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Stripe domains are narrow, elongated, reversed regions that exist in magnetic materials with per-
pendicular magnetic anisotropy. Stripe domains appear as a pair of domain walls that can exhibit
topology with a nonzero chirality. Recent experimental and numerical investigations identify an in-
stability of stripe domains in the long direction as a means of nucleating isolated magnetic skyrmions.
Here, the onset and nonlinear evolution of transverse instabilities for a dynamic stripe domain known
as the bion stripe are investigated. Both non-topological and topological variants of the bion stripe
are shown to exhibit a long-wavelength transverse instability with different characteristic features.
In the former, small transverse variations in the stripe’s width lead to a neck instability that even-
tually pinches the non-topological stripe into a chain of two-dimensional breathers composed of
droplet soliton pairs. In the latter case, small variations in the stripe’s center results in a snake
instability whose topological structure leads to the nucleation of dynamic magnetic skyrmions and
antiskyrmions as well as perimeter-modulated droplets. Quantitative, analytical predictions for both
the early, linear evolution and the long-time, nonlinear evolution are achieved using an averaged
Lagrangian approach that incorporates both exchange (dispersion) and anisotropy (nonlinearity).
The method of analysis is general and can be applied to other filamentary structures.

I. INTRODUCTION

Solitons1 are localized structures that are ubiquitous
in nonlinear media such as fiber optics2, water waves3

or atomic condensates4. In general, solitons manifest a
balance between nonlinearity and dispersion. Magnetic
materials exhibit both nonlinearity and dispersion asso-
ciated, respectively, with anisotropy and exchange. In
their simplest manifestation, solitons in magnetic mate-
rials correspond to one-dimensional domain walls that
separate well-defined magnetic states or domains5. Do-
main wall nucleation and motion can be manipulated
in nanowires, a feature that has led to the proposal of
domain-wall-based technology for oscillators6, magnon-
ics7,8, and computation9,10. It is also possible for a pair
of domain walls to form a dynamically precessing bound
state that is known as a magnetic bion when its frequency
is small11,12. More generally, the bion is a propagating,
precessional, two-parameter soliton solution of the con-
servative Larmor torque equation for a uniaxial ferromag-
net11.

Two-dimensional solitons can also exist in magnetic
materials with uniaxial anisotropy balancing exchange.
Uniaxial anisotropy is typically achieved in hard mag-
netic alloys13 or ultra-thin film multilayers14,15, and
is commonly referred to as perpendicular magnetic
anisotropy (PMA). In these materials, it has been possi-
ble to observe two-dimensional solitons such as dissipa-
tive droplets16–20 and skyrmions21–25, finding potential
applications as oscillators26 and information carriers27,28,
respectively.

An important figure-of-merit for magnetic solitons is
their stability to perturbations. Topological concepts12

can be utilized to predict certain aspects of the stability

and dynamics of magnetic solitons. One-dimensional do-
main walls can be classified by their chirality C, defined
as12

C =
1

π

∫ ∞
−∞

∂xΦdx, (1)

where Φ is the azimuthal angle of the magnetization’s
in-plane component. The chirality C describes the mag-
netization vector sense of rotation between two domains.
Note that this definition of chirality is typically utilized
to classify domain walls in planar ferromagnets whereas
here, we are considering uniaxial ferromagnets. The rea-
son we introduce the definition of chirality in (1) that
counts the π rotations of the in-plane magnetization
component rather than one that counts rotations of the
out-of-plane magnetization component mz is because the
magnetic bion considered in this work always exhibits a
positive and a canceling negative rotation in mz. The
bion’s in-plane chirality (1) can be nonzero.

Two-dimensional solitons can be categorized into topo-
logical classes according to their skyrmion number12

S =
1

4π

∫ ∞
−∞

∫ ∞
−∞

m · (∂xm× ∂ym)dxdy, (2)

that determines how many times the magnetization tex-
ture, defined by the magnetization vector m, can be
mapped onto a sphere. When the chirality and skyrmion
number are zero, the state is considered non-topological
or topologically trivial, and indicates that such a texture
can be smoothly deformed or decays in the presence of
magnetic damping to a spatially homogeneous state.

Magnetic soliton topology yields important informa-
tion about the collective behavior of multiple solitons.
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For example, domain walls with opposite chirality can
annihilate into a trivial, homogeneous state. Con-
versely, domain walls with equal chirality are topologi-
cally protected from annihilating. In magnetic materi-
als with PMA, such domain wall bound states form into
dynamically precessing non-topological and topological
bions11,12 that, when extended transversely, are called
bion stripes. In the absence of an applied field, the
in-plane magnetization of a non-topological bion stripe
exhibits a counter-clockwise precessional frequency that
corresponds to a positive sign in conventional spin dy-
namics; topological bions exhibit clockwise or negative
precessional frequency. In the case of localized, two-
dimensional solitons, the additional degree of freedom
also leads to richer behavior. Examples include the merg-
ing or annihilation of droplets29, dynamical skyrmions in
the presence of radially symmetric fields26, and perimeter
modulations of both textures30,31.

In realistic experiments and potential applications,
topological protection can be compromised by the ge-
ometry of the system. Two-dimensional materials can be
approximately achieved by utilizing films with a thickness
smaller than the exchange length (on the order of 10 nm),
leading to a near-homogeneous magnetization along the
thickness. However, one-dimensional magnetic materials
require lateral confinement in the form of nanowires that
are typically wider than the exchange length due to fab-
rication method limitations. Therefore, effectively one-
dimensional magnetic solitons are prone to transverse dy-
namics as observed, e.g., in externally driven domain-
wall motion32,33 and spin-transfer-torque-driven dissipa-
tive droplets34 in nanowires. In a more extreme case,
transverse dynamics can be unstable. Such an instabil-
ity can be detrimental to domain-wall-based technologies,
but can also be used to nucleate two-dimensional solitons,
as shown both numerically and experimentally for single
skyrmions in a series of recent works23,24,35–37. However,
there is neither an analytical description of such an in-
stability nor a systematic understanding of the number
and topology of resultant two-dimensional textures. The
transverse instability of quasi-one-dimensional structures
is a subject of interest in its own right, as it can provide a
control handle towards the design of configurations with
a particular number of two-dimensional textures as has
been proposed, e.g., for vortices in atomic Bose-Einstein
condensates38. Nonlinear mathematical tools are needed
that can account for both anisotropy and exchange. A
particularly useful method is the average Lagrangian ap-
proach39, where nonlinear dynamics of transverse soliton
modulation can be analyzed. To investigate the stability
of transverse dynamics, we utilize the average Lagrangian
approach applied to bion stripes in a two-dimensional
thin film with PMA.

In this paper, we show that bion stripes are trans-
versely unstable in a manner that depends on their topol-
ogy. The non-topological bion exhibits a symmetric or
“neck” instability that eventually pinches and nucleates
breathers composed of droplet pairs. The topological

bion exhibits an antisymmetric or “snake” instability
that nucleates a series of topological defects that evolve
into droplets, skyrmions, and anti-skyrmions. The num-
ber of droplets and topological defects per unit length
can be estimated by the most unstable transverse mode,
which enables us to control the dynamical outcome of
our numerical simulations. However, long time dynamics
exhibit soliton interactions that fall outside the applica-
bility of our analytical approach. The properties of the
long-wavelength transverse instability allow us to deter-
mine a nanowire lateral confinement for which the bion
stripe is stable. We also show that the bion’s transverse
instability can occur on a much shorter timescale than
the effects of magnetic damping. Our study introduces a
method to analytically describe the nonlinear dynamics
of stripe domains in magnetic materials.

The remainder of the paper is organized as follows.
In Sec. II, we introduce the analytical model for mag-
netization dynamics and the analytical form of a bion
stripe solution. The linear stability analysis of bion stripe
transverse perturbations is studied in Sec. III using the
average Lagrangian method and numerical linearization.
In Sec. IV, the nonlinear evolution of a bion filament is
studied and Sec. V presents numerical simulations detail-
ing the filamentary breakup. The effects and timescale of
damping on a bion are discussed in Sec. VI. A discussion
of the implications of our analysis for stabilized bions in
physically confined structures is presented in Sec. VII.
Finally, we provide concluding remarks in Sec. VIII.

II. ANALYTICAL MODEL

Magnetization dynamics can be analytically described
over sufficiently short time scales by the conservative Lar-
mor torque equation11

∂tm = −m× heff = m× δE
δm

, (3)

expressed here in dimensionless form by rescaling time,
space, and fields such that |m| = 1. Time is scaled by
[|γ|µ0Ms(Q − 1)]−1 where γ is the gyromagnetic ratio,
µ0 is the vacuum permeability, and Q = 2Ku/(µ0M

2
s )

where Ku is the uniaxial anisotropy constant and Ms the
saturation magnetization; space is scaled by λex/

√
Q− 1

where λex is the exchange length; and fields are scaled by√
Q− 1Ms. We assume that the uniaxial anisotropy field

is sufficiently strong to overcome the perpendicular com-
ponent of the thin film demagnetizing field, i.e., Q > 1.
The effective field heff includes relevant physics for the
magnetic system studied. Here, we consider a perpen-
dicular external field h0, exchange field, perpendicular
uniaxial anisotropy, and demagnetizing field

heff = h0ẑ︸︷︷︸
external

+ ∆m︸︷︷︸
exchange

+ mz ẑ.︸ ︷︷ ︸
uniaxial anisotropy and

demagnetizing field

(4)

We assume a sufficiently thin and transversely extended
film so that long-range dipolar fields are negligible and
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FIG. 1. (color online) Profile of the cross section of (a) posi-
tive frequency, non-topological bion stripe and (b) negative
frequency, topological bion stripe. The in-plane magneti-
zation components and precession direction is schematically
shown by blue arrows and dashed lines, respectively.

the magnetization does not vary through the film thick-
ness, i.e., it is a two-dimensional magnet. The effective
field can be described as the functional derivative of the
magnetic energy density, E (defined below), with respect
to the magnetization vector.

For the following analysis, it is convenient to represent
Eqs. (3) and (4) in spherical coordinates. For this, we
introduce the transformation

m(x, y, t) =

 cos [Φ(x, y, t) + h0t] sin [Θ(x, y, t)]
sin [Φ(x, y, t) + h0t] sin [Θ(x, y, t)]

cos [Θ(x, y, t)]

 ,
(5)

where Φ is the phase relative to the precession induced by
the applied field h0 and Θ is the polar angle of the mag-
netization. In this coordinate system, the energy density
can be written as16

E(Θ,Φ) =
1

2

[
|∇Θ|2 + sin2(Θ)(1 + |∇Φ|2)

]
. (6)

Note that the perpendicular field has been completely
scaled out of the energy. In other words, any external
field along ẑ represents a frequency shift that is embedded
in the precessional frequency by virtue of the spherical
transformation of Eq. (5).

We recast the Larmor equation (3) as dynamical equa-
tions for Φ and Θ via the Euler-Lagrange equations for
the Lagrangian

L =

∫
R2

[(1− cos Θ)Φt + E(Θ,Φ)] dxdy. (7)

The Euler-Lagrange equations are

∂tΘ =
∇ ·
(
sin2(Θ)∇Φ

)
sin Θ

, (8a)

sin(Θ)∂tΦ =
1

2
sin(2Θ)(|∇Φ|2 + 1)−∆Θ, (8b)

An exact solution of the dynamical Eqs. (8) in one
dimension (Θy = Φy = 0) is a moving bound state of

domain walls referred to as a bion11. This solution can
trivially be extended to two-dimensions as a bion stripe,
which is expressed as

cos Θ(x, y, t) = 1 (9a)

− 4ν2

2− ω +
√
v2 + ω2 cosh (2ν[x− χ(t)])

,

Φ(x, y, t) = −v
2

[x− χ(t)] + φ(t) (9b)

+ tan−1

[
v2 − 2

(
−ω +

√
v2 + ω2

)]
tanh (ν[x− χ(t)])

2νv
,

where ν =
√

1− ω − v2/4, φ(t) = ωt + φ0 is the phase
including a phase shift φ0 and χ(t) = vt+ χ0 is the cen-
ter position with an offset χ0 from the origin. Therefore,
bion stripes are parametrized by four independent free
parameters: precessional frequency ω, translational ve-
locity v, phase shift φ0, and center position shift χ0. The
precessional frequency ω is defined relative to the Zee-
man frequency h0. The bion stripe solution of Eq. (9)
is valid for ω < 1 − v2/4,11 so that ω can be positive or
negative, which indicates counter-clockwise or clockwise
precession, respectively.

In the limit of small frequency and velocity, |ω| � 1
and |v| � 1, the bion stripe approximates a pair of slowly
precessing and translating domain walls (see Fig. 1). In
the particular case of static bion stripes, recoverable from
Eq. (9) in the limit v → 0±, the sign of the precessional
frequency allows us to consider two distinct regimes.
For positive frequencies, ω > 0, the phase is trivial
limv→0± Φ(x, y, t) = ωt + φ0 and the chirality Eq. (1) is
C = 0 so that the stationary bion stripe is a bound state
of domain walls with parallel in-plane phase, shown in
Fig. 1(a). Each domain wall has opposite chirality, re-
sulting in an overall non-topological state. For negative
frequencies, ω < 0, the phase exhibits a π jump whose
direction depends on the zero velocity limit

lim
v→0±

Φ(x, y, t) = ωt+ φ0 ∓
π

2
sgn (x− χ0), (10)

so that the chirality evaluates to C = ∓1. Due to nonzero
chirality, this stationary bion stripe is topological, a
bound state of domain walls with an anti-parallel in-plane
phase, shown in Fig. 1(b). Note that non-trivial topology
implies that the magnetization at the bion stripe’s center
is reversed, mz(x = χ, y, t) = cos Θ(x = χ, y, t) = −1.
¶ The width of the bion stripe, ∆, is defined as the

full-width at half maximum of the perpendicular compo-
nent mz, which is the distance between two crossings of
the magnetization equator, cos Θ = 0. By taking the dif-
ference of the two roots of Eq. (9a) in the x variable, we
obtain the velocity and frequency dependent bion width

∆ =
2 cosh−1

(
−v

2+3ω−2√
v2+ω2

)
√
−v2 − 4ω + 4

. (11)

Therefore, the domain walls composing a bion stripe ap-
proach each other as the frequency or translational ve-
locity increase. In the small frequency and velocity limit,
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|ω| � 1 and |v| � 1, the bion stripe width can be ap-

proximated as ∆ = log
[
4/
√
v2 + ω2

]
. We note that the

width of a topological and non-topological bion with a
given |ω0| differ insofar as Eq. (11) depends on the sign
of ω0.

Bion stripes offer an analytical probe to study the sta-
bility of elongated domains, typical of magnetic materi-
als exhibiting PMA5. The topological bion stripe is of
particular interest because its structure is reminiscent of
chiral Néel domain walls40,41 that have been recently uti-
lized to nucleate skyrmions24,35,36. In the following, we
will refer to non-topological or topological bion stripes
according to their one-dimensional chirality.

III. BION FILAMENT STABILITY ANALYSIS

To study the stability of bion stripes, we determine
the evolution of perturbations along the ŷ direction, i.e.,
transverse perturbations. To attack this nontrivial non-
linear problem from an analytical perspective, we utilize
the average Lagrangian formalism39 to reduce the dimen-
sionality of the system. The idea is to assume the mod-
ulation of a bion stripe by allowing its parameters ω, v,
φ, and χ to be functions of y and t. This treats the
bion stripe as a soliton filament or bendable, tube-like
curve whose local cross-section is the bion solution (9)
that can expand and contract as dictated by the corre-
sponding Lagrangian (and the resulting Euler-Lagrange
equations). We remark that another, similar approach
to studying the transverse dynamics of soliton filaments
in other areas of nonlinear physics utilizes an effective
Hamiltonian42. By substituting the bion stripe solution
Eq. (9) into the Lagrangian Eq. (7) and integrating over
x, we obtain the averaged Lagrangian. For simplicity of
presentation, we restrict to the low frequency and small
velocity regime where bion stripes approach static stripe
domains and can be topologically classified by the sign of
the precessional frequency. The more general case can be
studied in the same manner but the expressions become
more complicated. In the |ω| ∼ |v| � 1 case, asymptotic
expansion in frequency, velocity, space, and time give the
leading order averaged Lagrangian (see Appendix A for
details)

Lavg = 2Ω− 2∂Y
(
φ2 − χ2

)
− (∂Tφ) ln(V 2 + Ω2)

−
∂Y
(
V 2 + Ω2

)
2(V 2 + Ω2)

+ 4(∂Tχ) tan−1

(
−Ω +

√
V 2 + Ω2

V

)
,

(12)

where the capitalized variables Ω = ω/|ω0|, V = v/|ω0|,
T = |ω0|t, and Y =

√
|ω0|y denote, respectively, the or-

der one scaled frequency, velocity, time, and space vari-
ables by the small characteristic precessional frequency
|ω0| � 1 of a bion stripe.

The averaged equations of motion are the Euler-
Lagrange equations of the averaged Lagrangian Eq. (12),

which can be expressed in a symmetric form

∂Tχ−
1

2
∂Y Y α− eu cosα = 0, (13a)

∂Tφ−
1

2
∂Y Y u− eu sinα = 0, (13b)

∂Tα+ 2∂Y Y χ = 0, (13c)

∂Tu+ 2∂Y Y φ = 0, (13d)

with the change of variables

V + iΩ = eu+iα. (14)

Equations (13a-d) approximate the transverse dynamics
of the bion stripe as a soliton filament and are the pri-
mary result of this work. It is important to note that, in
deriving the system (13a-d), we have retained the nonlin-
ear character of the problem. Thus, while the underlying
linearized dynamics of the stripe are implicit within this
formulation, Eqs. (13a-d) are in principle able to follow
the system beyond the stage of linearized evolution. We
note that Eqs. (13) can be rewritten in a mathemati-
cally elegant form in terms of the scalar, complex-valued
quantity Z = u+ iα = ln(V + iΩ):

∂TTZ + ∂Y Y Y Y Z + 2i∂Y Y

(
eZ
)

= 0, (15)

where Z = u− iα is the complex conjugate. In principle,
Eqs. (13a-d) can be derived using an alternative, multi-
scale asymptotic and differential geometry approach as
was done for dark soliton stripe dynamics in the two-
dimensional nonlinear Schrödinger equation43. While
there are some advantages to using the intrinsic vari-
ables of the latter formulation such as the arc-length and
normal-to-curve spatial variables as independent vari-
ables and the curvature of the filament as one of the de-
pendent variables, we will not pursue this perhaps more
complex approach here.

Equations (13a-d) with V0 + iΩ0 = eu0+iα0 admit the
exact solution

Ω(Y, T ) = Ω0 = sgn (ω0) , χ(Y, T ) = V0T,

V (Y, T ) = V0, φ(Y, T ) = ΩT,
(16)

representing an unperturbed bion stripe. We begin our
study of Eqs. (13a-d) with a linear stability analysis. For
this, we linearize Eqs. (13a-d) about the bion stripe so-
lution Eq. (16) in the formφαχ

u

 (Y, T ) =

Ω0T
α0

V0T
u0

+ eiKY+ΛT

φ1

α1

χ1

u1

+ c.c. (17)

where the subscript 1 indicates a small amplitude and
c.c. represents the complex conjugate of the previous
term. The form of the sought solution in Eq. (17) cor-
responds to a sinusoidal variation of the bion stripe in
the transverse, Y , direction with wavenumber K and
exponential temporal growth with growth rate Λ. The
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FIG. 2. (color online) Growth rates for the (a) non-topological
ω0 = 0.06 and (b) topological ω0 = −0.06 bion stripes. The
maximally unstable wavelength and maximal growth rate,
kmax and λmax, are indicated by a filled black circle in (a).
Numerical calculations are shown by blue asterisks and cir-
cles for the real and imaginary growth rates, respectively.

linearization of Eq. (13) with Eq. (17) yields four eigen-
values, of which only one, Λ(K), has positive real part

Λ(K) = K

(
−K2 + 2

√
V 2

0 + Ω2
0

)1/2

. (18)

This positive growth rate for 0 < K < (2
√
V 2

0 + Ω2
0)1/2

implies that the bion stripe suffers from a long-
wavelength transverse instability. The nature of the in-
stability can be determined by the eigenvector associated
with this eigenvalue, which can be writtenφ1

α1

χ1

u1

 =


V0Λ(K)

2K2(
√
V 2

0 + Ω2
0 − Ω0)

(
√
V 2

0 + Ω2
0 − Ω0)Λ(K)

2V0K
2

 . (19)

Equations (18) and (19) yield significant information
about both the early development and late stage of the
transverse instability. The eigenvector (19) leads to im-
portant differences in the nature of the instability of non-
topological and topological bion stripes.

Our focus in this work is on stationary bion stripes for
which V0 = 0. In this case, the growth rate (18) becomes

Λ(K) = K
√
−K2 + 2, (20)

because Ω0 = ±1. All perturbations with wavenumber
K in the unstable band (0,Kc), Kc =

√
2, lead to a

transverse instability. The growth rate (20) is maximized
for the wavenumber Kmax = 1 and attains the maximal
growth rate Λmax = 1. Returning to the lowercase un-
scaled wavenumber k and growth rate λ, the maximally
unstable wavenumber, maximal growth rate, and unsta-
ble wavenumber band for a stationary bion stripe with
frequency ω0 are

kmax =
√
|ω0|, λmax = |ω0|, kc =

√
2|ω0|. (21)

The dominant growth rate, wavelength of instability, and
unstable band are the same for topological (ω0 < 0) and
non-topological (ω0 > 0) bion stripes.

FIG. 3. (color online) (a) Maximally unstable wavenumber
kmax and (b) maximal growth rate λmax as a function of
the bion stripe frequency ω0. The analytical calculations are
shown by solid black lines and the numerical calculations are
shown by blue asterisks. The gray and white background
indicate topological and non-topological bion stripes, respec-
tively.

FIG. 4. (color online) Unstable band cutoff kc as a function of
the stationary bion frequency ω0, defined according to λ(kc) =
0 where kc > 0. The gray and white background indicate
topological and non-topological bion stripes, respectively.

FIG. 5. (color online) The computed deviations from the
uniform bion stripe, m1,z and fΦ1 of the maximally unstable
modes. (a) Non-topological case ω0 = 0.06 exhibiting the
neck instability. (b) Approximate topological case with ω0 =
−0.06, v = 0.006 exhibiting the snake instability.
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We have also performed a linearization of the Lar-
mor torque equation (3), (4) about the bion stripe so-
lution (9). This leads to a linear eigenvalue problem
for small perturbations of the magnetization vector. Di-
rect numerical computation yields a definitive prediction
for the unstable mode and its growth rate dependence
on the transverse wavenumber k. The details are de-
scribed in Appendix B. To remove phase singularities, we
must consider small but nonzero v for topological bions
(ω0 < 0). We have numerically verified that the com-
puted spectrum converges as v approaches zero. Unless
otherwise stated, v = 0 for simulations of non-topological
bions and v = 10−3 |ω0| for simulations of topological
bions. We use these numerical computations to verify
the usefulness of Eqs. (20) and (21) in capturing the rel-
evant spectrum. Figure 2 shows the unstable eigenvalue
as a function of the transverse wavenumber from both
Eq. (20) rescaled (solid curve) and numerical computa-
tion (asterisks). For fixed initial bion frequency ω0, the
non-topological, Fig. 2a, and topological, Fig. 2b, growth
rates follow the trend predicted by Eq. (20). The max-
imally unstable wavenumber kmax and maximal growth
rate λmax are shown in Fig. 3a and Fig. 3b, respectively,
for a range of initial bion frequencies. Finally, the un-
stable wavenumber band kc is shown in Fig. 4 from both
the average Lagrangian theory, Eq. (21), and numerics.
Figures 3 and 4 demonstrate quantitative agreement be-
tween the instability parameters determined by the av-
erage Lagrangian theory and Eq. (21) when |ω0| is suf-
ficiently small. However, for sufficiently large |ω0|, the
small frequency assumption in the analysis breaks down.
This leads to nonlinear deviations and discrepancies that
are not even in ω0. In other words, the topological or
non-topological character of the bion influences the re-
sults of Eq. (21) at higher orders in |ω0|.

The unstable eigenvector (19) determines the nature of
the transverse instability and its topological dependence.
We consider each case in turn. First, when Ω0 = 1 (non-
topological), we can divide the eigenvector (19) by V0

and take the limit V0 → 0 to obtain

Ω0 = 1 :

φ1

α1

χ1

u1

 =

Λ(K)
0
0

2K2

 , (22)

for wavenumbers in the unstable band K ∈ (0,Kc). The
nonzero components of the eigenvector determine which
bion parameters exhibit exponential growth. Evaluating
the eigenvector at the maximal growth rate Λmax = 1
and associated wavenumber Kmax = 1 while assuming an
initial perturbation of small amplitude a in this unsta-
ble direction, we find that the bion phase and frequency
exhibit exponential temporal growth

φ(Y, T ) ∼ T +
a√
3
eT cosY, Ω(Y, T ) ∼ 1 +

2a√
3
eT cosY,

(23)
whereas the bion center χ(Y, T ) = 0 and velocity
V (Y, T ) = 0 do not. This implies that the non-

topological bion exhibits a transverse instability whose
initial development is dominated by fluctuations in the
bion’s phase and frequency. Because the bion width ∆
[recall Eq. (11)] depends on the local bion frequency,
we expect to see the development of fluctuations in
∆(Y, T ) during the initial stage of the transverse insta-
bility with negligible variation in the soliton filament’s
center χ(Y, T ). This is known as a neck transverse insta-
bility44.

We also investigate the nature of the transverse insta-
bility in the topological case Ω0 = −1 by dividing the
eigenvector (19) by 2 and setting V0 = 0 to obtain

Ω0 = −1 :

φ1

α1

χ1

u1

 =

 0
2K2

Λ(K)
0

 . (24)

If we perturb in the most unstable direction (24), this
time the exponential growth occurs in the bion center
and velocity

χ(Y, T ) ∼ a√
3
eT cosY, V (Y, T ) ∼ 2a√

3
eT cosY, (25)

while the phase and frequency are stationary φ(Y, T ) ∼
−T , Ω(Y, T ) ∼ −1 for a perturbation amplitude 0 <
a� 1. The growth of variation in the topological bion’s
center is called a snake instability; see, e.g. Ref. 45, for a
recent discussion.

From the numerical calculations, we have also obtained
the spatial eigenfunctions for the unstable modes. The
eigenfunctions are indicated with the subscript 1 and
represent deviations from the uniform bion stripe. Fig-
ure 5 shows the maximally unstable mode in the non-
topological, Fig. 5a, and topological, Fig. 5b, cases. The
structure of the unstable mode coincides with the predic-
tions from the average Lagrangian theory. In particular,
the m1,z and Φ1 modes are in-phase. The non-topological
case exhibits a symmetric mode that, when added to the
bion, leads to a periodic reduction and increase in the
bion’s width, manifesting a precursor of the neck insta-
bility. In the topological case, the mode is antisymmetric
and, when added to the bion, leads to a periodic shift
from left to right of the bion’s center, suggesting the on-
set of the snake instability. We were unable to perform
a direct linearization of the topological bion stripe be-
cause of its phase jump at x = χ(t). Instead, we lin-
earized non-topological, propagating bions with ω < 0
and 0 < v � 1. As v is decreased, we observe numerical
convergence of the unstable eigenvalue and the associated
antisymmetric eigenfunction m1,z. The limit v → 0+ is a
“topological limit” in that the result is a solution with a
jump in the phase Φ; see Eq. (10). The bion solution (9)
with small but nonzero v smooths the phase jump. This
manifests in the numerical linearization by a large rela-
tive amplitude between the eigenfunction component Φ1

in comparison with the amplitude of m1,z; see Fig. 5(b).
This linear stability analysis predicts that the early

stage of the transverse instability is dominated by either
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FIG. 6. Evolution of the width ∆ of an initially perturbed,
non-topological bion stripe with ω0 = 0.06. Direct numeri-
cal simulations of the Larmor torque equation (solid) and the
average Lagrangian equations (dashed) show excellent agree-
ment. The timescale for the average Lagrangian results have
been scaled by the ratio λmax/λ0 ≈ 1.06 where λ0 is the max-
imum growth rate from numerical linearization.

an increase in φ and Ω (non-topological case) or χ and V
(topological case). Because the governing equations (13)
are nonlinear, we expect that at later stages of evolution,
the two growing soliton filament parameters will couple
to the other two and significantly influence the evolution.
We now investigate this more thoroughly.

IV. NONLINEAR EVOLUTION OF A BION
FILAMENT

In the previous section, we analyzed the linear stage
of the bion stripe instability. However, both the neck
and snake instabilities grow in time and eventually de-
viate from the linearized motion. In this section we
numerically integrate the nonlinear average Lagrangian
Eqs. (13a-d) and compare them with direct numerical
simulations of the Larmor torque equation (3). The Lar-
mor equation simulations are described in Sec. V.

We numerically solve the soliton filament equations
(13) using a pseudospectral discretization in Y and stan-
dard fourth order Runge-Kutta timestepping in T . In the
non-topological case, we initialize the soliton parameters
with the exact solution (16) plus a small perturbation
in the maximally unstable direction (22) with amplitude
a = 10−3 and sinusoidal Y variation with wavenumber
kmax. Figure 6 shows the evolution of the soliton width
parameter ∆ [Eq. (11)] (dashed). As shown in Fig. 3b,
there is a small discrepancy between the predicted max-
imum growth rate λmax = |ω0| and the computed maxi-
mum real eigenvalue from numerical linearization λ0(ω0).
In order to compare the evolution of the soliton width
with direct numerical simulations of the Larmor torque
equation, we have rescaled time in Fig. 6 by the ratio
of these growth rates λmax/λ0. The Larmor simulations
are initialized with a bion stripe with ω0 = 0.06 plus
the same perturbation as the non-topological averaged

Lagrangian numerics, with the frequency perturbation
scaled by aω0. The width is extracted from Larmor sim-
ulations by interpolating the numerical solution to find
x−(y, t) < x+(y, t) such thatmz(x±, y, t) = 0. The width
reported in Fig. 6 (solid curves) is x+−x−. The average
Lagrangian equations are in excellent agreement with the
full Larmor torque equation, even well beyond the linear
regime.

In Fig. 6, we observe significant amplitude growth and
deviation from a sinusoidal waveform to one in which
the soliton width approaches zero, the neck instability.
Zero width corresponds to pinching of the soliton fila-
ment and the breakdown of the single soliton filament
approximation. The soliton filament center χ remains at
zero throughout the simulation. Longer evolution leads
to a significant increase in the frequency Ω, beyond the
regime of validity, Ω = O(1), and therefore signals the
breakdown of the average Lagrangian approach. We will
investigate the pinching of the soliton filament and sub-
sequent evolution in Sec. V.

We now investigate the nonlinear stage of evolution of
the topological bion filament. Figures 7a and 7b display
the evolution of the soliton filament width ∆ and cen-
ter χ, respectively, from numerics of both the average
Lagrangian equations (dashed) and the Larmor torque
equation (solid). Again we rescale time in these figures
by λmax/λ0 according to the small difference in the max-
imal growth rates. Here, the average Lagrangian equa-
tions (13) are initialized with a stationary topological
bion perturbed in the maximally unstable direction (24)
with amplitude a = 10−3. The Larmor torque equation is
initialized with a bion stripe with frequency ω0 = −0.06
and the same sinusoidal perturbation, now with the v
component scaled by |ω0|. The initially small soliton fil-
ament center modulation grows rapidly with wavenumber
kmax, as predicted by linear stability analysis in Eq. (25).
Recall that the soliton filament width is predicted to
not exhibit growth during the linear stage of evolution.
This is consistent with Fig. 7b where an initially con-
stant width takes some time to develop even small am-
plitude oscillations. Moreover, these oscillations exhibit
the wavenumber 2kmax, the second harmonic of the maxi-
mally unstable mode and is due to the nonlinear coupling
of the soliton filament parameters in Eqs. (13). As in the
case of the non-topological bion filament, the topological
bion filament also exhibits break up into two-dimensional
coherent structures, signaling the breakdown of the aver-
age Lagrangian theory. We now investigate this regime.

V. BREAK UP OF A BION FILAMENT

In this section, we perform time-dependent numeri-
cal simulations for a bion stripe subject to small trans-
verse perturbations. We discretize Eqs. (3) and (4) with
no applied field. Utilizing a periodic boundary, pseudo-
spectral method in space46 , we integrate in time with a
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FIG. 7. Numerical evolution of a perturbed, topological bion
stripe with ω0 = −0.06 according to the average Lagrangian
equations (dashed) and the Larmor torque equation (solid).
(a) The soliton filament width ∆. (b) The soliton filament
center χ. For both, the timescale for the average Lagrangian
results have been scaled by the ratio λmax/λ0 ≈ 1.11 where
λ0 is the maximum growth rate from numerical linearization.

fourth order Runge-Kutta method. The domain is dis-
cretized into a mesh of 128×256 gridpoints with 0.5×0.5
cells. The initial condition is a static, v = 0, bion stripe
with a fundamental frequency |ω0| = (5π/64)2 ≈ 0.06,
so that the maximally unstable wavelength, kmax, is al-
lowed by the grid and domain size as the fifth Fourier
mode. The topology of the bion stripe is enforced by the
profile and in-plane magnetization phase resulting from
Eqs. (9a) and (9b) and the transformation Eq. (5).

First, we consider the case of a non-topological bion
stripe. The initial condition consists of the bion stripe (9)
with its frequency modulated ω = ω0[1+10−3 sin(kmaxy)]
with kmax =

√
ω0 = 0.245. This represents a small per-

turbation of the non-topological bion stripe. The tem-
poral evolution of the bion stripe is shown in Fig. 8(a).
At t = 0, shown in the leftmost frame, the bion stripe
is only slightly perturbed in the ŷ direction. As time
evolves, the unstable mode grows and develops a sym-
metric, neck instability of the bion stripe width, visible
in the central panel at t = 121 and consistent with the
linear stability analysis of Sec. III. The observed oscilla-
tion wavelength is 25.6, equal to the maximally unstable
wavelength 2π/kmax. Further evolution in time deviates

from the linear regime and the bion filament pinches and
is severed, leading to the formation of two-dimensional
structures. We observe five structures that subsequently
divide and merge in pairs, establishing breathers29. A
snapshot is is shown in the rightmost frame at t = 142.
By computing the skyrmion number Eq. (2) in an area
that encloses each structure and satisfies mz ≈ 1 at
the boundaries, we find that the resulting structures are
topologically trivial, indicating that these breathers are
composed of two droplets.

Now we consider the topological bion stripe. In this
case, the instability is favored by spatially modulating
the bion’s offset χ = 10−3 sin(kmaxy) where ω0 = −0.06,
kmax = 0.245. The temporal evolution of the topological
bion filament is shown in Fig. 8(b). The leftmost frame
shows the slightly perturbed initial state at t = 0. At
time t = 121, shown in the central frame of Fig. 8(b),
a snake instability is observed. Here, the instability is
dominated by a modulation of the offset with wavelength
25.6 = 2π/kmax but also exhibits a slight modulation
in the width. As noted in the previous sections, this is
caused by nonlinear coupling between the filament width
and center that is disregarded in the linear stability anal-
ysis considered in Sec. III. Interestingly, the instability
leads to the separation of topological poles and anti-poles
marked by a positive or negative chirality, respectively.
The time of the central frame is the same as that of
the non-topological case, indicating that the growth rate
is approximately independent of topology in agreement
with Eq. (21). The poles and anti-poles eventually sep-
arate from the bion filament and shrink below the nu-
merical grid scale, ultimately annihilating into a burst
of spin wave radiation. The remains of the soliton fil-
ament establish two-dimensional textures, as shown in
the rightmost frame of Fig. 8(b) at t = 708. The dy-
namic evolution from the bion filament separation to the
(approximate) stabilization of two-dimensional textures
includes annihilation of topological poles and merging of
textures, requiring much longer times to stabilize. The
resultant textures in this case include a skyrmion, an
anti-skyrmion, and four droplets, conserving the system’s
trivial skyrmion number.

The long time dynamics cannot be accurately pre-
dicted because of the interactions between the result-
ing two-dimensional structures after the bion filamentary
breakup. However, the linear stability analysis can be
used to predict the dynamics shortly after breakup and,
consequently, the number of non-topological textures and
topological poles that result from the instability. For the
non-topological bion stripe, the filament is severed where
the frequency approaches unity, i.e., a homogeneous, out-
of-plane magnetization. This implies that the number of
non-topological textures per unit length, Nd, can be es-
timated as the inverse of the maximally unstable wave-
length

Nd =
kmax

2π
=

√
ω0

2π
. (26)
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FIG. 8. (a) Evolution of the non-topological bion stripe, showing the neck instability. (b) Evolution of the topological bion
stripe, showing the snake instability. The skyrmion number of the resultant textures are labeled in white.

For the parameters used in the numerical simulation,
Nd = 0.039, so the total number of textures in a do-
main of height Ly = 128 is predicted to be NdLy = 5.
This agrees with the five breathers observed in Fig. 8(a)
at long times after breakup. We base this observation on
work in Ref. 29 that numerically demonstrated how two
adjacent, in-phase droplets attract and form a long-lived
breather solution that resembles what we observe here.
For the topological bion, we can predict how topological
poles form within the bion filament. The limit v → 0± in
the phase Φ yields a π phase jump for ω < 0, as noted in
Eq. (10). For small but nonzero v, we have the expansion
of Eq. (9b)

Φ(x, y, t) ∼ φ− v(x− χ)

2

− tan−1

[
F (ω) tanh(

√
1− ω[x− χ])

v

]
,

(27)

where F (ω) = 2|ω|/
√

1− ω > 0. Equation (27) expresses
the smoothing of the phase jump by a nonzero velocity v.
The phase jump is negative when 0 < v � 1 and positive
for 0 < −v � 1. Therefore, when the velocity v(Y, T )

passes through zero with vY < 0 or vY > 0, a topological
pole is formed. The sign of the pole’s skyrmion number
S [recall Eq. (2)] is opposite the spatial slope of v, i.e.,
sgnS = −sgnvy. Because there are two velocity zero
crossings per period of the instability, we can write the
poles per unit length as

Np =

√
|ω0|
π

. (28)

Note that this is simply twice Eq. (26).

VI. DISCUSSION: MAGNETICALLY DAMPED
BION STRIPES

So far, the analysis presented here has neglected the
role of damping. Because magnetic damping drives the
magnetization to a static configuration, it is an additional
source of instability for a bion stripe. While one might
expect damping to play a substantial role on the trans-
verse dynamics of the bion stripe, we now argue that
weak damping is negligible on the time scale of the de-
velopment of the transverse instability. To this end, we
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now estimate the bion stripe’s damping time scale in the
absence of transverse perturbations using soliton pertur-
bation theory47,48.

We consider the dimensionless Landau-Lifshitz equa-
tion

∂tm = −m× heff − αm×m× heff , (29)

where the effective field heff is given in Eq. (4) and
0 < α � 1 is the dimensionless damping constant. The
smallness of α suggests an approximate bion solution that
evolves adiabatically. This means that the stationary
bion’s damped evolution can be described by slow vari-
ation of its frequency alone ω = ω(t). We assume a
stationary bion of the form

cos Θ(x, y, t) = 1 (30a)

− 4(1− ω(t))

2− ω(t) + |ω(t)| cosh
(

2
√

1− ω(t)[x]
) ,

Φ(x, y, t) =

∫ t

0

ω(t′)dt′ (30b)

∓π
4

(1− sgn (ω))sgn (x).

Using the soliton perturbation method outlined in Ref. 48
in conjunction with Eqs. (29) and (30), we find that the
frequency obeys the equation

dω(t)

dt
= 2αω(ω + h0), (31)

independent of topology, when |ω| � 1.
The primary result of Eq. (31) is the timescale of

damping. Namely, damping processes occur on the
timescale O(1/[α(h0 + ω0)]) where ω(0) = ω0 is the ini-
tial precessional frequency. Comparing this to the inverse
growth rate for the transverse instability in Eq. (21),
O(1/λmax) = O(1/|ω0|), we find that damping will
not significantly affect the transverse instability when
α |h0| � |ω0|. Physically, this is a reasonable assumption
when the dimensional applied field H0 is not too large rel-
ative to the scaled saturation magnetization

√
Q− 1Ms

and damping is weak. Based on this analysis, we ex-
pect the transverse instability to be the primary mode of
instability for both topological and non-topological bion
stripes.

VII. DISCUSSION: BION STRIPES IN
PHYSICALLY CONFINED SYSTEMS

The linear stability analysis presented in Sec. III pre-
dicts a long wavelength instability of bion stripes and pro-
vides quantitative information on the dynamics and nu-
cleation of two-dimensional structures for extended thin
films under the assumption of only a local dipole field. In
the case of physically confined systems, i.e. nanowires,
our approach also provides quantitative predictions for

the stabilization of bion stripes based on the allowed
wavelengths.

For a bion stripe confined in the x̂ direction, the analy-
sis presented above holds insofar as the bion stripe is suf-
ficiently localized within the nanowire. In other words,
interactions between the bion stripe and the physical
boundary must be avoided. If this condition is satisfied,
bion stripes for an extended domain in the ŷ direction
will be unstable to long wavelength perturbations and fa-
vor the growth of the maximally unstable mode as shown
in Fig. 8. For a bion stripe confined along the ŷ direction
with a free spin boundary condition (∂ym|y=±w/2 = 0),
the instability depends on the dimensionless width of the
nanowire, w. Linear stability analysis (Sec. III) predicts
that a bion stripe will be stable for widths

w <
π

kc
=

π√
2 |ω0|

, (32)

independent of its topology. Bion stripes in wider wires
are unstable and will separate into two-dimensional tex-
tures. The nanowire width dependency is inversely pro-
portional to the (square root of the) bion stripe preces-
sional frequency. This implies that static bion stripes or
bound domain walls of either Bloch or Néel type (ω0 = 0)
are always stable. However, perturbations from e.g.,
thermal fluctuations, can induce dynamics and modu-
lations of the bion filament’s width and frequency. As-
suming an initial bion stripe frequency of ω0 = 0.06, bion
stripes will be stable for nanowires narrower than w ≈ 9.

Physical insight on these conditions can be gained
by scaling both the bion stripe frequency ω0 = 0.06
and nanowire width w to physical units by multiply-
ing by γµ0Ms(Q− 1) and λex/

√
Q− 1, respectively (re-

call the non-dimensionalization in Sec. II). For exam-
ple, if we consider ultra-thin CoFeB used in Ref. 24 with
Ms = 650 kA/m and Ku ≈ 283 kJ/m3 while assuming
λex ≈ 6 nm (this parameter was not characterized in
Ref. 24), we obtain a bion stripe precessional frequency
of 90 MHz and a maximum width for a stable bion stripe
211 nm. If we consider Co/Ni multilayers utilized in
Ref. 17 with Ms = 720 kA/m, Ku ≈ 450 kJ/m3, and
λex ≈ 8 nm, we obtain a bion stripe precessional fre-
quency of 580 MHz and a maximum width for a sta-
ble bion stripe 117 nm. These results are well within
state-of-the-art patterning capabilities and suggest that
it is possible to control the stability of non-topological
and topological bion stripes and their breakup into an
a-priori specified/designed number of droplets or topo-
logical poles, similar to the prescription of the number of
vortices via transverse instability in atomic Bose-Einstein
condensates38. In that case too, the complete stabi-
lization of two-dimensional stripes in the form of dark
solitons has been advocated by suppressing the infrared
catastrophes associated with the transverse instability
via increased confinement; see, e.g., Ref. 49 and refer-
ences therein.

We emphasize that these results were obtained for a
minimal model of a magnetic material with perpendic-
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ular magnetic anisotropy and local dipole field. This
assumption is justified for ultra-thin films that can be
fabricated with current deposition methods24. For rela-
tively thick films, non-local dipole is expected to stabilize
labyrinthine domains5 and further studies are needed to
investigate the dynamics of bion stripes.

VIII. CONCLUSIONS

The transverse instability of a bion stripe was stud-
ied utilizing the average Lagrangian method. This ap-
proach approximates the dynamics by a soliton filament
with spatio-temporally varying parameters and comple-
ments other recent theoretical approaches to the study
of soliton filaments and shells42,43. The benefit of these
approaches is a reduction in the dimensionality of the
system. For soliton filaments in two-dimensions, their
parameters are governed by a nonlinear system of partial
differential equations in one space dimension (the trans-
verse direction) and time. These equations enable an
analytically tractable linear stability analysis but their
nonlinear evolution also accurately describes the full soli-
ton filament’s dynamics.

We found that the early stage of the transverse in-
stability for bion stripes can be described by exponential
temporal growth in either the filament’s phase/frequency
(non-topological case) or center/velocity (topological
case). We used this result to predict the most unsta-
ble wavelength, maximal growth rate, and the dynami-
cal manifestation of the instability. For non-topological
bion stripes, we observed a neck instability that leads
to a pinching of the bion filament. For topological bion
stripes, we observed a snake instability that leads to the
appearance of topological poles. Our linear stability anal-
ysis also identifies the smallest unstable wavelength that
predicts the resulting number of two-dimensional wave-
forms, as well as the complete stabilization of bion stripes
in the case of sufficient transverse confinement.

Nonlinear evolution of the average Lagrangian modu-
lation equations accurately predicts the unstable dynam-
ics up to the severing of the bion filament. We find that
the result of filamentary breakup also depends on topol-
ogy. For a perturbed, non-topological bion stripe, the
neck instability results in a series of two-dimensional lo-
calized droplet solitons whose number can be estimated
at shortly after breakup by the most unstable wavelength
from linear theory. The snake instability for the topolog-
ical bion stripe results in a chain of topological poles that
annihilate and leave behind solitonic skyrmions, anti-
skyrmions, and droplets. The topology of the bion stripe
is effectively transferred to a subset of the resultant two-
dimensional localized textures. While the maximally un-
stable wavelength from linear theory predicts the number
of topological poles, these poles are unstable and shrink
to singularities that go beyond the continuum model used
here. Further study of the dynamics of these topological
poles in a semi-classical discrete spin lattice model may

be warranted.
We note that both the bion stripes and two-

dimensional textures obtained in this study do not re-
quire chiral fields from, e.g., Dzyaloshinskii-Moriya in-
teraction (DMI)50,51. Bion stripes are exact solutions
of a conservative magnetic system with axial symmetry.
However, DMI may be important to stabilize bion stripes
in the presence of damping. While a study of transverse
instabilities in the presence of damping and DMI is cer-
tainly worthwhile, we here focused on the leading energy
terms that stabilize localized textures, namely, exchange
(dispersion) and anisotropy (nonlinearity).

The average Lagrangian method applied to magneti-
zation dynamics as presented here can be extended to
include more physics and to shed light on the internal
dynamics of droplets, skyrmions, and domain walls.
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Appendix A: Average Lagrangian for bion stripe
filaments

The purpose of the averaged Lagrangian approach is
to reduce the dimensionality of a difficult problem, at
the expense of obtaining only an approximate descrip-
tion of the dynamics39. There are two major steps to
the approach. First, one must assume a form of the ex-
pected solution which only explicitly depends on one of
the problem’s dimensions. In the case of bion stripes,
we integrate over the moving coordinate ξ = x − vt and
assume that the parameters of the bion stripe, ω, φ, v,
and χ, are all functions of both the transverse direction,
y, and time, t. This assumed solution is then substituted
into the Lagrangian, Eq. (7), to obtain the Lagrangian
restricted to bion filaments

Lbion =

∫
R2

Lbion[ξ, φ(y, t), ω(y, t), χ(y, t), v(y, t)]dξdy,

(A1)
where Lbion is the Lagrangian density after substitution.

The second step of the averaged Lagrangian approach
is to integrate Eq. (A1) over ξ. Due to the nature of the
bion stripe solution (9), the integration can be carried
out using the Cauchy residue theorem, taking advantage
of a translation symmetry in the imaginary component of
ξ, which is shared by many terms in L. While this inte-
gration is not theoretically difficult, the Lagrangian that
is obtained from the process turns out to be complicated
unless additional assumptions are made on the bion fila-
ment’s frequency ω and velocity v. The obtained average
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Lagrangian is therefore asymptotically expanded assum-
ing 0 < |ω| ∼ |v| � 1. The result, in scaled variables, is
given in Eq. (12).

Appendix B: Linearized Larmor torque equation
about the bion stripe

Starting with the Larmor torque Eq. (3) and (4), we
linearize about the bion stripe solution. We assume that
the magnetization can be written as m = m0+m1, where
m0 is obtained by substituting the bion stripe solution
in Eqs. (9a) and (9b) into Eq. (5). We are interested
in linearizing about the stationary bion stripe, however
the topological bion exhibits a discontinuity at x = 0.
Therefore, for numerical stability purposes, we will con-
sider the parameter regime 0 < |v| � |ω| for the topo-
logical bion, which smooths the discontinuity at x = χ(t)
without drastically changing the dispersion relation. For
the non-topological bion, we are free to assume v = 0.

Because we are interested in bion stripes with a finite
velocity v, we transform coordinates to a moving refer-
ence frame, ξ = x− vt. We can remove the explicit time
dependence by applying a rotation matrix

R(θ) =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (B1)

to the magnetization vector, i.e., m′ = R(−(ω+ h0)t)m.

The linearized equation for m′1 is found to be

∂tm
′
1(ξ, y, t) = v∂ξm

′
1 + ω(m′1,yx̂−m′1,xŷ)

−m′0 × (∇2m′1 +m′1,z ẑ)

−m′1 × (∂ξ,ξm
′
0 +m′0,z ẑ).

(B2)

By construction, m′0 is only a function of ξ, so we may
assume a linear wave solution in y and t

m′1(ξ, y, t) = m̃(ξ)ei(ky−µt). (B3)

The substitution of Eq. (B3) into Eq. (B2) yields the
eigenvalue problem

µm̃′1(ξ, y, t) = −i(v∂ξm̃′1 + ω(m̃′1,yx̂− m̃′1,xŷ)

−m′0 × (∂ξ,ξm̃
′
1 − k2m̃′1 + m̃′1,z ẑ)

− m̃′1 × (∂ξ,ξm
′
0 +m′0,z ẑ)).

(B4)

We solve Eq. (B4) using a numerical eigenvalue solver.
We discretize m̃′1 spatially over a domain −11 ≤ ξ ≤ 11
using 104 data points. This resolution is sufficient to re-
solve any near-singular behavior near the origin of the
topological bion. We use second order central finite dif-
ference stencils to estimate the derivatives in ξ. We im-
pose Neumann boundary conditions on m̃′1. The insta-
bility growth rate is Imµ(k) and the maximally unstable
wavelength is found by maximizing this function over k
using a numerical optimization method.
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and Yan Zhou, “Parametric autoexcitation of magnetic
droplet soliton perimeter modes,” Phys. Rev. B 95, 024106
(2017).

32 Jun-Young Lee, Ki-Suk Lee, Sangkook Choi, Kon-
stantin Y. Guslienko, and Sang-Koog Kim, “Dynamic
transformations of the internal structure of a moving do-
main wall in magnetic nanostripes,” Phys. Rev. B 76,
184408 (2007).

33 Yoko Yoshimura, Kab-Jin Kim, Takuya Taniguchi,
Takayuki Tono, Kohei Ueda, Ryo Hiramatsu, Takahiro
Moriyama, Keisuke Yamada, Yoshinobu Nakatani, and
Teruo Ono, “Soliton-like magnetic domain wall motion in-
duced by the interfacial dzyaloshinskii-moriya interaction,”
Nature Physics 12, 157 (2015).

34 Ezio Iacocca, Randy K. Dumas, Lake Bookman, Majid
Mohseni, Sunjae Chung, Mark A. Hoefer, and Johan
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