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Abstract

Lattice heat-current time correlation functions for insulators and semiconductors obtained us-

ing molecular dynamics (MD) simulations exhibit features of both pure exponential decay and

oscillatory-exponential decay. For some materials the oscillatory terms contribute significantly to

the lattice heat conductivity calculated from the correlation functions. However, the origin of

the oscillatory terms is not well understood and their contribution to the heat conductivity is

accounted for by fitting them to empirical functions. Here, a translationally invariant expression

for the heat current in terms of creation and annihilation operators is derived. By using this full

phonon-picture definition of the heat current and applying the relaxation-time approximation, we

explain, at least in part, the origin of the oscillatory terms in the lattice heat-current correlation

function. We discuss the relationship between the crystal Hamiltonian and the magnitude of the

oscillatory terms. A solvable one-dimensional model is used to illustrate the potential importance

of terms that are omitted in the commonly used phonon-picture expression for the heat current.

While the derivations are fully quantum mechanical, classical-limit expressions are provided that

enable direct contact with classical quantities obtainable from MD.
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I. INTRODUCTION

The heat conductivity tensor καα′ in the Green-Kubo (GK) framework is given by1,2

καα′ =
1

kBT 2V

∫ ∞
0

dt〈Jα(0)Jα′(t)〉q, (1)

where Jα is the αth component of the heat-current operator, T is temperature, V is the

system volume, and the integrand is the quantum correlation function, defined as

〈Jα(0)Jα′(t)〉q =
1

β

∫ β

0

dζ Tr
(
ρeζHJα(0)e−ζHJα′(t)

)
, (2)

where H is the system Hamiltonian, ρ is the corresponding canonical equilibrium density

matrix, and β = (kBT )−1. Direct numerical application of Eq. (1) to crystalline materials is

problematic due to the enormous cost of quantum calculations even for small systems. For

this reason simulations of crystal heat conductivity are usually performed using molecular

dynamics (MD) simulations based on the classical analog of Eq. (1) in which the quantum

correlation function is replaced by the classical one. The classical GK approach has become

a powerful tool for obtaining heat conductivities of various materials due, in part, to the

simplicity of its implementation, which only involves equilibrium MD simulations.3–10 (This

stands in contrast to ad hoc non-equilibrium methods,11–15 for which several empirical choices

in simulation protocol must be determined or guessed.) While the brute-force GK approach

is attractive insofar as it provides access to the full heat conductivity tensor from a single

equilibrium simulation, it is intellectually unsatisfying in that it yields little insight into

the underlying physics of the heat transport: The primary fundamental energy carriers in

crystalline dielectrics and semiconductors below the gap are phonons, and the GK approach

as implemented in MD (i.e., using particle Cartesian coordinates and momenta) gives no

direct information about the phonon picture of heat transport. This limitation also makes it

difficult to apply physically justified quantum corrections to the MD results. These correc-

tions can be quite important in materials that have substantial numbers of high-frequency

modes, as such modes are effectively in the quantum ground state at room temperature and

therefore are not accurately described by classical mechanics.

Theoretical analysis of the heat-current correlation function in Eq. (2) in the phonon

picture typically relies on a definition of heat current, JP =
∑

k,s vs(k)Es(k), introduced

by Peierls.16 Here, Es(k), which is an operator in the quantum case and a dynamical vari-

able in the classical case, is the energy of a phonon mode and vs(k) is the corresponding
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mode group velocity. Each mode is specified by wave vector k and branch s. Dynamics

of the mode energy in anharmonic crystals is usually described by the Boltzmann phonon

equation.16 Due to the difficulty of solving this equation17,18 the full mode dynamics is often

treated using the relaxation-time approximation,17,19,20 wherein the deviation of the average

energy of each mode from the corresponding equilibrium value is assumed to decay expo-

nentially with time. Under the relaxation-time approximation, use of the Peierls expression

to evaluate the heat-current correlation function given by Eq. (2) leads to a superposition

of monotonically decaying exponentials. Whereas there are crystalline materials for which

this picture works fairly well,3–5 there are other ones for which it fails.6,7,10 For the latter

materials the exponential terms in the correlation function are superposed with decaying

oscillatory terms with various frequencies. Even crystalline argon, which has an fcc lattice

and for which the exponential decay terms are dominant, exhibits weak oscillations in its

heat-current correlation function.3,5

The contribution of the oscillatory terms to the total heat conductivity depends on the

particular material studied and can be substantial for technologically relevant substances.

For example, in the case of silica the contributions from oscillatory terms are estimated to

be approximately 20% for certain zeolites and 8% for quartz.6 In an MD-based study of

the high-explosive crystal α-RDX (α-hexahydro-1,3,5-trinitro-s-triazine) it was estimated

empirically that the oscillatory terms contribute approximately 30% to the overall heat

conductivity values.7 It is widely accepted4,6,7 that these terms arise due to the presence

of optical modes in the materials studied. Nonetheless, despite their importance, rigorous

theoretical understanding of the origin and relative magnitude of these oscillations in the

heat-current correlation function is lacking. Practically, MD simulation results, which almost

always are obtained within the Cartesian picture that captures all oscillations and effects

of anharmonicity–albeit without an obvious path to fundamental understanding–are fitted

to empirical oscillatory functions to account for such modes.6,7 In this work we show that

this unfortunate level of empiricism can be remedied, at least in part, via more detailed

theoretical analysis.
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II. TRANSLATIONALLY INVARIANT HEAT-CURRENT OPERATOR IN THE

PHONON PICTURE

Here we outline the derivation of the phonon-picture lattice heat-current operator used

in our analysis of the heat conductivity that introduces an important correction to the

original derivation by Hardy21 and derivations due to other authors.22,23 Consider the crystal

Hamiltonian of the form

H =
∑
n,i,α

p2iα(n)

2mi

+
1

2

∑
n,n′

i,j,α,β

Uijαβ(n′ − n)qiα(n)qjβ(n′)

+ anharmonic terms. (3)

Here, piα(n) and qiα(n) are, respectively, operators of linear momentum and displacement

from the minimum-energy position, for the αth Cartesian component for atom i located in a

unit cell specified by lattice vector n; mi is the mass of atom i; and Uijαβ(n′−n) is the matrix

of second derivatives of the potential energy. Anharmonic potential-energy terms in Eq. (3)

include cubic and higher-order terms in the displacement operators. For the Hamiltonian

(3) to be translationally invariant the following necessary and sufficient condition has to be

satisfied:24 ∑
n′,j

Uijαβ(n′ − n) =
∑
n,i

Uijαβ(n′ − n) = 0. (4)

The total heat current corresponding to this Hamiltonian can be written as3,9,25,26

J =
d

dt

∑
n,i

xi(n)ei(n) + ei(n)xi(n)

2
, (5)

where xi(n) is the vector specifying the position of atom i in unit cell n and ei(n) is the

local energy of that atom. The total heat current for the Hamiltonian (3) consists of terms

that are quadratic in operators piα(n) and qiα(n), along with the higher-order terms. The

quadratic part of the heat current is expected to be dominant for temperatures well below

the crystal melting point,21,23 in which case the total current can be approximated by

J =
∑
n,i

(n + ri)
d(εki (n) + εpi (n))

dt
. (6)

Here, ri is the vector specifying the equilibrium position of atom i in the unit cell and

εki (n) and εpi (n) are, respectively, the local kinetic energy and the quadratic part of the

local potential energy. (Note that Eq. (6) does not include so-called convective terms.
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These are of cubic or higher degree in the displacement and/or momentum operators and

are generally expected to be small for solids.) The local kinetic energy is defined as εki (n) =∑
α p

2
i,α(n)/2mi. However, it is well known that there is an ambiguity in defining the local

potential-energy operator.21,23,26 The seemingly obvious choice for the quadratic part of the

local potential energy εpi (n), used in Refs. 21 and 23 and given by

εpi (n) =
1

2

∑
n′,j,α,β

Uijαβ(n′ − n)qiα(n)qjβ(n′), (7)

has the disadvantage of not being invariant with respect to translations and, as a result,

leads to a heat-current expression that has the same property. We will demonstrate in

Sec. IV using a model system that application of Eq. (7) can lead to unphysical results

for the heat conductivity. Defining an unambiguous, translationally invariant local energy

for the most general translationally invariant quadratic Hamiltonian (given by the first line

of Eq. (3)) appears to be impossible. Indeed, quadratic Hamiltonians are obtained as

the second-order terms of a Taylor expansion of the full Hamiltonians that, in general, are

composed of terms involving two-body, three-body, and higher-order n-body interactions.

The ambiguity of splitting the potential energy among the n particles in an n-body potential

term21,23,26 is transferred to the quadratic part of full local potential energy as well. (It is

interesting to note that the quadratic Hamiltonian can be viewed as a sum of translationally

non-invariant two-body terms.) Here we provide a physically reasonable translationally

invariant definition of the local energy that is valid when the matrices of second derivatives

satisfy Uijαβ(n′ − n) = Uijβα(n′ − n). This includes the important case of pairwise central

potentials.24 Using the expression just above along with the condition (4), the quadratic

part of the potential energy (denoted here by V ) can be re-written as a sum of explicitly

translationally invariant terms; that is,

V = −1

4

∑
n,n′

i,j,α,β

Uijαβ(n′ − n)(qiα(n)− qjα(n′))

×(qiβ(n)− qjβ(n′)). (8)

This form of V leads naturally to the following translationally invariant definition of the

local potential energy

εpi (n) = −1

4

∑
n′,j

α,β

Uijαβ(n′ − n)(qiα(n)− qjα(n′))
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×(qiβ(n)− qjβ(n′))

=
1

2

∑
n′,j

α,β

Uijαβ(n′ − n)[qiα(n)− 1

2
qjα(n′)]qjβ(n′), (9)

where the last line was obtained by applying Eq. (4). Note that this last expression differs

from the definition (7) introduced by Hardy by the presence of the second term in the square

brackets. It can be shown27 that in the case of pairwise central potentials the definition (9)

reduces to dividing the pair potential energy equally between the two particles and expanding

it through quadratic terms in atomic displacement. Such splitting of the interaction energy

for pair potentials is generally accepted to be unambiguous.26 We assume here that the

definition of the local potential energy given by Eq. (7) is also unambiguous.

Inserting (9) into Eq. (6), using the Heisenberg equation of motion for εi(n) and keeping

only the quadratic terms, we obtain

J =
1

4

∑
n,n′

i,j,α,β

Uijαβ(n′ − n)
[
(qiα(n)− qjα(n′))

pjβ(n′)

mj

+
pjβ(n′)

mj

(qiα(n)− qjα(n′))
]
(n− n′ + ri − rj). (10)

This expression is explicitly translationally invariant as it depends on the differences of

atomic displacements for the same Cartesian components. Using eigenstates ξsiα(k) and

eigenvalues ω2
s(k) of the dynamical matrix Dijαβ(k) =

∑
n Uijαβ(n) exp (ik · n)/

√
mimj of

the Hamiltonian in Eq. (3), we can introduce the normal coordinates Qs(k) and momenta

Ps(k) for the system of N unit cells as

Qs(k) =
∑
n,i,α

√
mi

N
qiα(n)ξs∗iα(k)e−ik·n,

Ps(k) =
∑
n,i,α

1√
Nmi

piα(n)ξsiα(k)eik·n, (11)

and creation and annihilation operators a†s(k) and as(k) through

a†s(k) =

√
ωs(k)

2~
Qs(−k)− i 1√

2~ωs(k)
Ps(k),

as(k) =

√
ωs(k)

2~
Qs(k) + i

1√
2~ωs(k)

Ps(−k). (12)

With these, we can re-write the heat current as

J =
~
2

∑
k,s,s′

[
(vss′(k)ωs(k) + v∗s′s(k)ωs′(k))a†s(k)as′(k)
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+vss′(k)ωs(k)a†s(k)a†s′(−k)

+v∗s′s(k)ωs′(k)as(−k)as′(k)
]
, (13)

where vector coefficients vss′(k) (with components vαss′(k)) couple modes with the same

absolute value of k but different branches in general. These coefficients are given by

vss′(k) = v′ss′(k) + v′′ss′(k), (14)

where

v′ss′(k) =
i

2
√
ωs(k)ωs′(k)

∑
n,i,j
α,β

Uijαβ(n)

×
ξs∗iα(k)ξs

′

jβ(k)
√
mimj

eik·n(n + rj − ri), (15)

v′′ss′(k) =
−i

2
√
ωs(k)ωs′(k)

∑
n,i,j
α,β

Uijαβ(n)

×
ξs∗iα(k)ξs

′

iβ(k)

mi

(n + rj − ri). (16)

Coefficients v′ss′(k) are the ones used by Hardy21 in his definition of the heat current. These

coefficients satisfy the equality v′ss′(k) = v′∗s′s(k) and, thus, for a fixed k their Cartesian

components can be viewed as Hermitian matrices. These coefficients also satisfy v′ss′(k) =

−v′s′s(−k). It can also be shown21 that they are equal to zero for modes with ωs(k) =

ωs′(k) when s 6= s′. The coefficients v′ss′(k) reduce to group velocities when s = s′.21,23

Coefficients v′′ss′(k) ensure the translational invariance of the heat-current expression (13)

but do not appear in the original derivation by Hardy21 and other authors.23 In contrast to

v′ss′(k), coefficients v′′ss′(k) are antihermitian, that is, v′′ss′(k) = −v′′∗s′s(k). They also satisfy

v′′ss′(k) = v′′s′s(−k). In general, they are not equal to zero for modes with ωs(k) = ωs′(k)

when s 6= s′. It is also worth mentioning that the expressions for the generalized group

velocities are identical in both the quantum and classical pictures. (Planck’s constant does

not appear in Eqs. (15) and (16).)

III. HEAT-CURRENT CORRELATION FUNCTION AND THERMAL CON-

DUCTIVITY TENSOR

The terms with s = s′ in the first line of Eq. (13) correspond to the Peierls16 definition

of the heat current, that is, JP =
∑

k,s v
′
s(k)ωs(k)a†s(k)as(k) (where the second identical
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subscript in v′ss′(k) is omitted). In most phonon-picture treatments of crystal heat con-

ductivity only this part of the full summation in Eq. (13) is considered. In the present

analysis of the heat-current correlation function and the associated heat conductivity ten-

sor, we use the full expression for the heat current given by Eq. (13). We apply the ad hoc

relaxation-time approximation,17,19,20 wherein the effect of anharmonic mode coupling on the

mode dynamics is approximated by using effective decay rates γs(k) for each mode, that is,

a†s(k, t) = a†s(k, 0) exp(iωs(k)t− γs(k)t) and as(k, t) = as(k, 0) exp(−iωs(k)t− γs(k)t). The

relaxation-time approximation has been widely applied to approximate exact lattice-mode

dynamics; see, for example, Refs. 17–20, 28–31. Despite its simplicity, the relaxation-time

approximation generally provides a qualitatively correct picture of the mode dynamics. It

was shown in several numerical studies that heat conductivities calculated using this ap-

proximation agree quite well with those obtained from MD simulations or more rigorous

theoretical approaches.18,28–31 With all the time dependence appearing in the exponential

factors, evaluation of the correlation function in Eq. (2) using the full heat current (13)

reduces to the calculation of the expectation values of products of two creation and two

annihilation operators over the harmonic equilibrium ensemble. This calculation yields the

following expression for the heat-current correlation function:

〈Jα(0)Jα′(t)〉q =
1

4β2

∑
k,s,s′

e−(γs(k)+γs′ (k))t

×
(
G−ss′αα′(k) cos (ωs(k)− ωs′(k))t

+G+
ss′αα′(k) cos (ωs(k) + ωs′(k))t

)
, (17)

with

G±ss′αα′(k) =
~β(ns′(k)± ns(k) + (1± 1)/2)

ωs(k)± ωs′(k)

×(vαss′(k)ωs(k)∓ vα∗s′s(k)ωs′(k))

×(vα
′∗

ss′ (k)ωs(k)∓ vα′

s′s(k)ωs′(k)), (18)

where ns(k) = (exp (β~ωs(k))− 1)−1 is the Bose-Einstein distribution. The classical analog

of Eq. (17), which is relevant for interpreting MD results, is obtained by taking the limit

~→ 0 and has the same form as Eq. (17) but with coefficients G±ss′αα′(k) replaced by their

classical limits

lim
~→0

G±ss′αα′(k) =
1

ωs(k)ωs′(k)
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= ×(vαss′(k)ωs(k)∓ vα∗s′s(k)ωs′(k))

×(vα
′∗

ss′ (k)ωs(k)∓ vα′

s′s(k)ωs′(k)). (19)

It is understood that in the classical case the effective relaxation rates in Eq. (17) are also

replaced by their classical values. It is evident from Eq. (17) that both classically and quan-

tum mechanically the heat-current correlation function is a superposition of exponentially

decaying oscillatory terms, with frequencies of the oscillations given by sums and differences

of the crystal normal-mode frequencies; terms with s = s′ correspond to pure exponential

decay. Thus, the oscillations appear naturally as a consequence of using the full definition

of the heat current (13), and the magnitudes of individual terms are given by the functions

G±ss′αα′(k).

Integrating the correlation function in Eq. (17) over time leads to the following expression

for the quantum mechanical heat conductivity tensor:

καα′ =
kB
4V

∑
k,s,s′

[ G−ss′αα′(k)(γs(k) + γs′(k))

(ωs(k)− ωs′(k))2 + (γs(k) + γs′(k))2

+
G+
ss′αα′(k)(γs(k) + γs′(k))

(ωs(k) + ωs′(k))2 + (γs(k) + γs′(k))2

]
. (20)

The classical heat conductivity tensor has the same form but with coefficients G±ss′αα′(k)

taken in their classical limit, that is, Eq. (19). To the best of our knowledge, Eq. (20) is

a new expression although related expressions that consider the so-called off-diagonal con-

tributions to heat conductivity were derived in Refs. 23, 32–34. Note, however, that these

published related expressions include only coefficients v′ss′(k) (15) and not the full coeffi-

cients vss′(k) (14); and, therefore, may lead to incorrect results when heat conductivity is

calculated explicitly. The terms with s = s′ in the first line of Eq. (20) correspond to the

Peierls16 result for the heat conductivity whereas the s 6= s′ terms give the contribution

from the oscillatory terms in the heat-current correlation function. Simple analysis of the

functional form of Lorentzians and functions G±ss′αα′(k) in Eq. (20) shows that the second

term in the square brackets is always smaller than the first. In general, however, application

of Eq. (20) to calculate overall heat conductivity as well as contributions from the specific

terms requires knowledge of the generalized group velocities, mode frequencies, and relax-

ation rates. Whereas frequencies and relaxation rates for various crystalline materials have

been routinely calculated numerically,6,8–10 to our knowledge the generalized group velocities

were never thoroughly investigated. Our preliminary calculations27 of the generalized group

velocities for α-RDX show that, for some mode pairs, their magnitude can be much larger
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than the typical group velocities. This is consistent with the large contribution from the

oscillatory terms reported for α-RDX in Ref. 7.

The contribution from the oscillatory terms in Eq. (20) can be expected to be small (of

order γ) when ωs(k)±ωs′(k)� γs(k)+γs′(k). However, crystals with unit cells that contain

many degrees of freedom generally have a large number of optical modes that are often nearly

or completely degenerate for a given k value. For pairs of such modes the frequency difference

ωs(k)−ωs′(k) is small or zero. Thus, for such pairs of modes ωs(k)−ωs′(k) . γs(k)+γs′(k)

and the contribution of the corresponding terms to the heat conductivity is of order 1/γ;

that is, of the same order as the diagonal terms. Specific magnitudes of contributions from

particular such pairs depend on the relative values of the relaxation rates and the generalized

group velocities and can, in principle, be substantial. Depending on the crystal type and the

k-space direction, the difference ωs(k)− ωs′(k) can also be small or zero for acoustic mode

pairs and, thus, contributions from such pairs of acoustic modes also can be important in

principle.

We emphasize that the formalism developed in Sections II and III is general. In principle,

it is equally applicable to crystalline systems of any non-fractal dimensionality—1-D, 2-D,

and 3-D—and of arbitrary symmetry class. In the next section, we apply key results from

Sections II and III to an exactly solvable, one-dimensional system. It is widely understood

that 1-D and 2-D systems can exhibit pathologies for various properties and processes (e.g.,

heat transport and diffusion among others); and in this regard, such systems are often

thought of as edge cases, the results for which much be regarded with caution. However,

for the present purpose of demonstrating the application and potential utility of the new

theoretical expressions derived in Sections II and III, we view concerns with these potential

pitfalls as outweighed by considerations of closed-form analytic tractability and the ability to

determine precisely and unambiguously the contributions of oscillatory and non-oscillatory

terms to both the heat current and the thermal conductivity.

IV. AN EXACTLY SOLVABLE 1-D MODEL

To emphasize the importance of using the full definition of the heat current (13), we

consider an exactly solvable model, namely a one-dimensional harmonic chain of particles of

equal mass with alternating coupling constants and interatomic distances.35,36 This model

yields an analytic expression for the generalized group velocities given by Eq. (14). On one
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hand, we use this model to show that, even in crystals with just two degrees of freedom per

unit cell, the generalized group velocities can be similar in magnitude to the conventional

group velocities. On the other hand, despite the simplicity of the model, it can be used

to approximate the longitudinal modes in linear chains of identical atoms or atomic groups

separated by bonds of alternating type, such as acetylenic carbon atoms (i.e., carbyne) or

polyacetylene. The Hamiltonian of the model is given by

H =
∑
n,i

p2i (n)

2m
+ c1

∑
n

(q1(n)− q2(n))2

+c2
∑
n

(q2(n)− q1(n+ a))2. (21)

There are two degrees of freedom per unit cell, thus index i takes values of 1 and 2. The

lattice spacing a is the sum of distances a1 and a2, which are the alternating spacings

between particles connected by springs with constants c1 and c2, respectively. Note that

the individual distances a1 and a2 do not appear separately in the Hamiltonian and for this

reason frequencies and group velocities depend only on their sum a. The values of a1 and

a2 do, however, affect the value of the generalized group velocity. Diagonalization of the

Hamiltonian in Eq. (21) yields two phonon branches, acoustic and optical, with frequencies

ωs(k) given by

ωs(k) =

√
2(c1 + c2 + (−1)sf(k))

m
, (22)

with s taking values of 1 and 2 and f(k) =
√
c21 + c22 + 2 c1c2 cos ka. Coefficients v′ss′(k) and

v′′ss′(k) are obtained by application of Eqs. (15) and (16):

v′ss(k) =
(−1)s−1ac1c2 sin ka√

2m(c1 + c2 + (−1)sf(k))f(k)
, (23)

v′21(k) = i
a(c21 − c22) + (a1 − a2)f 2(k)

4f(k)
√
m
√
c1c2|sin ka

2
|

, (24)

v′′ss(k) = 0, (25)

v′′21(k) = −i a1c1 − a2c2
2
√
m
√
c1c2|sin ka

2
|
. (26)

As discussed in Sec. II, coefficients v′ss(k) are the group velocities corresponding to frequen-

cies (22); and v′12(k) = v′∗21(k) and v′′12(k) = −v′′∗21(k). These coefficients as functions of k

are shown in Fig. 1, for the parameters c1 = 804.1 J m−2 and c2 = 481.2 J m−2. These

parameters were fitted using Eqs. (22) and (23) to match the carbyne chain longitudinal

acoustic group velocity at k = 0 (31835 m s−1) and the acoustic mode frequency at k = π/a
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FIG. 1. Acoustic mode group velocity v′11(k) (blue), optical mode group velocity v′22(k) (red), and

the imaginary parts of coefficients v′21(k) (solid green) and −v′′21(k) (solid black), for parameters

fitted to approximate longitudinal lattice-mode frequencies in a carbyne chain. (The dashed green

and black curves are discussed in the text.) As noted in Sec. II, the results in this figure are

identical for both the quantum and classical pictures.

(1650 cm−1) evaluated from the experimental data given in Ref. 37. The interatomic dis-

tances a1 = 1.207 Å and a2 = 1.358 Å were taken from Ref. 38 where they were obtained

using high-level electronic structure calculations. The mass was set to 12 amu. Coefficients

v′21(k) (green solid curve) and −v′′21(k) (black solid curve) behave as k−1/2 for small values of

k and remain finite at the zone boundary where the group velocities are equal to zero. The

singularities at k = 0 for both of these coefficients cancel out exactly when heat currents and

corresponding correlation functions and heat conductivities are calculated using Eqs. (17)

and (20), respectively. By contrast, if the coefficient v′′21(k) is omitted (which corresponds
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to the translationally non-invariant local energy definition (7)), the k−1/2 singularity of co-

efficient v′21(k) leads to divergence of the average value of the squared heat-current per unit

cell for this 1-D model. (The average squared heat-current per unit cell remains finite if the

full translationally invariant definition of the current is used.)

To demonstrate the sensitivity of the generalized group velocity to the geometry of the

unit cell, we also show in Fig. 1 the imaginary parts of v′21(k) (dashed green curves) and

−v′′21(k) (dashed black curves) for a1 equal to 1.007 Å (short dashes) and 1.407 Å (long

dashes), with lattice constant a = a1 + a2 = 2.565 Å and all other parameters the same as

in carbyne. Note that, as discussed above, such changes in a1 and a2 do not affect the mode

frequencies and group velocities. By contrast, both coefficient v′21(k) and v′′21(k) are affected

by the unit-cell geometry.

To show the typical behavior of the heat-current correlation function, we augment our

model by introducing phenomenological mode decay rates γs(k) to mimic anharmonic mode-

mode couplings. We choose ad hoc rates of the form γs(k) = η
√
ωs(k). Note that one-

dimensional lattices typically have size-dependent heat conductivity that diverges when the

chain becomes infinitely long; see, for example, Refs. 39–41 and references therein. However,

while understanding the limitations of the present model, for the purpose of demonstrating

the main result of this work, we specifically employ decay rates that ensure a finite value

of the coefficient of heat conductivity given by Eq. (20). Figure 2 shows the behavior of

the heat-current correlation function given by Eq. (17) in the classical limit for a choice of

parameters typically found in molecular crystals. Specifically, coefficient c1 is set to be large,

the same as in the carbyne example above to model a stiff covalently bonded molecule, while

coefficient c2 is taken to be much smaller (200.0 J m−2) to represent weak van der Waals

interaction between molecules. The interatomic distances a1 and a2 are chosen as 1.2 Å and

2.4 Å, respectively, and the atomic mass once again is 12 amu. Decay rates were chosen to be

a few times lower than the frequencies for the corresponding mode branch for most k values

(see inset in Fig. 2) and the parameter η was set to 9.216 cm−1/2. Relative contributions of

the constituent terms shown in Fig. 2 to the total heat conductivity given by Eq. (20) are as

follows: acoustic, 91.4%; optical, 1.7%; and oscillatory, 6.9%. Thus, the contribution from

the oscillatory terms for our model, although small, is larger than the one from the optical

modes. Note that, independent of the specific mode dynamics, the heat-current correlation

function at time t = 0 corresponds to the average squared heat-current in equilibrium. As

can be seen from Fig. 2, the contribution to this average value from the off-diagonal terms of
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FIG. 2. Main panel: Total scaled heat-current correlation function (black, heavy) and its con-

tributions from the acoustic modes (blue), optical modes (red), and oscillatory terms dependent

on coefficient v21(k) (green) for molecular-crystal-like choice of parameters in the classical limit.

Inset: Frequencies (solid curves, left ordinate) and decay rates (dashed curves, right ordinate) for

the acoustic (blue) and optical (red) branches used to construct the plots in the main panel.

the total heat current (the green curve at the time t = 0) is approximately 43% of the total

heat current (the black curve at t = 0). We reiterate that this observation is independent of

the ad hoc nature of the time evolution that we used. Based on the form of Eq. (20), one

can anticipate that the contribution of the oscillatory terms to the total heat conductivity

in realistic crystals will become more significant in materials with a large number of mode

branches s, as the total number of the coupling terms grows as s2 for large s.
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V. CONCLUSIONS

We showed that the oscillatory behavior of the heat-current correlation function observed

in molecular dynamics simulations can be at least partially explained by considering the full

definition of the heat-current operator that includes the off-diagonal terms in the phonon

representation. We emphasized the necessity to use a translationally invariant phonon-

picture definition of the heat current. Using the relaxation-time approximation, we obtained

expressions for both the correlation function and the thermal conductivity tensor that include

the off-diagonal terms and applied them to an analytically solvable 1-D Hamiltonian that

approximates longitudinal lattice modes in carbyne. Using ad hoc mode-relaxation rates

that ensure a finite conductivity for the model, we estimated contributions to the heat

conductivity from diagonal and off-diagonal parts of the heat current. Further validation of

these results requires applying them to real crystalline materials either in the framework of

molecular dynamics or quantum mechanics.
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