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An atomistic effective Hamiltonian is used to investigate electrocaloric (EC) effects of Pb(Mg1/3Nb2/3)O3

(PMN) relaxor ferroelectrics in its ergodic regime, and subject to electric fields applied along the pseudocubic
[111] direction. Such Hamiltonian qualitatively reproduces (i) the electric field-versus-temperature phase dia-
gram, including the existence of a critical point where first-order and second-order transitions meet each other;
and (ii) a giant EC response near such critical point. It also reveals that such giant response around this critical
point is microscopically induced by field-induced percolation of polar nanoregions. Moreover, it is also found
that, for any temperature above the critical point, the EC coefficient-versus-electric field curve adopts a maxi-
mum (and thus larger electrocaloric response too), that can be well described by the general Landau-like model
proposed in [Jiang et al, Phys. Rev. B 96, 014114 (2017)] and that is further correlated with specific microscopic
features related to dipoles lying along different rhombohedral directions. Furthermore, for temperatures being at
least 40 K higher than the critical temperature, the (electric field, temperature) line associated with this maximal
EC coefficient is below both the Widom line and the line representing percolation of polar nanoregions.

PACS numbers: 77.70.+a, 77.80.Jk, 64.60.ah

I. INTRODUCTION

The electrocaloric (EC) effect characterizes the change in
dipolar entropy or temperature under the application and/or
removal of an electric field1–6. It has the potential to lead to
the design of efficient solid-state cooling devices for a broad
range of applications6–9. As such, EC effects have been in-
tensively studied in recent years (see, e.g., Refs.1,6,10–26 and
references therein). In particular, a promising large elec-
trocaloric response has been measured in prototypical lead-
based relaxor ferroelectrics, such as Pb(Mg,Nb)O3 (PMN),
(Pb,La)(Zr,Ti)O3 and Pb(Mg,Nb)O3–PbTiO3

26, in the vicin-
ity of the critical point where first-order and second-order
transitions meet in the electric field-versus-temperature phase
diagram. Relaxor ferroelectrics differentiate themselves
from typical ferroelectrics, by, e.g., adopting a frequency-
dependent dielectric response-versus-temperature function, as
well as several characteristic temperatures27–33 even if they
remain macroscopically paraelectric down to 0 K. It is impor-
tant to realize that two types of relaxor ferroelectrics should
be distinguished because they can exhibit different proper-
ties: Pb-based ones, such as PMN, versus lead-free ones,
such as Ba(Zr0.5Ti0.5)O3 (BZT). For instance, unlike PMN,
there is no aforementioned critical point present in BZT. An-
other evidence of their possible difference is that the relaxor
nature of BZT was predicted to originate from small Ti-rich
polar nanoregions (PNRs) as a result of the difference in po-
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larizability between Ti and Zr sites34, while the lead-based
PMN system was numerically found to be a relaxor because
of a complex interplay between random electric fields, fer-
roelectric and antiferroelectric interactions – with such inter-
play yielding much larger PNRs touching each other at low
temperatures35.

Due to its complexity, unlike typical ferroelectrics14–18

and lead-free relaxor ferroelectrics36, few atomistic simula-
tions about EC effects have been performed in lead-based
relaxors37. Consequently, several questions remain unan-
swered in systems such as PMN. For instance, are atomistic
modeling able to reproduce the existence of a critical point
in such complex compound and reveal atomistic features (if
any) associated with the enhancement of EC response near
the critical point? In particular, could such features be related
to electric-field-induced percolation of the polar nanoregions?
It is also legitimate to wonder if, for temperatures higher than
the critical point, some electric fields can also yield an en-
hancement of the EC response (i.e., a large electrocaloric
response too), and if such enhancement can be traced back
to specific atomistic features? In addition, while the sim-
ple Landau-type phenomenological model developed in Ref.36

can reproduce the temperature- and field-driven behavior of
the EC response of typical ferroelectrics and lead-free relaxor
ferroelectrics, it is important to determine if such model is
also valid in the more complex PMN compound, which will
make such model even more general and of broader use (note
that such a model predicts that the EC coefficient is directly
related to the product of the temperature and the derivative of
the square of the polarization with respect to electric field).

The goal of this article is to provide an answer to all the
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aforementioned questions in the PMN relaxor ferroelectric
subject to dc electric fields applied along the pseudocubic
[111] direction. For that, we will adopt the following organi-
zation. Section II provides details about the atomistic method
employed here, as well as our practical way to compute the
EC response. Section III.A demonstrates that such atomistic
method is indeed able to qualitatively reproduce the peculiar
(electric field, temperature) phase diagram of PMN, including
its critical point. Section III.B shows that (1) there is indeed
an electric field leading to a maximal EC coefficient for any
fixed temperature above the critical point, with such maximal
EC coefficient being strongly enhanced when decreasing the
temperature such as to approach the critical point from above;
and (2) that the Landau-type model of Ref.36 is still rather ac-
curate for PMN. Section III.C is dedicated to local atomistic
features inherently linked to EC responses. In particular, the
giant EC coefficient numerically found in the vicinity of the
critical point is revealed to be correlated with field-induced
percolation of polar nanoregions, while the optimization of
the EC response for higher temperature is linked to other, sub-
tle and original microscopic characteristics. Finally, Section
IV summarizes this work.

II. METHODS

Here, we use the first-principles-based effective
Hamiltonian (Heff) approach developed in Ref. [35].
Its total internal energy contains two main terms,
Eint({ui}, {vi}, ηH , {σj}) = Eave({ui}, {vi}, ηH) +
Eloc({ui}, {vi}, {σj}), where {ui} is the Pb-centered local
soft mode in unit cell i (which is proportional to the electric
dipole moment of that cell), {vi} are variables related to the
inhomogeneous strain and are centered on the B sites (Ng
or Mg ions), ηH is the homogeneous strain tensor, and {σj}
characterizes the atomic distribution of Mg and Nb ions.
Eave describes the energies of a simple virtual perovskite
system and has five terms: (i) the local-mode self-energy; (ii)
the long-range dipole-dipole interaction; (iii) the short-range
interactions between local modes; (iv) the elastic energy;
and (v) the energy representing the interaction between local
modes and strains38. Eloc mimics how the distribution of Mg
and Nb cations alters energetics35. We also add to Eint an
energy that is proportional to minus the dot product between
polarization and electric field, in order to simulate the effect
of such field on properties.

We employ this Heff within Monte Carlo (MC) simulations
on 18×18×18 supercells (29,160 atoms) with periodic bound-
ary conditions. Mg and Nb ions are randomly distributed in-
side these supercells. 20,000 MC sweeps are used for equi-
libration and an additional 80,000 MC sweeps are employed
to compute statistical averages at desired temperature, T , and
electric field, E , in order to get converged results. Typically
and unless specified in figures’ captions, we use here one dis-
ordered chemical configuration, in order to capture the first-
order nature of some electric-field-driven transitions (since
different random arrangements can have slightly different crit-
ical fields for these first-order transitions, and therefore aver-

Figure 1. (color online) E -T phase diagram of PMN for dc electric
fields applied along the pseudocubic [111] direction, as predicted by
our Heff when varying the magnitude of the electric field for each
fixed, considered temperature. The solid line represents first-order
transitions between non-ergodic and ferroelectric states, while the
brown dashed line displays the Widom line. These two lines meet at
the critical (ECP ,TCP ) point. Two additional dashed lines are indi-
cated in this figure: the blued one along which the EC α coefficient
is maximum for any considered temperature above TCP , and the red
one that displays the location of percolation for T ≥ TCP .

aging over different configurations will, e.g., smear out the
first-order-induced jump of the polarization when increasing
the electric field).

The EC coefficient, α, is defined to be the derivative of the
temperature with respect to electric field at constant entropy,
and is computed from MC runs via the following cumulant
formula36,39:

α = −Z∗alatNT {
〈|u|Eint〉 − 〈|u|〉 〈Eint〉

〈

Eint
2
〉

− 〈Eint〉
2

}, (1)

where Z∗ is the Born effective charge, alat is the five-atom
lattice constant, N is the number of sites in the supercell, T
is the selected temperature, u is the supercell average of the
local mode, Eint is the total internal energy of the Heff, and
〈 〉 denotes the average over the MC sweeps at every selected
temperature. The computation of α via Eq. (1) is done for
a chosen combination of temperature and magnitude of a dc
electric field applied along the pseudocubic [111] direction.

III. RESULTS

A. E -T phase diagram

Let us start by determining the E-T phase diagram of PMN,
as predicted from the use of our Heff for a given disordered
configuration. Figure 1 shows such phase diagram, when
varying the magnitude of the electric field along the [111]
direction while keeping the temperature constant (for differ-
ent choices of this temperature ranging between 100 and 700
K). Two different particular lines can be seen there: (1) a
solid line corresponding to a first-order transition from a non-
ergodic relaxor state to a ferroelectric state, as consistent with
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(a)

(b)

Figure 2. (color online) Electrocaloric coefficient, α, as a function
of the applied dc electric field E , at (a) 380 K and (b) 500 K. The
solid green lines represent the fit of the MC results by the Landau-

like model of Ref.36, i.e., α = βT ∂P2

∂E

∣

∣

∣

T
, where β is a constant.

measurements40–42 and as numerically found via the occur-
rence of a sudden jump in the polarization-versus-E curve
at fixed temperature (see Supplemental Material43); and (2)
a brown dashed line corresponding to the so-called Widom
line42,44,45 and that is presently identified via the occurrence of
peaks in the dielectric response (see Supplemental Material43,
while the polarization-versus-E function is continuous). Inter-
estingly, these two lines meet at a critical point to be denoted
as (ECP , TCP ) and which is equal to (86.6 kV/cm, ≃ 360 K).
Our predicted phase diagram of Fig. 1 therefore qualitatively
agrees with those measured in Refs.40–42, that also exhibit a
critical point, along with a first-order transition line below
TCP and a Widom line above TCP . Quantitatively, our sim-
ulated ECP is about 22 times larger than the measured one42,
which is typical for atomistic simulations36,46, while the re-
sulting predicted TCP is about 130 K higher than the observed
one of 230 K40.

B. EC coefficients

Let us now concentrate on the EC coefficient. It is impor-
tant to recall that Eq. (1) automatically assumes ergodic con-
ditions. Since such conditions are “only” satisfied for temper-
atures above TCP for any field in the phase diagram of Fig. 1
(recall that for T < TCP and E < ECP , the system is non-

ergodic), we decided to limit the present investigation of EC
effects in PMN for temperatures equal or higher than ≃ 360
K. Figure 2 shows the electrocaloric coefficient as a func-
tion of electric field, E , for two selected temperatures, namely
380 and 500 K (that therefore both lie in the ergodic regime).
For any presently investigated temperature, α exhibits a non-
monotonic behavior with field that has also been previously
seen in the lead-free Ba(Zr,Ti)O3 relaxor ferroelectric36. Such
behavior consists of vanishing values at low fields, followed
by an increase up to a maximum (to be denoted as αmax) be-
fore decreasing for larger fields.

Moreover, Fig. 3 reportsαmax as a function of temperature.
It is clear that, in the ergodic regime, αmax increases when the
temperature decreases down to the critical point TCP ⋍ 360
K, which is in qualitative agreement with experimental data
of PMN26 and which emphasizes the importance of proximity
to the critical point for the enhancement of the electrocaloric
effect. Interestingly, our predicted value of αmax at 380 K is
of the order of 6.0×10−7 K m/V, that is of the same order than
the experimental data of 3.0 × 10−7 K m/V at the measured
TCP critical temperature of PMN26. Note that αmax is still
large at, e.g., 500 K, since it is computed to be of the order of
2.0× 10−7 K m/V.

Furthermore, Fig. 1 further displays the value of the spe-
cific electric field at which α is maximum for any investigated
temperature above TCP . It reveals that, for any of these tem-
peratures (at the sole exception of TCP ), this field is lower
than that of the Widom line. Such feature can be understood
by the fact that, as previously found for Ba(Zr,Ti)O3 relaxor
ferroelectrics as well as for prototypical ferroelectrics36 and
as shown in Figs. 2(a) and 2(b) by means of solid green
curves, the behavior of α versus electric field for any con-
sidered temperature is found here to be very well reproduced
by a simple Landau-derived model (note that Ref.36 provides
more details about this model, assumptions and the resulting
derived final formula) indicating that α should be equal to

βT ∂P 2

∂E

∣

∣

∣

T
, where β is a constant and P is the polarization.

Such fact further demonstrates the generality of such simple
model, and the intrinsic relationship between the EC coeffi-
cient and the derivative of the square of the polarization with
respect to electric field at constant temperature. The electric
field leading to the enhancement of αmax at a fixed temper-
ature is therefore not the one of the Widom line because this
latter is related to the vanishing of the derivative of the dielec-
tric constant with respect to temperature at fixed electric field
(which thus leads to the annihilation of the second derivative
of the polarization with respect to both electric field and tem-
perature) rather than the vanishing of the second derivative of
the square of the polarization with respect to electric field at
constant temperature (which is the case for αmax).

Let us now check if the electric fields associated with αmax

can be rather traced back to local features.
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Figure 3. (color online) Maximal value of the electrocaloric coeffi-
cient, αmax, as a function of temperature.

C. Local features

For that, we first decided to resort to percolation theory and
computed two specific quantities. The first one is the so-called
strength of the percolating cluster47,48, that is calculated as
P∞ = N∞/NPb, where N∞ is the number of the distinct Pb
sites of the supercell belonging to the (infinite) percolating
cluster [note that the infinite cluster is defined to be a clus-
ter spreading from one side of the supercell to the opposite
side, and inside which the dipoles are nearly parallel to each
other (that is, when the cosine of the angle between two near-
est neighboring dipoles is larger than 0.85)] and where NPb

is the number of Pb ions in the whole supercell. The second
quantity is the average cluster size35,47,48, which is computed
as 〈s〉 =

〈

N2
〉

/ 〈N〉, where N is the number of Pb sites be-
longing to a polar nanoregion, and the brackets denote the av-
erage over all the PNRs existing inside the supercell (note that
the criterion presently used to numerically find if two dipoles
centered on first nearest-neighbors Pb ions belong to the same
PNR is that the angle between these two dipoles has a cosine
being between 0.85 and 1.0). Note that 〈s〉 is only computed
here when the strength of the percolating cluster is negligible,
since 〈s〉 is only physical when the percolating cluster has not
formed yet.

Figures 4(a) and 4(b) show the strength of the percolating
cluster as a function of the magnitude of the electric field at
380 and 500 K, respectively, with their insets displaying the
corresponding field dependency of the average cluster size at
these two temperatures. At 380 K, P∞ basically vanishes be-
low E ⋍ 140 kV/cm, and then becomes finite and significantly
increases when the field further increases. Moreover, the in-
set of Fig. 4(a) reveals that 〈s〉 is nearly constant, around 4,
for fields below 87 kV/cm, and then is rapidly enhanced when
E increases up to 140 kV/cm. Such behaviors imply that the
PNRs are first typically small for low fields and then rapidly
become bigger for larger fields, until they percolate at the spe-
cific field of 140 kV/cm for the temperature of 380 K. Strik-
ingly, such percolating field of 140 kV/cm is very close to the
value of the field at which α adopts its maximal value at 380 K

(a)

(b)

Figure 4. (color online) Dependency of the strength of the percolat-
ing cluster on the magnitude of the electric field applied along [111]
in disordered PMN solid solutions, at 380 K (Panel a) and 500 K
(Panel b). The insets show the average cluster size as a function of
field. P∞ and 〈s〉 are averaged here over 20 different disordered
PMN configurations, in order to obtain a better statistics. The red
lines are guides for the eye.

[see Fig. 2(a)]. In other words, our results reveal that, close to
the critical point (ECP ,TCP ), the EC coefficient is optimized
when percolation of dipoles occurs at the atomistic scale. To
know if such fact also holds for higher temperature, one can
now pay attention to the data of Fig. 4(b) corresponding to
500 K. In that case, the percolating field is close to ⋍ 554
kV/cm, which is larger than the field of ⋍290 kV/cm at which
α is maximum at 500 K [see Fig. 2(b)] (note also that the
average cluster size at low fields is now close to 2.5 at 500
K [see the inset of Fig. 4(b)], which is smaller than 4 at 380
K, and which explains why one needs larger fields to induce
percolation at larger temperature). In other words, percolating
fields are not necessarily the fields at which the EC coefficient
is optimal for any temperature above TCP . In fact, and as also
demonstrated by Fig. 1 that further reports the fields at which
percolation occurs for temperatures above TCP , it is only for
temperatures lying between ≃ 360 and 400 K (that is near
the predicted value35 of the so-called T ∗ of PMN49–51) that
the field yielding a maximum of α is close to the percolating
field.

Let us thus now search for other local features that can bet-
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ter correlate with the enhancement of the EC coefficient for
both 380 and 500 K. For that, we computed the percentage
of dipoles in the supercell that lie near (namely, within 25◦)
the [111], [111] or [111] pseudocubic directions, as a func-
tion of the magnitude of the dc electric field (that, we recall,
is applied along [111]). In other words, we numerically de-
termined the percentage of dipoles lying near all the rhom-
bohedral directions that have a positive projection on the ap-
plied field, with the sole exception of this applied [111] di-
rection. Figures 5(a) and 5(b) show such percentage at 380
and 500 K, respectively, and reveal that it exhibits a max-
imum at some specific temperature-dependent field. Inter-
estingly, such latter fields are basically those associated with
the maximal values of α at 380 and 500 K [see Figs. 2(a)
and 2(b)]. In other words, the optimal α for temperatures
of 380 and 500 K (which is characteristic of the maximal
field-induced change of entropy at these temperatures) is ac-
companied by subtle local rearrangements of the dipolar pat-
tern in PMN. We also checked (not shown here) that αmax

at even higher temperature, such as 700 K, is also associated
with such aforementioned local features involving dipoles ly-
ing near the [111], [111] or [111] pseudocubic directions. In-
terestingly, Ref.37 numerically found that large EC effect can
occur in Pb(Mg,Nb)O3-PbTiO3 solid solutions for composi-
tions lying within the morphotropic phase boundary, that is
within a concentration region where the polarization can eas-
ily rotate and thus for which the dipolar pattern is significantly
altered by the application of an electric field – which can be
thought to be in-line with our local findings. Note also that
correlation between enhancement of EC coefficients and oc-
currence of local features was found in the lead-free BZT re-
laxor ferroelectric too36, except that the precise local quantity
associated with αmax is different between BZT and PMN –
likely because the field was applied along [001] rather than
[111] in our previous study about EC coefficient in BZT36. As
a matter of fact, the dipoles involved in the local features of
BZT inherent to the enhancement of αmax are those pointing
near the four <111> pseudocubic directions having a positive
z component, that are [111], [111], [111] and [111].

IV. SUMMARY

In summary, we employed the effective Hamiltonian of Ref.
[35] to shed some light on electrocaloric effects in PMN.
It is particularly striking that such Hamiltonian can qualita-
tively reproduce not only the peculiar electric field-versus-
temperature phase diagram but also the optimization of the EC
coefficient near the critical point in this rather complex sys-
tem. The fact that the recently developed Landau-like model,
predicting that the EC coefficient is simply related to the prod-
uct of temperature and the field derivative of the square of the
polarization36, also describes well the EC behavior of PMN
as a function of electric field and temperature is also promis-
ing for phenomenological modelization of complex inhomo-
geneous systems. Moreover, we hope that the present discov-
eries that the giant EC coefficient in the vicinity of the critical
point corresponds to the percolation threshold while (the still

(a)

(b)

380 K

500 K

Figure 5. (color online) Percentage of dipoles lying near the [111],
[111] or [111] pseudocubic direction, as a function of the magnitude
of the dc electric field applying along the [111] direction, at (a) 380
K and (b) 500 K.

large)αmax for higher temperatures is related to other specific
microscopic features further lead to a better understanding of
EC effects and relaxor ferroelectrics. It will also be interesting
in a near future to investigate the effect of long-range and/or
short-range chemical orders between Mg and Nb ions on the
electrocaloric response of PMN, since properties of such sys-
tem have been shown to be dependent on it52.
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