. Dislocation action

A superclimbing dislocation with its core along
x−direction and Burgers vector along z−direction can
be modeled as an elastic string of length L which can
climb in the y−direction along the XY-plane. The climb
is supported by superflow along the core8. Similarly to
Ref.11, we consider dislocation with finite density of jogs
of one sign – that is, a dislocation which is tilted with
respect to the Peierls potential rendering this potential
essentially irrelevant10,11. The corresponding action in
imaginary time

S = S0[φ, y] + Sint[y], (1)

is a functional of two variables: y = y(x, τ) describing
position of the dislocation in the XY-plane and imaginary
time τ , and the superfluid phase φ = φ(x, τ) defined

along the core. Here

S0[φ, y] =
∫ β
0
dτ
∫ L
0
dx
[
−i (y + n0) ∂τφ+ ρ0

2 (∂xφ)
2

+κ0

2 (∂τφ)
2

+ G1

2 (∂xy)
2 − µy

]
, (2)

(in units h̄ = 1, KB = 1) stands for the short range part
of the action considered in Ref.11 with β = 1/T , and

Sint[y] =
G2

2

∫ β

0

dτ

∫ L

0

dx

∫ L

0

dx′
∂xy∂x′y

|x− x′|+ a
, (3)

describes the long range interaction between jogs , with
a being a short range cutoff (of the order of interatomic
distance). This interaction is induced by exchanging bulk
phonons between parts of the string separated by a dis-
tance x− x′ 13,14. The other notations used in Eqs.(2,3)
are as follows: ρ0, κ0 are superfluid stiffness and com-
pressibility, respectively; n0 stands for the average filling
factor; the parameters G1,2 are determined by crystal
shear modulus and symmetry (we consider the isotropic
approximation); µ is external bias by chemical potential
counted from the value at which the dislocation is in its
equilibrium position y = 0.

We impose the boundary condition y(0, τ) = y(L, τ) =
0 in order to avoid the zero mode which corresponds to
uniform shift of the string (costing no energy). Since we
are considering the limits of low (Matsubara) frequencies
ω → 0 and large wavelengths q → 0, we omit the ki-
netic energy term ∼ (∂τy)2 of the dislocation climb. The
main contribution to the kinetic energy comes from the
superflow along the dislocation core (X-direction).

Full statistical description of the dislocation implies
evaluation of the partition function

Z =

∫
DφDy exp(−S) (4)

as the functional integral over φ and y, where the com-
pact nature of the phase φ (that is, the possibility of
existence of instantons) must be taken into account.

B. Gaussian approximation

The action (1) can be analyzed in gaussian approxi-
mation by ignoring the compact nature of the phase φ
(and, thus, treating it as a gaussian variable). Then,
it is straightforward to obtain spectrum of the excita-
tions from the variational equations of motion δS/δy =
0, δS/δφ = 0 :

−i∂τφ−G1∂
2
xy −G2∂x

∫
dx′

∂x′y

|x− x′|+ a
= µ, (5)

i∂τy − ρ0∂2xφ− κ0∂2τφ = 0. (6)

Since we are interested in the low energy limit, the last
term in Eq.(6) can be dropped. Then, we arrive at

∂2τφ−G1ρ0∂
4
xφ−G2ρ0∂x

∫
dx′

∂3x′φ

|x− x′|+ a
= 0. (7)
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As discussed in Refs.8,11 for G2 = 0 this corre-
sponds to the parabolic spectrum ω =

√
G1ρ0q

2 with
respect to the momentum q along the core, where
ω corresponds to frequency in real time. At finite
G2 this spectrum acquires the logarithmic correction
ω =

√
ρ0(G1 +G2γ ln(1 + 1/(qa)2)q2, where the Fourier

transform of the long range kernel 1/[|x−x′|+a] is taken
as ≈ γ ln(1 + 1/(qa)2) with γ ∼ 1.

Eq.(7) should be compared with the standard TLL
equation of motion

κ0∂
2
τφ− ρ0∂2xφ = 0, (8)

following from the action (2) in the absence of the Berry
term (∼ iy∂τφ). The corresponding spectrum (in real

time) ω =
√
ρ0/κ0 q is linear in q.

The parabolic spectrum of superclimbing dislocation
can be interpreted in terms of the diverging compressibil-
ity κ – the giant isochoric compressibility8. It determines
how much matter can be supplied to (or removed from
) the sample due to the dislocation superclimb induced
by a variation of chemical potential µ. In the gaussian
approximation κ = T∂2S/∂µ2, where φ and y are solu-
tions of the equations of motion in the limit ω → 0 and µ
is set to zero after the differentiation. The response can
be also found for µ being non-uniform. Then, in Fourier
κ−1 = [G1 +G2γ ln(1+1/(qa)2]q2, which leads to the di-
vergence in the limit q → 0. In particular, for the longest
wavelength q ≈ 1/L

κ ≈ L2

G1 +G2γ ln(1 + (L/a)2)
, (9)

or κ ∼ L2/[G2 ln(L/a)] as L→∞.
It is important to emphasize that the divergence (9)

does not imply that a 3D sample permeated by a net-
work of such dislocations should show a diverging 3D
compressibility. As discussed in Refs.11,15 for G2 = 0, the
diverging κ for one dislocation means that a sample of
solid 4He permeated by a uniform network of superclimb-
ing dislocations exhibits the 3D response on chemical po-
tential which is independent of the dislocation density. In
other words, the 3D isochoric compressibility (response
on chemical potential) of the solid becomes comparable
to that of a liquid. This property is the basis for the sy-
ringe effect8,9 – injecting (withdrawing) matter uniformly
into (from) a solid from one point of a contact with the
network.

We note that at finite G2, that is, when the long-range
forces (3) are included, the response becomes suppressed
logarithmically with respect to a typical length L of su-
perclimbing segments. Indeed, a typical element of the
network of volume ∼ L3 can acquire (or lose) ∼ yL extra
particles due to the bias µ 6= 0. The value of y in the quasi
static limit follows from Eq.(5) as y ∼ µL2/(G2 lnL).
Thus, the fractional mass change becomes logarithmi-
cally suppressed as ≈ yL/L3 ∼ µ/(G2 lnL) in the limit
L → ∞ of low density L−2 → 0 of the superclimbing
dislocations.

C. ODLRO of superclimbing dislocation at T = 0

It is interesting to note that, counter intuitively, in the
superclimbing regime the dislocation is characterized by
off-diagonal long range order (ODLRO) not expected in
1D at T = 0. To demonstrate this, the density matrix
〈ψ∗(x, τ)ψ(x′, τ)〉 of the field ψ = exp(iφ) can be calcu-
lated within the gaussian approximation (1-4). Ignoring
the log-corrections we find

〈ψ∗(x, τ)ψ(x′, τ)〉 = exp

(
−
√
G1

2πa
√
ρs

)
(10)

in the limit |x−x′| → ∞, where the coordinates x, x′ are
along the core and 1/a stands for the upper cut off of the
momentum integration.

The emergence of the ODLRO in 1D is unexpected.
As it is clear from above, it is a direct consequence of the
parabolic excitation spectrum of the dislocation. As dis-
cussed in Ref.11 and will be addressed further below, this
spectrum undergoes a transformation into the linear dis-
persion in the quantum limit giving rise to the TLL phase
– as long as the external bias µ is below some threshold.
In this phase the density matrix demonstrates the stan-
dard algebraic order 〈ψ∗(x, τ)ψ(x′, τ)〉 ∼ 1/|x−x′|c, with
the exponent determined by the emerging Luttinger pa-
rameter Keff =

√
ρ0κeff as c = 1/(2πKeff ) . [The value

of the effective compressibility κeff will be discussed be-
low]. However, as shown in Ref.11 and will also be dis-
cussed below, the bias µ can destroy the TLL phase by
inducing the quantum rough phase of the dislocation –
that is, the phase characterized by the superclimb. Ac-
cordingly, the ODLRO is reinstated at T = 0.

It should also be mentioned that, in contrast to 3D,
this ODLRO is fragile – at any finite temperature T the
density matrix becomes exponentially decaying as

〈ψ∗(x, τ)ψ(x′, τ)〉 = exp

(
−T |x− x

′|
2πρ0

)
, (11)

in the limit |x− x′| ≥
√√

G1ρ0/T .
As discussed in Ref.11, the linearized analysis of the

system does not describe the effect of emergence of the
TLL and the insulating behavior as T → 0 and L →
∞. The compact nature of the superfluid phase needs
to be taken into account. This can be done in the dual
representation as explained in the following sections.

III. DUAL DESCRIPTION

In order to go beyond the gaussian approximation
by allowing instantons, we discretize the space-time
into sites (x, τ) on square lattice, and take into ac-
count compact nature of the phase φ.This implies trans-
forming the integration

∫
dτ
∫
dx... into the summation∑

τ

∑
x ∆τ∆x... over the space-time lattice. Specially,

we set ∆x = a and select a as unit of length natu-
rally determined by a typical interatomic distance. The
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imaginary time increment ∆τ = β/Nτ is determined
by the number of time slices Nτ . Correspondingly, the
the continuous derivatives ∂xφ(x, τ), ∂τφ(x, τ) and ∂xy
transform to ∇xφ(x, τ) ≡ φ(x + 1, τ) − φ(x, τ), ∂τφ →
∇τφ(x, τ)/∆τ , with ∇τφ ≡ φ(x, τ + ∆τ) − φ(x, τ) and
∇xy ≡ y(x + 1, τ) − y(x, τ). Then, the action (1-3) be-
comes

S(φ, y) =
∑
(x,τ)

[
−i(y + n0)∇τφ+

∆τρ0
2

(∇xφ)2

+
κ0

2∆τ
(∇τφ)2 +

∆τG1

2
(∇xy)2

+
∆τG2

2

∑
x′

∇xy∇x′y

|x− x′|+ 1
−∆τµy

]
. (12)

Formally speaking, the limit Nτ → ∞ at fixed β should
be approached.

Compactness of φ can be taken into account within the

Villain approximation16 ~∇φ→ ~∇φ+ 2π~m with ~m being
integer vector variables defined on bonds between neigh-
boring sites. Then, φ can be regarded as a non-compact
gaussian variable. Thus, the action (12) becomes

S(φ, y,mx,mτ ) =
∑
(x,τ)

[−i(y + n0)(∇τφ+ 2πmτ )

+
∆τρ0

2
(∇xφ+ 2πmx)2 +

κ0
2∆τ

(∇τφ+ 2πmτ )2

+
∑
x′

∆τ(G1δx,x′ +G2)

2

∇xy∇x′y

|x− x′|+ 1
−∆τµy

]
. (13)

Accordingly, the partition function includes summation
over the bond integers:

Z =
∑

mx,mτ

∫
Dy

∫
Dφe−S(φ,y,mx,mτ ). (14)

The Poisson identity
∑
m f(m) ≡∑

J

∫
dmf(m)e2πimJ allows tracing out all mx and

mτ at each bond between neighboring sites and also
explicitly integrating out the φ, y variables. Further-
more, similarly to the approach in Ref.11, we focus on
the long-wave limit by retaining only the lowest order of
spatial derivatives. Then, the partition function (14,13)
finally becomes

Z =
∑
{Jx}

∑
{Jτ}

e−SJ (15)

(up to a constant factor), where Jx = Jx(x, τ) stands for
integer current oriented from the site (x, τ) along X-bond
toward the site (x + 1, τ) ; similarly, Jτ = Jτ (x, τ) is an
integer current along the time bond between the sites
(x, τ) and (x, τ + ∆τ); [ Both Jx and Jτ can be positive

or negative]; and

SJ =
∑
(x,τ)

[
1

2ρ̃0
(Jx)2 − µ̃Jτ

+
1

2

∑
x′

(
G̃1δx,x′ + G̃2

) ∇xJτ∇x′Jτ
|x− x′|+ 1

]
, (16)

where G̃1 = G1∆τ , G̃2 = G2∆τ , µ̃ = µ∆τ and ρ̃0 =
1/ [2 ln(2/ρ0∆τ)] (in the limit ∆τ → 0)16.

As discussed in Ref.11, the qualitative structure of the
results does not change in the limit ∆τ → 0. Thus, in
order to understand the main fieatures it is sufficient to
consider ∆τ fixed as, say, ∆τ = 1.

The integration of the φ-variable results in the local
constraint which is Kirchhoff’s current conservation rule.
It can be represented as

~∇ · ~J = 0, (17)

where the discrete divergence is defined as ~∇ · ~J =
Jx(x + 1, τ) − Jx(x, τ) + Jτ (x, τ + 1) − Jτ (x, τ). This
means that the physical configuration space contributing
to Z consists of closed loops of the J-currents – exactly
akin to the J-current model introduced in Ref.17. We
emphasize that the model (15,16,17) represents a dual
version of the original model (4,1,2,3) – where the origi-
nal continuous variables are replaced by the discrete bond
currents Jx, Jτ and the constraint (17).

A. Linear response

The linear response of the system is described in terms
of the renormalized superfluid stiffness18

ρs =
L

β
〈W 2

x 〉, Wx =
1

L

∑
(x,τ)

Jx(x, τ), (18)

and the renormalized compressibility

κ = −β
L

∂2 lnZ

∂µ2
=
β

L
[〈W 2

τ 〉 − 〈Wτ 〉2]. (19)

The quantities Wx, Wτ = N−1τ
∑

(x,τ) Jτ (x, τ) are inte-

gers and have the geometrical meaning of windings of the
lines formed by the J-currents. By the construction Wτ

is also the total particle number N in the system. The
windings numbers are topological characteristics of a par-
ticular configuration and its values cannot be changed by
continuous deformation of the loops.

Simulations have been performed by the Worm
Algorithm19. It is also convenient to introduce the quan-
tity

κ1 =
〈N〉
Lµ

=
〈Wτ 〉
Lµ

. (20)

Both κ and κ1 coincide with each other as µ → 0.
In general, κ, κ1 are related by the exact formula κ =
d(µκ1)/dµ. Despite that, statistical errors of simulations
can be quite different for both quantities.
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IV. PHASES OF SUPERCLIMBING
DISLOCATION

The action (16) has been studied in Ref.11 in the ab-

sence of the long range term, that is, for the case G̃2 = 0.
The main result of this study is that as L and β both in-
crease, the non-TLL phase crosses over to either TLL
or insulator regardless of the filling factor. The line of
Berezinskii-Kosterlitz-Thouless (BKT) transitions sepa-
rates both phases in the plane (ρ0, G1)11 for µ = 0.

As discussed in Ref.11, the BKT transition should not
occur in this system according to the elementary anal-
ysis based on counting of the scaling dimensions. The
”paradox” could be resolved if the discrete nature of the
variables Jx, Jτ is taken into account20: as ρ−10 or G1 in-
creases the discrete gradient term ∼ (∇xJτ )2 in Eq.(16)
becomes effectively ∼ J2

τ . This implies the standard
XY model behavior corresponding to integer filling. Ac-
cordingly, the BKT transition should be expected. In
this context, then, it is worth recalling the result12 where
it was shown that the long-range forces suppress quan-
tum roughening of gliding dislocation aligned with Peierls
potential. Such a dislocation is formally described by
the XY model (despite that there is no superfluid core),
and the suppression of the roughening is interpreted as
the insulating state of the effective Luttinger Liquid of
kinks. Furthermore, the insulating state of kinks has
been shown to emerge at arbitrary small value of the
long-range interaction. In other words, the long range in-
teraction eliminates the BKT transition in this system12.

Thus, the question arises if the same forces in the ac-
tion (16) should suppress the superfluidity along the core
of the superclimbing dislocation – also at arbitrary small
value of G2. Clearly, if ∇xJτ is replaced by ∼ Jτ in the
action (16) one would arrive at exactly the same action
studied in Ref.12. Then, the answer would be positive to
the above question.

As will be shown below, our numerical results for the
model (16) contradict to this logic. More specifically,
we find that there is a separatrix in the finite scaling
behavior which occurs at finite value of G2 of the order
of unity. This separatrix indicates the boundary between
TLL and the insulator. Furthermore, we show that the
effect of finite G2 in Eq.(16) is reduced to renormalization
of G1, so that the phase diagram constructed in Ref.11

for the case G2 = 0 can be simply redrawn in terms of
the renormalized G1.

A. Renormalized compressibility in the quantum
limit

The compressibilities (19,20) show ”giant” values ∼
L2 at finite β as L → ∞11. This feature is intimately
connected with the superclimb effect and the parabolic
excitation spectrum8. However, simulations of the full
model in the limit β ∼ L → ∞ for G2 = 0 have found
that the compressibility becomes finite if G1 does not

exceed some critical value Gc for a given ρ0. If G1 >
Gc, the compressibility vanishes which is signaling the
insulating behavior.
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FIG. 1: Compressibility κ vs L = 1/T for various values of
G1 shown in the legend at G2 = 1.0 and ρ0 = 4, µ = 0.
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FIG. 2: Compressibility κ vs L = 1/T for various values
of G2 shown in the legend at G1 = 1.5 and ρ0 = 4, µ =
0.The dashed line indicates the approximate position of the
separatrix. Insert: the ratio κ(G1 = 1.5, G2 = 2.1)/κ(G1 =
1.5, G2 = 2.2) indicating different types of behavior above and
below the separatrix.

The results of MC simulations performed for finite G2

are shown in Fig. 1. It depicts compressibility κ at vari-
ous L, with β = L, and various values of G1 for G2 = 1.0,
ρ0 = 4 and µ = 0. As can be seen, κ asymptotically ap-
proaches finite values κeff in the limit L = ∞, if G1
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FIG. 3: The asymptotic values κeff of κ for various values of
G1 and G2 = 1.0. The data for G2 = 0 are taken from Ref.11.
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FIG. 4: The master curve κeff taken from Fig. 3 and replot-
ted versus G1R. The parameter A has been adjusted for some
sets to better fit the master curve within 5% of deviations,
while other parameters were kept fixed for all sets.

is below some critical value which can be estimated as
Gc ≈ 2.1. This behavior is qualitatively the same as ob-
served in Ref.11 for G2 = 0. If G1 exceeds Gc, the com-
pressibility flows to zero as can be clearly seen in Fig. 1.
This feature, indicating the quantum transition toward
the insulator, is also qualitatively the same as observed
in Ref.11 for G2 = 0. Here we didn’t study in detail if
the transition remains in the BKT universality. Instead,
we will give a strong argument in favor of the BKT uni-
versality in the presence of long-range forces, that is, at
finite G2.

The behavior of κ vs L for G1 = 1.5 and varying G2

is shown in Fig. 2. This plot also shows the saturation
to finite values κ = κeff , if G2 is below some critical
value, G2c ≈ 2.1, and the flow toward the insulator at
G2 > G2c. In order to emphasize the separatrix type
feature (marked by the dashed line in Fig. 2), that is,
separating the TLL and the insulating phases, the ratio of
κ(G2 = 2.1), which is showing no visible dependence on
L over the extended range, to κ(G2 = 2.2), which shows
deviations from the asymptotic saturation, is presented
in the inset to Fig. 2. A strong divergence of the ratio
with growing L emphasizes the separatrix.

The asymptotic values κeff vs G1, G2 are presented in
Fig. 3 for various combinations of the arguments. [The
”asymptotic” values of κ from the curves Figs. 1,2 show-
ing no asymptotic behavior were read off from the largest
size simulated]. These curves appear to be unrelated to
each other. However, it is important to note that all the
data from Fig. 3 can be collapsed on a single master curve
κeff versus the variable

G1R(G1, G2) = G1 +A
G0.686

2

1 + 0.2G1
, (21)

where A = 0.93 ± 0.05, which can be viewed as G1

renormalized in the presence of the long-range interac-
tions. This interpretation is justified because all the
data at finite G2 can be collapsed to the curve κ vs G1

at G2 = 0 (from Ref.11). The resulting dependence is
shown in Fig. 4. The master curve indicates that all
the data κeff (G1, G2) satisfy the relation κeff (G1, G2) =
κeff (G1R, 0) (within the error of 5%) over its whole range
spanning TLL and insulator. Thus, we conclude that,
as long as, G1R is below its critical value Gc (which is
Gc ≈ 2.7 for ρ0 = 4 ) there is a finite domain of G2

within which the TLL behavior persists. This domain
corresponds to the dotted line ∼ G−7.81R in Fig. 4, with
the deviations indicating the flow toward the insulating
phase. Thus, the long range interactions do not change
qualitatively the nature of the phase diagram found in
Ref.11. Its main role is in renormalizing G1 to G1R,
Eq.(21).

V. IMPACT OF LONG RANGE FORCES ON
SUPERCLIMB INDUCED BY THE BIAS

The emergence of TLL behaviour and the correspond-
ing suppression of the superclimb can be viewed from
a different perspective. The giant compressibility8,11 be-
comes possible because the dislocation can climb – thanks
to the supercurrents along the core supplying matter
needed to support this non-conservative motion of the
core. This determines the rough phase of the dislocation
– when the mean square displacement of the core po-
sition exhibits fluctuations logarithmically diverging as
L → ∞. As shown in Ref.11 and discussed above, at
zero bias by chemical potential, µ, such fluctuations be-
come suppressed in the quantum limit so that the TLL
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behavior emerges. In other words, the rough phase of the
superclimbing dislocation at zero bias can only exist at
finite temperature.

The situation is different at finite bias – the rough
phase can be induced by finite µ in the quantum limit.
This was demonstrated in Ref.11 in the case of short range
interactions (that is, G̃2 = 0 in Eq.(16)). Furthermore,
the dislocation compressibility in this case can be de-
scribed within the guassian approach treating the dislo-
cation as an elastic string. Here we address the question
how the bias by µ affects the dislocation in the presence
of long range forces.

1 0 - 2 1 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3  3 0 0
 2 2 0
 1 8 0
 1 4 0
 1 0 0
 8 0
 6 0

κ1

µ

r o u g h  s m o o t h  

FIG. 5: κ1 vs µ for various L up to L = 300 with G1 = 1.5,
G2 = 1.5, ρ0 = 4, T = 0.05.
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 1 4 0
 1 0 0
 6 0

µ

κ1

FIG. 6: Superfluid stiffness along the dislocation versus µ
undergoing the transformation from the insulating to the non-
TLL phase for different lengths L (shown close to each curve);
T = 0.05.Inset: corresponding κ1 versus µ.
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FIG. 7: MC data (points) for κ1 in the rough state versus the
dislocation length L and for various G2 values with G1 = 1.5,
1/T = 20 and ρ0 = 4; The lines show corresponding results
for κ1, Eq. 20, derived within the gaussian approximation
(30). Inset: the relative deviations between the MC data and
the approximation. The decay is characterized by ∼ L−c with
some exponent ∼ 1 ( c = 0.77(2) for G2 = 1.00).

The results of simulations of the model (15,16) at finite

µ and G̃2 are presented in Fig. 5. It shows that chem-
ical potential induces roughening of the dislocations by
restoring the giant compressibility. More specifically, at
low values of µ the dislocation is characterized by κ in-
dependent of the dislocation length.[This state is marked
as ”smooth” in Fig. 5]. Upon increasing µ the system un-
dergoes the transformation into the rough phase (marked
as ”rough” in Fig. 5) characterized by the value of κ = κ1
diverging as L→∞. The values of G1, G2 are chosen so
that at µ = 0 the dislocation is in the TLL phase. In this
case, while κ, κ1 show dramatic change, the superfluid
stiffness ρs remains, practically, unaffected.

Results of the simulations at G1R > Gc, that is, when
the dislocations is in the insulating regime at low µ, are
shown in Fig. 6. As µ increases, both ρs and κ1 un-
dergo a strong crossover to the non TLL phase, that is,
where there is superfluidity along the core (as well as the
ODLRO as explained in Sec. IIC).

A. Compressibility at finite bias in the T = 0 limit.

Here we focus on the nature of the quantum rough
phase of the dislocation, and will show that this phase
can be described quite accurately within the gaussian
approximation. In other words, an external bias by finite
µ can restore superclimb in the quantum limit and in this
phase the compact nature of the superfluid phase φ can
be ignored. As explained in Sec.IIC, this phase is non
TLL which has the ”paradoxical” ODLRO in 1D.

Here we compare the results of MC simulations of the
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full quantum action in the limit where κ and κ1 show sat-
uration at large µ (that is, corresponding to the region
µ > 0.1 in the graph Fig. 5) with the guassian approxi-
mation for κ, Eq.(19), which can be expressed as

κ =
1

L

∑
x,x′

[〈Y (x)Y (x′)〉 − 〈Y (x)〉〈Y (x′)〉], (22)

where Y (x) = (∆τ/β)
∑
τ y(x, τ) corresponds to the

Matsubara frequency ω = 0. Similarly, using the defi-
nition (20) one can represent

κ1 =
1

Lµ

∑
x

〈Y (x)〉. (23)

The variable Y (x) corresponds to ω = 0, and it sepa-
rates from higher Matsubara harmonics ω. This allows
to evaluate the averages 〈....〉 in Eqs.(22,23) within the
”shortened” action (12) where only three last terms are
taken into account and only the harmonic ω = 0 is se-
lected. This action, then, takes the form

Scl = 1
T

∑
x

[
G1

2 (∇xYx)2 − µYx

+
∑
x′

G2

2(1+|x−x′|)∇xYx∇x′Yx

]
, (24)

which is the action for classical string Scl = E/T de-
termined by the potential energy E of elastic deforma-
tions. Accordingly, the statistical averaging is to be
performed with the classical partition function Zcl =∫
DY exp(−Scl).
At this point we note that the long range term in the

action (24) is taken in the form which does not satisfy
periodic boundary condition. Therefore, the analytical
diagonalization by Fourier transformation becomes im-
possible. Alternatively, if the distance |x − x′| between
two points along the core in Eq.(24) is defined modulo L,
such a diagonalization becomes possible. This approach,
however, does not correspond to the realistic situation of
a dislocation pinned at two points and which is a straight
line string in its equilibrium. Thus, we have resorted to
the exact diagonalization of the action (24).

Representing

Y (x) =

√
2

L

L−1∑
n=1

sin(qnx)fn (25)

in terms of the spatial harmonics obeying zero bound-
ary condition, where fn are real variables with qn =
πn/L, n = 1, 2, ..., L−1, and substituting it into Eq.(24),
we find

Zcl =

∫
Dfn exp(−Scl), (26)

Scl =
1

T

1

2

∑
n,n′

Vn,n′fnfn′ − µ
∑
n

Φnfn

 , (27)

Φn ≡
√

2

L

(1− (−1)n)

2
cot(πn/(2L)), (28)

where

Vn,n′ = G1(Qn)2δn,n′ +
2

L

∑
x,x′

G2QnQn′

1 + |x− x′|

· cos(qn(x+ 1/2)) cos(qn′(x′ + 1/2)), (29)

Qn ≡ 2 sin(qn/2) and the summations run over x, x′ =
0, 1, ..., L.

The averages (22,23) can be expressed as

κ = κ1 =
1

L

∑
n

〈Φnfn〉 =
1

L

∑
n,n′

Φn(V −1)n,n′Φn′ , (30)

where (V −1)n,n′ is the matrix inverse to Vn,n′ (which was
evaluated by exact diagonalization) These values are the
compressibilities obtained within the gaussian approxi-
mation.

The comparison between this approximation (lines)
and the MC data (symbols) are shown in Figs 7. As
can be seen, the quality of the gaussian approximation
improves as dislocation length increases. Thus, it is fare
to conclude that the quantum rough phase induced by
the bias can be well described within the gaussian ap-
proximation, with the deviations reduced below 1% for
sizes L > 200− 300 .

VI. DISCUSSION.

Here we have focused on the stability of the phase
diagram of edge dislocation with superfluid core with
respect to elastic long-range interactions between jogs.
As shown in Ref.11 for the case of short-range interac-
tions, such a diagram features three quantum phases in
the space of three parameters (ρ0, G1, µ): i) TLL which
is also the smooth superfluid phase ; ii) the insulator,
that is, smooth and non-superfluid; iii) quantum rough
– superclimbing phase induced by finite bias µ. The
main result of the present work is demonstrating that
the long-range interactions do not change this picture
qualitatively. The question is why there is such a signif-
icant difference between superclimbing and gliding dis-
locations – where the long-range interaction eliminates
quantum phase transition12.

It has been shown in Ref.12 that the elastic long-range
forces suppress quantum roughening transition for gliding
dislocation aligned with Peierls potential. In terms of the
dual representation of this dislocation by the Coulomb
gas approach this means that the effective interaction
between instanton and anti-instanton becomes modified
– from log to the log log of the distance between an in-
stanton pair. This implies that such pairs proliferate at
arbitrary small value of the ”Coulomb” interaction. Ac-
cordingly, the plasma phase of the pairs guarantees that
the dislocation is quantum smooth. In other words, arbi-
trary weak Coulomb-type interaction eliminates the BKT
quantum roughening phase transition for gliding disloca-
tion.
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Our current numerical results show that the presence
of the superfluid core in edge dislocation changes the situ-
ation qualitatively. As a result, the phase diagram of the
superclimbing dislocation retains its structure obtained
without the ”Coulomb” interactions11. At formal level,
the difference between two models is easier to understand
in terms of the dual representation by the J-currents. In
the case of the gliding dislocation12 the duality trans-
formation generates terms with the ∼ 1/r interaction
between the J-currents. In this sense the ”Coulomb” in-
teraction suppresses Luttinger parameter logarithmically
and, thus, eliminates the BKT transition for the gliding
dislocation for arbitrary small G2. In contrast, the edge
dislocation with superfluid core is described by the model
(15,16) where the Coulomb-type term acts between spa-
tial derivatives of the J-currents (oriented along imagi-
nary time). Thus this interaction vanishes in the long-
wave limit and, accordingly, no suppression of the Lut-
tinger parameter occurs, at least, in the limit G2 → 0.
As was discussed above, the role of the long-range forces
is reduced to the renormalization of the parameter G1.

An unexpected property of the quantum rough phase
is the ODLRO in 1D (along the core). This phase can
be induced by the bias µ, and its description can be well

achieved within the gaussian model. The exact nature of
the transition between TLL (or insulator) and the rough
phase is not fully understood. As demonstrated in Ref.11,
the transition is characterized by strong hysteresis at low
T . This indicates Ist order transition which should oc-
cur in the limit T → 0. The question is if the transition
remains at finite T . In Ref.21 the roughening transition
has been analyzed for the dislocation aligned with the
Peierls potential, and the argument has been given that
the transition remains at finite T – in spite of the ”no-
go” theorem22 for a phase transition in 1D at finite T .
The main argument is that the rough phase is not char-
acterized by any local order parameter with respect to
the dislocation shape. Instead, it is a global property of
the system. This immediately undermines the basis for
the theorem22. Thus, the same argument should hold
for a generic dislocation so that the Ist order roughening
transition rather than a crossover occurs at finite T .
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8 . G. Söyler, A. B. Kuklov, L. Pollet, N. V. Prokofev, and
B. V. Svistunov Phys. Rev. Lett. 103, 175301 (2009); Pub-
lisher Note: Phys. Rev. Lett. 104, 069901 (2010).

9 M. W. Ray and R. B. Hallock, Phys. Rev. B 81,
214523(2010).

10 A. B. Kuklov, L. Pollet, N. V. Prokof’ev, and B. V. Svis-
tunov Phys. Rev. B 90, 184508 (2014).

11 M. Yarmolinsky and A. B. Kuklov, Phys. Rev. B 96,
024505 (2017)

12 D. Aleinikava, E. Dedits, A. B. Kuklov and D. Schmeltzer
EPL, 89, 46002 (2010).

13 Hirth J. P. and Lothe J., Theory of Dislocations (McGraw-
Hill) (1968).

14 Kosevich A. M., The Crystal Lattice: Phonons, Solitons,
Dislocations, Superlattices (Wiley) (2005).

15 A. B. Kuklov, Phys. Rev. B 92, 134504 (2015) .
16 J. Villain, J. Phys. (Paris) 36, 581 (1975); W. Janke and

H. Kleinert, Nucl. Phys. B 270, 135 (1986).
17 M. Wallin, E. S. Srensen, S. M. Girvin, and A. P. Young,

Phys. Rev. B 49, 12115 (1994).
18 E. L. Pollock and D. M. Ceperley, Phys. Rev. B 36, 8343

(1987).
19 N. V. Prokofev, B. V. Svistunov, and I. S. Tupitsyn, Phys.

Lett. A 238, 253 (1998); JETP 87, 310 (1998).
20 B.V. Svistunov, private communication .
21 D. Aleinikava and A. B. Kuklov, Phys.Rev.Lett. 106,

235302(2011).
22 L. D. Landau and E.M. Lifshitz, Statistical Physics, Part

1: Volume 5. Course of Theoretical Physics, 3rd Edition,
Butterworth-Heinemann, Oxford,2000, p. 537 .


