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The spin-1/2 Heisenberg model on the kagome lattice, which is closely realized in layered Mott insulators
such as ZnCu3(OH)6Cl2, is one of the oldest and most enigmatic spin-1/2 lattice model. While the numerical
evidence has accumulated in favor of a quantum spin liquid, the debate is still open as to whether it is a Z2 spin
liquid with very short-range correlations (some kind of Resonating Valence Bond spin liquid), or an algebraic
spin-liquid with power-law correlations. To address this issue, we have pushed the program started by Rokhsar
and Kivelson in their derivation of the effective quantum dimer model description of Heisenberg models to un-
precedented accuracy for the spin-1/2 kagome, by including all the most important virtual singlet contributions
on top of the orthogonalization of the nearest-neighbor valence bond singlet basis. Quite remarkably, the result-
ing picture is a competition between a Z2 spin liquid and a diamond valence bond crystal with a 12-site unit
cell, as in the DMRG simulations of Yan, Huse and White. Furthermore, we found that, on cylinders of finite
diameter d, there is a transition between the Z2 spin liquid at small d and the diamond valence bond crystal at
large d, the prediction of the present microscopic description for the 2D lattice. These results show that, if the
ground state of the spin-1/2 kagome antiferromagnet can be described by nearest-neighbor singlet dimers, it is
a diamond valence bond crystal, and, a contrario, that, if the system is a quantum spin liquid, it has to involve
long-range singlets, consistent with the algebraic spin liquid scenario.

I. Introduction

The idea that spins in a solid can evade ordering down to
zero temperature by forming a correlated quantum spin liquid
(QSL) has a very long history.1–8 Such phases host topolog-
ical properties, long-range entanglement, and fractionalized
excitations with anyonic statistics, and have been discussed
for applications in quantum computing.9–12 One of the sim-
plest models that has long been predicted5 to host a QSL phase
is the antiferromagnetic (AF) nearest-neighbor (NN) spin-1/2
Heisenberg model on the kagome lattice (Fig. 1), described by
the spin Hamiltonian

H = J
∑
〈ij〉

Si · Sj , (1)

where Si and Sj are NN spins on the lattice, and J >0 is the
exchange coupling. This model, which describes closely the
layered ZnCu3(OH)6Cl2,13–15 has been studied intensively in
the last 30 years with a multitude of techniques,16–54 and with
conclusions that go in all possible directions. At that stage, the
problem is no longer to find the right solution, but to eliminate
the wrong ones!

Now, even concentrating on the most recent (hence ar-
guably most reliable) numerical results, the situation is still
debated. A breakthrough from density matrix renormalization
group (DMRG) studies48,49,55 showed evidence for a gapped
Z2 QSL, proposed by Anderson in 1973.1 This conclusion is
challenged in a more recent DMRG study,50 with evidence
for a gapless, U(1) spin liquid, which would be in line with
variational Monte Carlo studies.38,40 A recent application53 of
tensor-network methods delivers also a gapless spin liquid, but
this is challenged by another tensor network study54 support-
ing the Z2 liquid scenario. These conflicting results all the
more demonstrate that this is a paradigmatic strongly corre-
lated problem with many orders that compete at tiny energy

scales, as highlighted explicitly by a full diagonalization tour
de force.56

In view of this difficulty, we adopt the point of view that, for
powerful that they might be, numerical simulations need to be
complemented by microscopic and/or analytical approaches
to identify the degrees of freedom at play, their interaction,
and the resulting physics. This means in particular that, if the
system is a Z2 spin liquid or some kind of valence bond crys-
tal (VBC), it has to be possible to derive an effective model
for the singlet sector in terms of nearest-neighbour valence
bond (NNVB) dimers whose properties can be compared to
the numerical simulations that have identified this kind of
physics. This goes back to the pioneering work of Rokhsar
and Kivelson,57 who suggested to describe the resonating va-
lence bond (RVB) physics in terms of a quantum dimer model
(QDM), by restricting the original SU(2) spin Hamiltonian to
the NNVB basis. But since the NNVB configurations are not
orthogonal for SU(2) spins, the first step towards a QDM de-
scription is to orthogonalize the basis. This task, which was
initially performed to second order in the overlap integral by
Rokhsar and Kivelson,57 has been tackled in many subsequent
works, 25,27–29 and more recently has been performed to very
high order,30,31 see also related discussion in Ref. [32].

However, even if the orthogonalization is done essentially
exactly, the restriction of the Hamiltonian to the NNVB basis
amounts to only the first-order contribution in degenerate per-
turbation theory, and, to go beyond, one has to include higher-
order virtual excitations outside the basis. This program has
only started recently32,58, with the conclusion that these vir-
tual singlet fluctuations change the amplitude of some QDM
processes strongly enough to change the physics.

In the present paper, we go one step further in the case of
the kagome antiferromagnet by considering the most accurate
QDM considered so far, in which the dependence of various
processes on the embedding is taken into account for the first



2

time when studying the properties of the QDM. The result-
ing picture, a competition between a Z2 spin liquid and a
diamond-like VBC is quite different from the properties of
more elementary QDM descriptions, but it agrees with the
DMRG results of Yan et al.48 We take this as a strong evidence
that our QDM description is accurate, and that the present in-
vestigation to a large extent completes the QDM approach to
the spin-1/2 kagome antiferromagnet that started more than
twenty years ago.25

Of course, this is not the final word about the kagome an-
tiferromagnet. By construction, our QDM only includes fluc-
tuations involving finite-range singlets, and if the low-energy
physics is controlled by long-range singlets, it cannot be de-
scribed by our QDM. In that respect, it would be very nice to
have a physical picture of the competing algebraic phases in a
similar language, but with long-range singlets.

The remaining part of the article is organized as follows.
Sec. II summarizes our most crucial results. Sec. III describes
the microscopic derivation of the QDM parameters and their
embedding dependence, along with the identification of the
most important ingredients. Secs. IV and V provide our de-
tailed numerical calculations of the QDM, the physical origin
of the diamond VBC and its accompanying low-lying excita-
tions, as well as the individual role of the various tunneling
terms. In Sec. VI we benchmark our results by comparing the
ground state energy delivered from the effective description to
published ED data on the Heisenberg model. Sec. VII gives
our numerical QDM calculations on asymmetric tori that re-
semble the cylinder geometries of DMRG, and show that the
behaviors at small and large cylinder diameters d are qualita-
tively different. The discussion of Sec. VIII gives a broader
perspective of our results. We finally provide five Appendices
with various technical details and auxiliary information.

II. Summary of main results

The first crucial result emerging from the microscopic RVB
description presented below is that only 5% of the energy
arises from tunneling. The remaining 95% arises from poten-
tial energy contributions that are essentially the same for all
NNVB states. This explains why there are so many different
orders that compete at tiny energy scales.

Second, the short-range tunneling physics is essentially
governed only by the dimer resonances around loops of length
L=8, and, in particular, by the variations of the correspond-
ing tunneling amplitudes with the valence bond pattern out-
side the loop. This ‘lattice embedding’ effect is one of the
main ramifications of virtual singlets and derives from their
long-range nature.32,58

Third, changing artificially the degree of this embedding
dependence drives the system through a quantum critical
point, which separates the two competing phases discussed
in Ref. [48], the gapped Z2 QSL and the so-called diamond
valence bond crystal (VBC). In contrast to previous propos-
als,33,59,60 this crystal is stabilized here by tunneling and not
by potential energy. The physical tunneling parameters, as
extracted from a cluster exact diagonalization (ED) method,
place the system in the VBC side of the critical point and not
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FIG. 1. A dimer covering of the kagome lattice, where each dimer
represents a spin singlet between NN spins. Tunneling processes
shift the dimers around closed loops (orange). Such processes are
mediated by longer-range singlets that are virtually excited around
empty, or ‘defect’ triangles (D). The ensuing amplitude depends on
the particular dimer environment outside the loop.32,58

in the spin liquid side.
Fourth, the apparent discrepancy with previous DMRG cal-

culations that are in favor of a gapped Z2 QSL48,49,55 can be
resolved by checking explicitly the influence of boundary ef-
fects in finite-size calculations using clusters with different
geometries. The results for the topological gap reveal that,
on cylinders with fixed diameter d, there is a phase transition
between the Z2 spin liquid at small d and the diamond VBC
at large d, the prediction of the present microscopic RVB de-
scription for the 2D lattice. Such a contrasting behavior be-
tween long cylinder geometries and symmetric tori has been
seen in analogous situations involving a competition between
spin liquids and VBC phases.61

Fifth, the microscopic description gives important insights
for the excitation spectrum as well. One can identify domain-
wall excitations that separate different orientations of the di-
amond VBC, as well as vortices associated with the intersec-
tion of three domain walls. The energy cost of these exci-
tations is controlled directly by the variations in the tunnel-
ing amplitudes with the lattice embedding, showing that the
melting of the diamond crystal toward the Z2 spin liquid pro-
ceeds via a condensation of domain walls and vortices. The
proximity of the diamond VBC to the critical point then im-
plies a sub-extensive number of low-lying domain-walls and
an extensive number of low-lying vortices, which can partly
account for the high density of low-lying singlets found pre-
viously by ED.20,21,23,24,56

It is finally established that resonances with L 6= 8 do not
affect the physics in any appreciable way, either because they
are too weak or due to significant phase space constraints.
In addition, the Z2 QSL is adiabatically connected to the
Rokhsar-Kivelson wavefunction of the integrable models of
Misguich et al28 and Hao et al,33 which is non-trivial because
the parameters of these models are far from the microscopic
ones. These aspects signify a qualitative reduction in the com-
plexity of the problem, at the heart of which lies the role of vir-
tual singlets, in conjunction with the phase space constraints
mentioned above.

In the following, we set out to describe this complexity
reduction and present our numerical results from ED on the
Heisenberg model, ED on the microscopic quantum dimer
model (QDM), as well as Green’s function Monte Carlo
(GFMC) on a minimal QDM with L = 8 resonances only,
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FIG. 2. The most relevant, loop-8 tunneling processes of the micro-
scopic RVB model. Different rows give the three topologically dif-
ferent loops, and different columns designate the dependence of the
amplitudes on the possible presence of extra defect triangles nearby.

which has no negative sign problem.

III. Effective RVB description

Ideally, magnetically disordered phases with finite corre-
lation lengths are described in terms of short-range valence
bond coverings, where nearby spins organize into singlet pairs
or valence bonds.1–4,6 The kagome is special in that singlets of
the shortest possible range, i.e. between NN spins, form states
with a huge variational energy lead of at least 3J/2 compared
to states with longer-range singlets.16,25 So NNVB states form
an excellent variational starting basis.

The dynamics in this basis is then cast in terms of tunnel-
ing processes (plus potential terms) between different NNVB
states,25,27–32 see Fig. 1. The most local (and thus important)
events connect NNVB states by shifting the singlets around
a loop that encircles a single hexagon. There are eight topo-
logically distinct loops of this type, with lengths L = 6 (one
process), 8 (three processes, ‘8a’, ‘8b’ and ‘8c’), 10 (three
processes, ‘10a’, ‘10b’ and ‘10c’) and 12 (one process).62 For
each type there is a tunneling amplitude (t6, t8a, etc) and a
potential energy term (V6, V8a, etc).

Calculating these parameters from (1) has been a technical
challenge for many years, partly due to the non-orthogonality
of the NNVB states.25,57 While this problem is now largely re-
solved,30–32 a more fundamental problem is the correct treat-
ment of the virtual longer-range singlet fluctuations (Fig. 1),
as emphasized in the early work of Zeng and Elser.25 Mathe-
matically, the problem amounts to going beyond the first-order
variational projection of (1) into the NNVB basis, and include
higher-order terms.

The simple idea of Ref. [32] is that since the effective pa-
rameters are governed by local processes, one can extract
them from the exact spectra of specially designed Heisenberg
clusters, in analogy to how one extracts e.g. the Heisenberg
exchange J from the exact solution of a two-site Hubbard
model. What’s more, by systematically enlarging the size
of the clusters one can incorporate the renormalization effect

from virtual singlets of longer and longer range R, and es-
tablish the convergence with R (see Ref. [32] for a precise
definition of R).

III.1. The ‘R2’ model

The effective parameters extracted in Ref. [32] at the R=2
level are, in units of J : t6 = 0.146, t8a = −0.082, t8b =
−0.084, t8c = −0.067, t10a = 0.048, t10b = 0.025, t10c =
0.040, t12=0, while from the potential terms, only V6=0.097
is appreciable. The loop-six terms have not yet converged at
R=2, and the above numbers for t6 and V6 are upper bounds.
Here, we take the values t6 =0.127 and V6 =0.073 obtained
from a slightly larger cluster that is intermediate between R=
2 and R= 3 (see App. C). Importantly, this uncertainty in t6
does not eventually matter, as shown below. Note also that the
difference between t8a, t8b and t8c (and similarly for loop-10
processes) is missed by the first-order truncation to the NNVB
basis and is one of the qualitative effects of virtual singlets.32

III.2. The ‘R2+E’ model

Another qualitative effect of virtual singlets32,58 is the fact
that the amplitudes depend not only on the type of loop but
also on the particular NNVB environment ‘E’ away from the
loop (see Fig. 1), i.e. t8a should be replaced with t8a-E, etc.
This adds another layer of complexity because it effectively
increases the number of parameters. As it turns out however,
it is in this extra layer of complexity that the crucial physical
insights lie.

Let us take, for example, the ‘8a’ process of Fig. 2 and re-
strict ourselves to the possible NNVB configurations on the
two triangles that share a single site with the loops. Each
of these triangles can either have a singlet or be empty. The
latter possibility comes with enhanced quantum fluctuations
(and therefore a different tunneling amplitude), because these
so-called ‘defect triangles’ do not satisfy the Hamiltonian
locally.16 Altogether, we get three possible nearby environ-
ments, see first row of Fig. 2: ‘8a-00’ for the case where nei-
ther of the two triangles is empty, ‘8a-01’ when one is empty,
and ‘8a-11’ when both are empty. Similarly, we get three
nearby environments for ‘8b’ and three for ‘8c’, see Fig. 2.
Likewise, there is one nearby environment for loop-six, seven
for ‘10a’, ten for ‘10b’, and twelve for ‘10c’. Altogether, this
increases the number of most relevant parameters from 8 to
40, and leads to the ‘R2+E’ model. The values of the param-
eters are provided in Table I.

Naturally, the number of parameters increases further by
considering more distant triangles. In turn, this induces fur-
ther (but much weaker) indentations, but the essential physics
is already revealed at the ‘R2+E’ level, as shown below.

III.3. The minimal, loop-8 model

We next examine how far is the above microscopic RVB pa-
rameters from the integrable QSL models of Misguich et al28

and Hao et al.33 These models share the same ground state,
namely the equal amplitude superposition of all NNVB states,
within a given topological sector.63 In the former model, all
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TABLE I. Tunneling amplitudes of the 9 loop-8 and 29 loop-10 processes of the ‘R2+E’ model. The remaining two processes are the tunneling
and potential terms of loop-six processes: t6 = 0.127 and V6 = 0.097, the same as in the ‘R2’ model. All numbers are in units of J . The
different loop-8 processes are shown in Fig. 2 and in Fig. 10 of App. D. The loop-10 are shown in Figs. 11-13 of App. D. There we also provide
the list of Heisenberg clusters from which the amplitudes are extracted. The numbers in the first column coincide with the parameters of the
‘R2’ model. Note that the numbers for ‘8a-00’, ‘8a-01’ and ‘8a-11’ were already given in the Supplementing Material of Ref. [32].

8a-00 8a-01 8a-11 8b-00 8b-01 8b-11 8c-00 8c-01 8c-11
-0.082462 -0.059786 -0.041389 -0.084103 -0.065086 -0.055111 -0.067355 -0.04769 -0.031227
10a-0000 10a-1000 10a-1100 10a-1010 10a-1001 10a-1110 10a-1111
0.04779 0.039769 0.031067 0.03589 0.036154 0.030841 0.029065

10b-0000 10b-1000 10b-0100 10b-1100 10b-1010 10b-1001 10b-0110 10b-1110 10b-1101 10b-1111
0.024966 0.01412 0.01455 0.00588 0.004937 0.00506 0.005938 0.001356 0.001633 0.005741
10c-0000 10c-1000 10c-0100 10c-0010 10c-1100 10c-1010 10c-0110 10c-0101 10c-1110 10c-1101 10c-0111 10c-1111
0.03957 0.037377 0.027745 0.028579 0.028716 0.029442 0.017737 0.016515 0.020661 0.019595 0.008139 0.012273

tunneling amplitudes are equal to −1 and all potential terms
vanish. These values are very different, both in magnitude
and in relative signs, from ‘R2+E’. In the model by Hao et
al,33 all parameters vanish except (t8, V8) = (−1, 1), which
also appear to be far from ‘R2+E’. In particular, the large V8
cannot be accounted for by the microscopic model. However,
V8 is not essential for spin liquidity because the liquid phase
includes the point (t8, V8) = (−1, 0),33 see also Ref. [64]. In
the following we set out to show that this special ‘T8’ point is
in fact closer to the microscopic model than what is expected
at first sight.

To this end, we consider a simplified version of the ‘R2+E’
model, where we keep only the nine loop-8 processes of
Fig. 2, which will be referred to as the ‘T8+VS’ model, where
‘VS’ stands for the effect of virtual singlets. To probe this
effect explicitly, we introduce a parameter x to interpolate be-
tween the ‘T8’ model (x=0) and the ‘T8+VS’ model (x=1).
Namely, we will consider the minimal QDM Hamiltonian

Hm(x) = (1−x)HT8 + xHT8+VS , (2)

and then later reinstate the remaining terms from ‘R2+E’. The
physical parameters for the loop-eight processes are the ones
corresponding to x=1.

IV. Results for the minimal model

The numerical results for the dimer-dimer correlations (ED
on 108 sites), the low-energy spectra (ED on 36- and 48-site
clusters), and the topological gap (GFMC up to 324 sites), are
shown in Fig. 3. The results demonstrate that Hm(x) hosts
two main competing states, the Z2 spin liquid at small x, and
the diamond VBC at large x, which are the two states reported
by Yan et al.48

The connected dimer-dimer correlations are defined as

〈ψ|DijDkl|ψ〉 − 〈ψ|Dij |ψ〉〈ψ|Dkl|ψ〉 , (3)

where |ψ〉 is the ground state of Hm(x) in the given cluster,
and Dij and Dkl are dimer operators on the nearest-neighbor
bonds of sites (i, j) and (k, l), respectively. The value of these
operators is equal to one if there is a dimer at the given bond
and zero if there is no dimer. The reference dimer (i, j) is

shown by the thick black segments. The thickness of each
segment scales with the magnitude of the correlation. Black
(orange) segments denote positive (negative) correlation val-
ues. The fluid-like behavior of the Z2 phase at x=0 and the
characteristic pattern of the diamond VBC at x= 1 show up
clearly in the correlation patterns of Fig. 3 (a). The VBC pat-
tern can be seen, in particular, by focusing on the pattern of
positive correlations (black segments).

The transition between the Z2 liquid and the VBC phases
can be diagnosed in the ED spectra (Fig. 3 (b)) by the level
crossing in the first excitation above the ground state. In the
liquid region, the first excitation has momentum zero, but be-
longs to different topological sector from that of the ground
state, while in the diamond VBC region, the first excitation
has a finite momentum, consistent with the translational sym-
metry breaking of the crystal. The critical point can be seen by
the opening of the extrapolated topological gap in the GFMC
data of Fig. 3 (c), and is located at xc ' 0.35. Note that this
value is far below the crossing between the two excitations of
Fig. 3 (b), signifying a very large correlation length. We shall
return to this important aspect below.

Let us finally discuss the behavior of the topological gap
(Fig. 3 (c)). This gap is the energy difference between the two
lowest eigenstates belonging to different topological sectors,
and thus it cannot be a negative number. The extrapolation to
negative values inside the liquid phase implies a finite correla-
tion length and the leveling off to a vanishing gap for clusters
sizes that exceed this correlation length (see similar behavior
e.g., in Ref. [65]). It is this vanishing topological gap, which
is one of the properties of the gapped spin liquid, that is shown
in Fig. 3 (d) in the corresponding parameter regime.

IV.1. Physical origin of the diamond VBC

The cartoon picture of Fig. 4 (a) shows that the ‘8a-00’ tun-
neling events play a central role in stabilizing the diamond
VBC. The reason why ‘8c’ and ‘8b’ processes are not impor-
tant is related to phase space arguments. For the ‘8c’ pro-
cesses, it can be checked numerically66 that the NNVB states
that maximize the density of loop-8 processes do not feature
any loops of type ‘8c’. This means that, even if the t8c am-
plitudes were comparable to t8a (which is not the case, see



5

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

0.00 0.05 0.10 0.15 0.20
0.0

0.1

0.2

0.3

0.4

0.5

To
po
lo
gi
ca
lg
ap

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆◆

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

E
-
E
0

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆
◆◆◆◆

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

E
-
E
0

TS: 00, 01, 10
TS11

M

36 sites

48 sites

TS00
M

Z2 QSL Diamond 
VBC

x

x

x
● ● ● ●●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.00

0.02

0.04

0.06

0.08

0.10

0.12

E
xt
ra
po
la
te
d
ga
p

T8

T8+VS

a) Dimer-dimer correlations

x=0

x=1

QMC size scaling

b) Low energy spectra c) Topological gap

TS: 11, 01, 10

x=0

x=0.6

1/
p

N

FIG. 3. Numerical results for the minimal modelHm(x) of Eq. (2). (a) Connected dimer-dimer correlations in the ground state of the 108-site
cluster for the ‘T8’ (x=0) and the ‘T8+VS’ (x=1) model. The thick bond on the lower left corner is the reference bond. Positive (negative)
correlations are shown by black (red) color. (b) Low-energy spectra as a function of x measured from the ground state energy E0 and in
units of t6 =0.127J . The lowest energy states of the four topological sectors are denoted by ‘TS00’, ‘TS01’, ‘TS10’ and ‘TS11’. The level
indicated by ‘M’ is the lowest state with momentum at the middle of the Brillouin-zone edge. (c) Topological gap (in units of t6 =0.127J)
as calculated from Green’s function Monte Carlo up to 324 sites for various control parameters x. The gap scales well as 1/

√
N . The lower

panel shows the extrapolated value at the thermodynamic limit. The geometry of the clusters is discussed in App. A.

Table I), the minimum energy state will not feature any ‘8c’
resonance because the resulting total density of loop-8 reso-
nances cannot reach the maximum possible value.

Turning to the ‘8b’ processes, these have a finite loop-
density in the ground state but otherwise do not play a de-
cisive role, even though their amplitude is slightly stronger
than that of ‘8a-00’. The reason is that states involving ‘8b’
loops necessarily involve a finite number of extra defect tri-
angles, i.e. a finite density for ‘8b-01’ and ‘8b-11’, whose
tunneling amplitude is weaker compared to that of ‘8a-00’.
Consider, for example, the state shown in Fig. 4 (b), which
contains both ‘8a’ and ‘8b’ loops, and where we have high-
lighted three nearby ‘8b’ loops. If a tunneling event is taking
place in the upper left or upper right loops, then the triangles
connecting to the middle loop are empty half of the time. As
a result, the middle ‘8b’ loop enters the ‘8b-01’ or ‘8b-11’
configurations. So, although |t8b-00| is slightly stronger than
|t8a-00|, the maximum possible frequency of ‘8b-00’ events is
effectively smaller than that of ‘8a-00’ events, due to phase
space constraints.

While the ground state energy ofHm(x) is also affected by
fluctuations, the above qualitative arguments establish that the
origin of the diamond VBC is directly related to x, i.e. the
indentations in the tunneling amplitudes across the nine (min-
imal) loop-8 events of Fig. 2. This mechanism is qualitatively
different from the ones reported previously, which involve ei-
ther a strong negative V8,33 or other potential terms (called K
in Refs. [59] and [60]). Such large potential terms cannot be
justified from the microscopic side.32

IV.2. Domain walls and vortices in the minimal model

Let us consider a domain wall excitation above the dia-
mond VBC, see cartoon picture in Fig. 4 (c). In this state,
all diamonds are again of the ‘8a’ type, but unlike the uniform
VBC, not all diamonds are of the ‘8a-00’ type. Specifically,
each of the vertical diamonds right below the domain wall are
50% of the time in the configuration ‘8a-00’ and 50% in the
configuration ‘8a-01’. This is because one of the two NNVB
states involved in the resonance of the horizontal diamonds
right above the domain wall leaves a defect triangle below,
see shaded blue triangles of Fig. 4 (b). These triangles are
therefore the sources of the energy cost of the domain wall.
This cost scales with the difference between the amplitudes of
‘8a-00’ and ‘8a-01’, i.e. it is proportional to x. We can also
identify vortex excitations like the ones shown in Fig. 4 (d),
which correspond to the intersection of three domain-walls.
Clearly, the energy cost of these excitations scale also with x.

These considerations show that the melting of the VBC
state at the critical point proceeds via the condensation of do-
main walls and vortices. Moreover, if the system is inside the
VBC state but close to the critical point, there is an extensive,
∝ N (sub-extensive, ∝

√
N ) number of low-lying excitations

associated with vortices (domain walls).67 This would be con-
sistent with the large dimer correlation length and the high
density of low-lying singlets found numerically.20,21,23,24,56

V. Effect of terms that are not included in the minimal model

We now check how much of the above survives when we in-
clude the remaining terms of the ‘R2+E’ model, starting from
the loop-6 terms.
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V.1. Loop-six processes

The loop-six terms are in fact larger than the loop-8 terms,
which raises a legitimate concern. Figure 5 (top) shows the
low-energy spectra of Hm(x) with the addition of t6 =0.127
and V6=0.097. The differences from Fig. 3 (b) are extremely
small. So we can safely conclude that t6 and V6 do not play
any appreciable role, despite being the largest in the ‘R2+E’
model.

This remarkable simplification is related to phase space
constraints. There are Ndc =2N/3+1 NNVB states for a torus
geometry. Averaging over these states gives the following
probabilities of a hexagon being in any given loop configu-
ration: p6=p12= 1

32 , p8a=p10a= 3
32 , and p8b=p8c=p10b=

p10c=
6
32 . Namely, loop-six (and loop-twelve) configurations

are 15 times rarer than loop-eight or loop-ten. So, unless t6
exceeds a high threshold (as e.g. at R=030,32), loop-six pro-
cesses are irrelevant, see also Ref. [64].

V.2. Loop-ten processes

Next come the loop-10 events. These are generally 1.5-2
times weaker than loop-8 but, unlike the loop-6, they appear
equally often with loop-8, as mentioned above. According
to our numerics for the low-energy spectra (Fig. 5, bottom
panels) and the connected dimer-dimer correlations (Fig. 6),
the ground state is the diamond VBC whether we include the
loop-10 processes or not. In other words, these events do not
give rise to another instability as long as their magnitude is
in the range extracted by the cluster ED method. Neverthe-

a) Uniform diamond VBC b) Typical ‘8a’ / ‘8b’ state

c) Single domain wall state d) Vortex excitation state

8b

8b

8b

FIG. 4. (a) Uniform diamond VBC state. The thick white dimers rep-
resent static singlets, while the slightly shaded diamonds represent
resonances between alternating orange and shaded gray dimer con-
figurations. (b) State with finite density of ‘8b’ processes (2-colored
loops). (c) A domain wall separates two different diamond VBC
domains. (d) A vortex excitation corresponds to the intersection of
three domain walls. The shaded triangles in (c-d) are the sources of
the energy cost of the walls.
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FIG. 5. Spectrum ofHm(x) with loop-6 (top), and loop-6 plus loop-
10 (bottom) processes added.

less, the loop-10 processes take us slightly further away from
the Z2 spin liquid, because they have opposite signs from t8
(compare e.g. with the integrable model of Misguich28).

VI. Ground state energy

We will now show that the ground state energy of the
‘R2+E’ model is fully consistent with published ED data
for the original Heisenberg model, on 36-site19,21 and 48-site
clusters.56 This analysis will further reveal that only about 5%
of the energy stems from tunneling. The remaining 95% arises
from potential energy contributions, that are practically the
same for all NNVB states. This highlights why there are so
many different orders that compete at tiny energy scales.

The ground state energies of the Heisenberg model on the
36-site and 48-site clusters are E(36)

Heis /36 = −0.438377J19,21

and E(48)
Heis /48 = −0.438703J ,56 respectively. To extract the

corresponding energies from the ‘R2+E’ model, we must in-
corporate a global constant c which is put aside when we
go from the Heisenberg model to the effective QDM. The
first main contribution to c is the total energy of the singlets,
c1 = − 3

8JN . The second, c2, comes from the potential en-
ergy of single defect triangles, which has been discussed in
the Supplementing Material (Section D1) of Ref. [32]. This
contribution depends on the environment of the defect tri-
angle and is in the range −(0.291± 0.025)JN . There are
N/6 defect triangles (the same for all NNVB states) which
gives c2 ' −(0.048± 0.004)JN . There are also contribu-
tions which vary from one NNVB state to the next, which are
however much weaker and were not included in the ‘R2+E’
model. These include the binding energy between two de-
fect triangles, or the potential energies of the various pro-
cesses other than V6, which are both of the order of 0.01J
or smaller.32 There are also the corrections to the tunneling
parameters from longer-range environments beyond R=2.32

Furthermore, the Heisenberg energies contain contributions
from tunneling loops that wind around the boundary, which
are not included in the effective model explicitly. Altogether,
the contributions beyond c1 and c2 that are not included in the
‘R2+E’ model give an uncertainty of the order of 0.01JN .

Now, the ground state energies of the ‘R2+E’ model are
E(QDM)

36 = −3.2939t6 and E(48)
QDM = −4.2676t6, where t6 =

0.127J (Note that our numerics are performed in units of
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FIG. 6. Dimer-dimer correlations for the ‘R2+E’ model with loop-ten processes excluded on the 48-site cluster (left), the full ’R2+E’ model
on the 48-site cluster (middle), and the full ‘R2+E’ model on the 108-site cluster (right). The thick black segment at the bottom-left corner
denotes the reference dimer. The 48-site cluster is periodically repeated four times for convenience. The green lines in the first two panels
show the boundary of a single 48-site cluster. Black (orange) color indicates positive (negative) correlation values. The thickness of each dimer
scales with the magnitude of the correlation. The diamond VBC order can be seen by the pattern of the positive correlations (black segments).

t6 = 1, which is why all results about energies are multiplied
explicitly by t6). This gives

EQDM + c1 + c2'(−0.43±0.01)JN (4)

for both clusters. The Heisenberg energies are within these
ranges, which is very satisfactory given the effective nature of
the RVB description.

According to the above, the contributions c1+c2 correspond
to about 95% of the total ground state energy, and only the re-
maining 5% comes from the tunneling physics. This remark-
ably small contribution explains why there are so many differ-
ent orders that compete at tiny energy scales, as testified more
explicitly by the excitation spectra of Fig. 3 (b) and 5.

VII. Comparison with DMRG

The diamond VBC state is commensurate with several
cylinder clusters used in the DMRG study of Ref. [48], yet
the DMRG results deliver the Z2 spin liquid and not the di-
amond VBC. To address this major concern we first return
to an important observation made above. Namely, that the
position of the level crossing between the two lowest excita-
tions of Fig. 3 (b) is almost two times higher than the critical
point xc ' 0.35, extracted from Fig. 3 (c). This large differ-
ence shows that the stabilization of the diamond VBC requires
much larger system sizes than the ones of Fig. 3 (b).

Importantly, the microscopic description allows one to
check this crucial point explicitly at the level ofHm(x), which
is free of the negative sign problem. To mimic the cylinder ge-
ometries of DMRG, we consider tori with Ls×L` unit cells,
and look at extrapolations with fixed Ls and varying L`. Fig-
ure 7 shows three such extrapolations, with Ls =4, 6 and 8.
The clusters with Ls=6 correspond to the largest circumfer-
ence of 12 lattice spacings studied in Ref. [48].

Since we work on a torus we can still define four topolog-
ical sectors, associated with the winding numbers {W`,Ws}
along the directions of L` and Ls. For a symmetric torus with
the three-fold rotation symmetry of the bulk, three out of the
four topological sectors are degenerate. As soon as the torus
becomes asymmetric, we lose the three-fold symmetry and
each sector gives a different minimum energy. At the same

time, we expect that only two levels (with the same Ws but
different W`, see also App. E) approach each other with in-
creasing L`, if the L`→∞ system is in the liquid phase. The
GFMC results of Fig. 7 confirm this general picture.

More importantly, the extrapolation to the limit L` → ∞
gives the Z2 liquid at x=1 for all three values of Ls in Fig. 7.
This is in stark contrast with extrapolations based on asym-
metric tori with fixed aspect ratios (see App. B), which give
results that are in perfect agreement with Fig. 3 (c). So, for
cylinder geometries the Z2 spin liquid must eventually give
way to the diamond VBC for large enough d. The overall ten-
dency in Fig. 7, with the extrapolated gap becoming less and
less negative with increasing Ls corroborates this picture. An
upper boundary of the critical value is Ls ∼ 10 (i.e., 20 lat-
tice spacings) because the largest cluster of Fig. 3 (c) has a
linear size of 20.78 lattice spacings [incidentally, this is also
above the 17 lattice spacings of Ref. [49] (which are not com-
mensurate with the diamond VBC)]. This is consistent with
the fact that the clusters with Ls = 10 are precisely the ones
where GFMC fails to converge, because the liquid guiding
wave-function68–70 is not good any longer.
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FIG. 7. The three lowest excitation energies (in units of t6=0.127J),
extracted from GFMC, for the ‘T8+VS’ model on tori with Ls×
L` unit cells. The lowest excitation (gray lines, filled circles) is the
topological gap. There are three sets of data with Ls fixed and L`

varying: Ls =4 (with L` =4, 6, 8, 10), Ls =6 (with L` =6, 8, 10,
12), and Ls=8 (with L`=8, 10, 12, 14), see App. A for the specific
cluster geometries.
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Our message that cylinder geometries with relatively short
perimeter can penalize the VBC order and give the wrong pic-
ture for the thermodynamic 2D limit is actually not specific to
the present model, as an analogous situation has been reported
by Sandvik in a different set of models.61

VIII. Discussion

To a large extent, the present study completes one of the
oldest microscopic approaches to the spin-1/2 kagome prob-
lem.25–32,58 The ‘R2+E’ model incorporates the effects of vir-
tual singlets up to theR=2 level (where all parameters except
t6 have essentially converged32), as well as the embedding de-
pendence coming from the nearest triangles next to the loops.
This model has 40 parameters that are all implemented in our
numerics. In conjunction with the orthogonalization of the
NNVB basis, this entails a microscopic description with un-
precedented accuracy and sets the record in the program initi-
ated many years ago by Rokhsar and Kivelson in their deriva-
tion of the effective RVB description of Heisenberg models.57

Our numerical calculations of the microscopic QDM de-
scription place the system within the diamond VBC phase.
The ‘distance’ from the Z2 spin liquid should be considered in
relation to the fact that x=1 corresponds to about 30% differ-
ence between t8a-00 and t8a-01, and the critical point xc'0.35
corresponds to about 10%. Including fluctuations from the en-
vironment further away from the loop (which would increase
the number of parameters significantly) will effectively give
rise to a small reduction in the value of x that quantifies the
distance from the ‘T8’ model. On the other hand, the weak,
loop-10 processes act to effectively increase the distance from
the liquid phase, as mentioned above. This entails a small
uncertainty in the distance from the critical point.

Despite this uncertainty, which reflects the non-local char-
acter of the virtual singlets, the microscopic tunneling descrip-
tion offers a simple and intuitive picture of several key aspects
of the problem. First, the 36-site VBC proposed in earlier
works30,31,46,71,72 is not one of the competing states48 because
the shortest tunneling events that stabilize this state are irrele-
vant. Second, the diamond VBC state is one of the competing
states48 because the second-shortest loops are the most rele-
vant. In particular, if the ground state is described by short-
range singlets then it must be the diamond VBC. Third, the
Z2 spin liquid becomes the ground state in cylinder geome-
tries with small diameters d, consistent with DMRG.48,49,55

This liquid is in fact adiabatically connected to the integrable
models of Misguich et al28 and Hao et al,33 despite the fact
that these models appear very far in parameter space. Finally,
the microscopic description also offers an interpretation for
the high density of low-lying singlets found by ED,20,21,23,24,56

based on the overall tiny energy contribution from tunneling,
and the presence of infinite domain wall and vortex states.

The dimer description leaves no room for a gapless U(1)
liquid because every quantum dimer model on kagome can
be mapped rigorously to a Z2 gauge theory.59,60 So, in order
to account for the evidence38,40,50,53 that one of the competing
phases is a U(1) spin liquid one must also examine the physics
inside the orthogonal, longer-range singlet sector. Variation-
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FIG. 8. Evolution of the topological gap as a function of 1/
√
N , for

different fixed ratios of L`
Ls

= 4 (top) and 2 (bottom) and various x
in the QSL region (gray) and the diamond VBC region (orange).

ally, this sector onsets at an energy of 3J/2 above the NNVB
manifold, but longer-range singlets can lower their energy by
the kinetic energy of the associated spinons. Such a picture
in terms of spinons interacting via an emergent U(1) gauge
field has been proposed, although the strong attraction be-
tween spinons in the singlet channel seem to push the system
into the Z2 phase.73 Extracting the microscopic parameters of
this extended picture could give the right insights as to why
the U(1) liquid is also one of the competing phases.

According to the above, if the ground state of the spin-1/2
kagome antiferromagnet is described by short-range singlets
then it is a diamond valence bond crystal, but if the system is
a quantum spin liquid, it has to involve long-range singlets,
consistent with the algebraic liquid scenario.
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A. Cluster geometries in our numerics of the effective QDM
The primitive vectors of the kagome lattice are a= x and

b= 1
2x+

√
3
2 y. The spanning vectors of the symmetric torus

clusters of e.g. Fig. 3 are T1=−La+Lb and T2=−La+2Lb,
which contain 3L2 unit cells andN=9L2 sites. The spanning
vectors of the asymmetric torus clusters of Fig. 7 are T`=L`a
and Ts = Lsb. These clusters have LsL` unit cells and N =
3LsL` sites. All clusters studied (symmetric and asymmetric)
are commensurate with the diamond VBC state.
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B. Finite size study of the topological gap for clusters with
fixed aspect ratio L`/Ls

Figure 8 shows extrapolations of the topological gap based
on asymmetric tori with fixed aspect ratios L`/Ls = 4 (left)
and L`/Ls = 2 (right). In both cases, a phase transition be-
tween the QSL (gray curves) and the diamond VBC (orange
curves) occurs around x ∼ 0.4, consistent with the extrapola-
tions based on regular clusters, in Fig. 3.

C. Heisenberg cluster used to extract the parameters t6 and V6

As shown in Fig. 4 of Ref. [32], the tunneling parameter t6
has not yet converged at the R = 2 level. The cluster corre-
sponding toR=3 has 42 sites and does not have enough sym-
metries to be treated by ED. The parameters t6=0.127J and
V6=0.073J used here are extracted from the cluster shown in
Fig. 9, which is intermediate between R=2 and R=3. This
cluster contains 34 sites.

D. Heisenberg clusters used to extract the
loop-8 and loop-10 amplitudes

The Heisenberg clusters used to extract the tunneling am-
plitudes of the loop-8 and loop-10 processes are shown in
Figs. 10, 11, 12 and 13. The procedure to extract the parame-
ters from the Heisenberg spectra of these clusters is described
in detail in Ref. [32]. The clusters are designed in such a way
that they can accommodate only the two NNVB states that
are involved in each given tunneling process that we are after.
These two NNVB states differ in the valence bond configu-
ration along the central loop of length L, and are indicated
by the blue (solid) and red (dashed) ovals. The yellow ovals
denote the valence bonds away from the loop, which are com-
mon in the two NNVB states involved in the tunneling. The
blue (red) letters ‘D’ denote the positions of the defect tri-
angles (triangles without dimers) when the dimers along the
loops sit on the blue (red) ovals. The shaded red triangles
denote the ‘extra’ defect triangles that appear in the nearby
environment of the loop. In all figures, for each cluster we
provide the name of the process (as it appears in Table I of
the main text), the number of sites of the cluster, and the tun-

figures for supplementary material

(T8+VS)+t6+V6 for 48 sites
correlations 108 for full R2+E
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FIG. 9. The 34-site cluster used to extract the parameters t6 =
0.127J and V6=0.073J given in the main text.

Loop-8, level R2, type 8a

L=8

D

D

D

D

N=288a-00 t=-0.082462

L=8

D

D

D

D

N=308a-01 t=-0.059786

L=8

D

D

D

D

N=328a-11 t=-0.041389

Loop-8, level R2, type 8b

L=8

D

D

D

D

N=308b-01 t=-0.065086N=288b-00

L=8

D

D

D

D

t=-0.084103

L=8

D

D

D

D

N=328b-11 t=-0.055111

Loop-8, level R2, type 8c

L=8

D

D

D

D

N=308c-01 t=-0.04769

L=8

D

D

D

D

N=288c-00 t=-0.067355

L=8

D

D

D

D

N=328c-11 t=-0.031227

FIG. 10. Heisenberg clusters used to extract the tunneling amplitudes
of the type ‘8a’, ‘8b’ and ‘8c’ processes.

N=28

D

D

L=10

10a-1000 t=0.039769

D

D

L=10

N=2610a-0000 t=0.04779

D

D

L=10

N=3010a-1010 t=0.03589

N=3010a-1100

D

D

L=10

t=0.031067

D

D

L=10

N=3010a-1001 t=0.036154 N=3210a-1110

D

D

L=10

t=0.030841

Loop-10, level R2, type 10a

N=3410a-1111

D

D

L=10

t=0.029065

FIG. 11. Heisenberg clusters used to extract the tunneling amplitudes
of the type ‘10a’ processes.

neling amplitude t extracted from the low-lying, tunnel split
levels with the right symmetry, see details in Ref. [32].
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Loop-10, level R2, type 10b

D

D

L=10

10b-0000 N=26 t=0.024966

D

D

L=10

10b-1000 N=28 t=0.01412

D

D

L=10

10b-0100 N=28 t=0.01455

D

D

L=10

10b-1100 N=30 t=0.00588

D

D

L=10

10b-1010 N=30 t=0.004937

D

D

L=10

10b-1001 N=30 t=0.00506

D

D

L=10

10b-0110 N=30 t=0.005938

D

D

L=10

10b-1110 N=32 t=0.001356 10b-1101 N=32

D

D

L=10

t=0.001633

10b-1111 N=34

D

D

L=10

t=0.005741

FIG. 12. Heisenberg clusters used to extract the tunneling amplitudes
of the type ‘10b’ processes.

E. Cylinder geometry on the triangular lattice

For a better understanding of which topological sectors are
collapsing with the system size in the anisotropic torus geom-
etry, we show numerical results on another well known model
with a spin liquid ground state, the QDM model on the trian-
gular lattice.70 We consider cylinders with periodic boundary
conditions (PBC) in one direction (red line), and open bound-
ary conditions (OBC) in the other (blue line), as depicted in
Fig. 14(a). Since we have OBC along the horizontal direc-
tion, the topological winding number Ws can only take a sin-
gle value, which is equal to zero for the cylinders considered
in Fig. 14(a). On the contrary, the winding number W` can
take two possible values, 0 or 1.

We have considered the vanilla quantum dimer model with
only loop-4 processes containing a potential term (counting
the number of flippable plaquettes) and a kinetic term (rep-
resenting plaquette resonances) at ratio V/J = 0.9, namely
we are deep inside the RVB QSL phase.70 Our calculations
for the topological gap are shown in Fig. 14(b). The energy
difference between the two lowest energy levels is practically
zero for fixed Ls = 4 and L` = 4, 6, 8, 10, 12 and 14, while

Loop-10, level R2, type 10c

D

D
L=10

10c-0100 N=28 t=0.027745

D

D
L=10

10c-1000 N=28 t=0.037377

D

D
L=10

N=2610c-0000 t=0.03957 

D

D
L=10

10c-0010 N=28 t=0.028579

D

D
L=10

10c-1100 N=30 t=0.028716 10c-1010 N=30

D

D
L=10

t=0.029442

D

D
L=10

10c-0101 N=30 t=0.016515

D

D
L=10

10c-0110 N=30 t=0.017737

D

D
L=10

10c-1110 N=32 t=0.020661

D

D
L=10

10c-1101 N=32 t=0.019595

D

D
L=10

10c-0111 N=32 t=0.008139

D

D
L=10

10c-1111 N=34 t=0.012273

FIG. 13. Heisenberg clusters used to extract the tunneling amplitudes
of the type ‘10c’ processes.

the two levels belong to the sectors (Ws,W`) = (0, 0) and
(0, 1). This shows that the two-fold topological degeneracy
of the cylinder geometry involves states with differentW` and
not with the sameW`, consistent with the asymmetric kagome
tori results of Fig. 7.



11

Wl

Ws

(a) Cylinder geometry.
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FIG. 14. (a) Triangular cluster on a cylinder geometry with
(Ls, L`) = (4, 8) and open boundary conditions in the horizontal di-
rection (blue) and periodic boundary conditions in the other direction
(red). The NNVB configuration shown lives in the topological sector
(Ws,W`) = (1, 0), where Ws and W` are the parities of the num-
bers of dimers crossing the depicted cutlines (blue and red, respec-
tively). (b) Topological gap between the sectors (Ws,W`) = (0, 0)
and (0, 1) on cylinders with Ls = 4 and L` = 4, 6, 8, 10, 12 and 14
for the triangular QDM with V/J = 0.9.70
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