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Weak superconducting proximity effect in the vicinity of the topological transition of a quantum
anomalous Hall system has been proposed as a venue to realize a topological superconductor (TSC)
with chiral Majorana edge modes (CMEMs). Recent experiment [He, et al., Science 357, 294
(2017)] claimed to have observed such CMEMs in the form of a half-integer quantized conductance
plateau in the two-terminal transport measurement of a quantum anomalous Hall-superconductor
junction. While the presence of a superconducting proximity effect generically splits the quantum
Hall transition into two phase transitions with a gapped TSC in between, in this work we propose
that a nearly flat conductance plateau, similar to that expected from CMEMs, can also arise from
the percolation of quantum Hall edges well before the onset of the TSC or at temperatures much
above the TSC gap. Our work, therefore, suggests that in order to confirm the TSC, it is necessary to
supplement the observation of the half-quantized conductance plateau with a hard superconducting
gap (which is unlikely for a disordered system) from the conductance measurements or the heat
transport measurement of the transport gap. Alternatively, the half-quantized thermal conductance
would also serve as a smoking-gun signature of the TSC.

Recent years have seen a burgeoning interest in realiz-
ing topological superconductors (TSCs) which host zero-
energy Majorana modes. These Majorana zero modes
hold potential applications for a fault-tolerant topolog-
ical quantum computation1 owing to their non-Abelian
braiding statistics2,3. They can be found in the vortex
cores of a two-dimensional (2D) chiral TSCs with an odd
integer Chern number. Recent theoretical studies4–6 pro-
posed to realize this chiral TSC using a quantum anoma-
lous Hall insulator (QAHI) in proximity to an s-wave
superconductor (SC).

The quantum anomalous Hall (QAH) state is a quan-
tum Hall (QH) state without an external magnetic field
which can be realized in a 2D thin film of magnetic topo-
logical insulator (TI) with ferromagnetic ordering7–11.
For the regime where the ferromagnetic-induced ex-
change field strength |λ| is greater than the hybridiza-
tion gap |m0| induced by the coupling between the top
and bottom surfaces, the system has a Chern number
C = λ/|λ| and in the opposite limit where |λ| < |m0|,
C = 06,12. By changing the applied magnetic field over
a relatively small range, a topological phase transition
can be induced between the QAHI with C = 1 and the
trivial insulator state with C = 013. When the QAH
is proximitized by an s-wave SC, the C = 1 and C = 0
phases are driven into N = 2 and N = 0 phases4, respec-
tively, where N denotes the number of chiral Majorana
edge mode (CMEM). At the transition between these two
phases, there exists an N = 1 gapped TSC4,5. Since a
single CMEM carries one-half of the incoming charges,
it manifests as a half-integer quantized e2/2h plateau in
the conductance between two normal leads and an in-
teger quantized e2/h peak in the conductance between a
normal lead and the SC measured at the coercive field5,6.
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FIG. 1. Schematics of the magnetic-field induced percolation
in a disordered QAHI-SC-QAHI junction. The middle QAHI
region is proximitized by an s-wave SC (yellow rectangle).
Four different percolation stages of trivial insulator phases
(orange region) with C = 0 (corresponding to N = 0), and
QAHI phases (light-blue region) with C = 1 (corresponding
to N = 2). We consider a strongly-disordered system where
N = 1 domains do not form. The four stages are character-
ized by p, the proportion of C = 0 phase, which changes with
the magnetic field. (a) In the strong magnetic field regime
where p is far below the percolation threshold (p � pc), the
system is in the C = 1 phase. The edge states (shown by ar-
rowed lines) are perfectly transmitted across the junction. (b)
During the magnetization reversal, the C = 0 phase domains
grow. The edge states wind around the domains in the SC
region and leak into adjacent chiral loops (shown by dashed
lines). (c) When p is slightly above the percolation thresh-
old (p = pc+), the domains are connected across the junction
width and the edge states can no longer be transmitted across
the junction. (d) When p� pc, the edge states are normally
reflected by the C = 0 phase outside the SC region.
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Recent experiment14 observed these two transport signa-
tures in a doped magnetic QAHI thin film proximitized
by an s-wave SC. While these transport signatures are
consistent with the existence of an N = 1 TSC with a
single CMEM in a clean system, the disorder in the exper-
imental system might significantly reduce the topological
gap and phase space of the N = 1 TSC.

In this Rapid Communication, we show that the two
proposed transport signatures for the N = 1 phase can
generically occur in a disordered QAHI-SC-QAHI junc-
tion even in phases where the CMEM is absent such as
in the C = 1 (N = 2) phase or in the N = 1 TSC but at
temperatures above the gap. We consider the disordered
QAH system to be inhomogeneous with smoothly vary-
ing magnetization15 which leads to a network of domain
walls between phases with different Chern numbers. Such
domain walls have been invoked in Ref.16 to understand
the Hall conductance in this system. Here, we consider
the disorder strength to be stronger than the supercon-
ducting pairing potential such that there are no N = 1
domains in the system.

Figure 1 shows the evolution of the domain-wall struc-
ture of the phases in the QAH system as the magnetic
field is varied. In the limit of strong magnetic field, the
system is in a single-domain C = 1 phase [as shown in
Fig. 1(a)] with a large average magnetization. In this
regime, the edge states are perfectly transmitted across
the junction. During the magnetization reversal, the pro-
portion p of the C = 0 domain (domain with small aver-
age magnetization) increases [Fig. 1(b)]. Since the chiral
edge states live at the boundary between the C = 0 and
C = 1 domains, the edge state has to wind around the
C = 0 domains which increases the electron trajectory
length L and hence the number of Andreev scatterings
in the SC region. As p approaches the percolation thresh-
old pc (where the C = 0 domains become connected into
a cluster spanning across the junction width), L → ∞.
In addition, quasiparticles on the chiral edge can leak
by quantum tunneling into adjacent chiral loops associ-
ated with the domains as shown in Fig. 1. These chiral
loops can be assumed to be in equilibrium. As a result,
at p ≈ pc, as we will show, the leakage of quasiparticles
leads to eventual absorption of the initial quasiparticle
for large lengths L, giving rise to a nearly flat e2/2h two-
terminal conductance plateau. As p increases above pc,
the edge states can no longer be transmitted across the
junction. For p� pc, the electrons undergo perfect nor-
mal reflections outside the SC region by the C = 0 domain
as shown in Fig. 1(d).

We describe the low-energy edge modes of the QAHI-
SC structure by a 1D Hamiltonian:

H =
1

2

∫
dxC†(x)HBdG(x)C(x), (1)

where

HBdG(x) = −ivτ0∂x − µ(x)τz +
1

2
{−i∂x,∆(x)τx} (2)
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FIG. 2. Schematic diagram of the setup used to measure
the conductance in a QAHI-SC-QAHI junction. To measure
G12, we consider the SC to be floating (i.e., I3 = 0) and the
voltages V1 and V2 to be applied to leads 1 and 2, respectively.
For the case where G13 is measured, the SC is grounded (i.e.,
I3 6= 0), lead 2 is removed, the voltages V1 and V3 are applied
to leads 1 and SC, respectively.

is the Bogoliubov-de Gennes (BdG) Hamiltonian and
C(x) = (c(x), c†(x))T is the Nambu spinor with c(x) and
c†(x) being the electron annihilation and creation oper-
ators, respectively. Here, v is the edge mode velocity, µ
is the chemical potential, ∆ is the effective p-wave pair-
ing potential of the proximity-induced superconductiv-
ity, and τx,y,z are the Pauli matrices in the particle-hole
space. For the QAHI region, we set ∆ = 0, while for the
SC region, we set µ(x) and ∆(x) to be spatially varying
along the electron trajectory length L. For simplicity, we
work in the units where the Planck constant ~, Boltz-
mann constant kB and edge velocity v are all set to 1.
We note that the term ∂x in the Hamiltonian comes with
the anticommutation relation {, } to ensure the Hermitic-
ity of the Hamiltonian. The p-wave pairing amplitude
∆(x) is induced from the proximity effect of an s-wave
SC with a pairing potential ∆s(x). This cannot occur in
a strictly spin-polarized edge state. However, since the
QAH system arises from a TI, which is a strongly spin-
orbit-coupled system, we expect the spin-polarization of
the chiral edge state to vary with momentum (similar
to the spin-texture in a TI17 on a scale of the spin-orbit
length k−1so where kso is related to the exchange field λ by
kso ∼ λ/v). Within this model, ∆(x) ∼ v∆s(x)/λ (see
Supplemental Material18 for the derivation).

The conductance of the three-terminal junction shown
in Fig. 2, where terminal 3 is connected to the SC, can
be computed from Bogoliubov quasiparticle transmission
and reflection probabilities using a generalized Landauer-
Büttiker formalism19–21. Using this formalism the cur-
rents I1,2 shown in Fig. 2 are found to be

I1 =
e2

h
[(1− g11)(V1 − V3)− g12(V2 − V3)], (3a)

I2 =
e2

h
[−g21(V1 − V3) + (1− g22)(V2 − V3)], (3b)
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where V1 and V2 are the voltages of leads 1 and 2, respec-
tively, V3 is the voltage of the SC and gij are effective di-
mensionless conductances from lead i to lead j due to the
chiral edges. Experimentally, the conductance is mea-
sured using a two-terminal setup, i.e., the setup in Fig. 2
with either the current I2 = 0 (grounding) or I3 = 0
(floating SC case) depending on the measured transport
properties. For the case of floating SC, we obtain the
conductance between leads 1 and 2 from Eq. (3) and the
current conservation equation (I1 + I2 = 0) as

G12 ≡
I1

V1 − V2
=
e2

h

[
g21g12 − (1− g11)(1− g22)

g12 + g21 + g11 + g22 − 2

]
.

(4)
For the case where the SC is grounded, lead 2 is removed
(I2 = 0) and the conductance between lead 1 and SC can
be obtained from Eq. (3) to be

G13 ≡
I1

V1 − V3
=
e2

h

[
(1− g11)(1− g22)− g12g21

1− g22

]
.

(5)
To compute the parameters gij that determine the

measured conductances [Eqs. (4) and (5)], we need to
consider a microscopic model of the chiral edges in the
vicinity of the SC. For p < pc, we assume that g11 =
g22 = 0 as the chiral edge state emanating from I1 can
only be transmitted to I2, while for p > pc, g12 = g21 = 0
as the edge states can only undergo reflection. The above
condition holds in the typical case where the width of the
system is larger than the correlation length at some finite
distance away from the critical point such that the edge
states (as shown in Fig. 1) do not couple to each other.
For computational simplicity, we assume that the con-
ductances are the same for the left- and right-incoming
modes, i.e., g12 = g21 and g11 = g22 which is true for a
symmetric junction. Our results, however, hold in gen-
eral and do not qualitatively depend on this assumption.

The microscopic values of the parameter g11 or g12
(whichever that is nonvanishing) are determined by a
combination of superconductivity and dephasing. With-
out superconductivity, g11 = 1, which results in a quan-
tum Hall (QH) transition seen between the two quan-
tized values of G12 = 1 to G12 = 0 with no intervening
plateau. The introduction of superconductivity on a dis-
ordered chiral edge allows for Andreev scattering which
give rise to an intervening plateau. However, to obtain
an intervening plateau that is stable at low temperatures
one must account for dephasing through tunneling from
the chiral edge into the disjointed chiral loops Ln (seen
in Fig. 1). The nonvanishing conductance g11 or g12 (de-
pending on whether p > pc or not) is determined by the
transconductance gtrans across the incoherent chiral edge
(coupled to an SC) that results from the tunneling into
the loops Ln. To determine gtrans sufficiently close to
the percolation point, where the loops Ln are expected
to be larger than the finite-temperature and interaction-
induced dephasing length vτϕ (where v is the chiral edge
velocity and τϕ is the dephasing time), we assume the
loop Ln to be a reservoir in equilibrium at voltage vn

(relative to SC). Furthermore, we assume that the cou-
pling between the loop Ln and SC is weak enough to
allow incoherent transfer of Cooper pairs through a re-
sistance Rn ∼ v{Lτϕ[∆s(xn)]2}−1 between them. To
understand the origin of the resistance Rn, we consider
tunneling between the chiral loop and the SC which leads
to a conductance GS ∼ nchG2

N
22 where nch is the number

of low-energy states (energy range ∼ τ−1ϕ ) in the chiral
loop. The proximity gap ∆s ∝ GN is proportional to the
normal-state conductance GN per channel. Given the
voltages vn and the voltage difference Vin − V3 between
the incoming edge and the SC, the transconductance is
given by23

gtrans = Λin,out +
∑
n

Λn,out
vn

Vin − V3
, (6)

where Λin,out and Λn,out are conductances obtained
from the multiterminal Landauer-Buttiker formalism24.
Specifically, the incoherent chiral edge may be thought
of as a multiterminal system with leads at the in and out
ends as well as each of the loops Ln. We can then define
the response of the current in lead n to the voltage in
lead m by

Λmn =

∫ ∞
−∞

dE

(
−∂fT (E)

∂E

)
(|tNmn(E)|2 − |tAmn(E)|2),

(7)
where fT (E) = 1/(eE/T + 1) is the Fermi distribution,
tNmn(E) and tAmn(E) are the normal and Andreev scatter-
ing amplitudes at energy E, respectively, from the lead m
into the lead n. Given Λmn, the voltages vn, that appear
in Eq. 6, can be determined recursively as one follows the
loops down the chiral edge which are given by

vn
Vin − V3

=
Λin,n +

∑
m<n Λmn

vm
Vin−V3

R−1n + Λn,out +
∑
m>n Λnm

. (8)

These relations as well as Eq. 6 can be derived from the
current conservation equation at each loop as detailed in
the Supplemental Material23.

The scattering amplitudes tN,Amn are the components of
2×2 transmission (along the chiral edge) matrices acting
in the particle-hole basis which is given by

Tmn(E) =

(
tNmn(E) tA∗mn(−E)
tAmn(E) tN∗mn(−E)

)
. (9)

The inhomogeneity of the chemical potential and pairing
potential along the loop is accounted by matching the in-
coming and outgoing edge modes in the SC region with
spatially varying µ(x) and ∆(x), where (see Supplemen-
tal Material25 for the derivation)

Tmn(E) = ζmn
∏

m<j<n

eiṽ
−1/2
j (µjτz+Eτ0)ṽ

−1/2
j `, (10)

with ṽj = vτ0+∆jτx being the effective edge mode veloc-
ity at lattice site j and ` being the lattice constant. Here
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FIG. 3. Semilog plot of zero-energy effective transconduc-
tance gtrans vs electron trajectory length L/η where η = v/∆
is the average dimensionless p-wave superconducting coher-
ence length. We consider spatially varying ∆(x) and µ(x)
where the values of ∆(x) ∈ [0, 0.1] and µ(x) ∈ [−0.01, 0.01]
are drawn from uniform distributions. Note that gtrans ex-
ponentially decays with L. For p < pc, gtrans = g12 = g21
and g11 = g22 = 0, while for p > pc, gtrans = g11 = g22 and
g12 = g21 = 0. Parameters used are edge mode velocity v = 1,
temperature T = 0.01, resistance R(x) = 0.1/{L[∆(x)]2} and
coupling between the edge state and loop Ω(x) = 0.3 for all
x.

ζmn = ΩmΩn
∏
m<j<n(1 − Ω2

j )
1/2 is a numerical factor

that is related to the couplings |Ωj | < 1 of the chiral edge
to the lead j (Ωin = Ωout ≡ 1).

From Eq. (10), we calculate the zero-bias net scattering
probability Λmn [Eq. (7)] which is then used to compute
the transconductance gtrans of a chiral edge [Eq. (6)],
which is ultimately used to compute the two-terminal
conductance [Eqs. (4) and (5)]. Figure 3 shows the calcu-
lated gtrans as a function of the electron trajectory length
L/η where η = vkso/∆s is the mean value of the dimen-
sionless p-wave superconducting coherence length with
kso ∼ (50 nm)−1. From Fig. 3, we can see that gtrans de-
cays exponentially with L. The electron trajectory length
L increases as the proportion p→ pc where the percola-
tion threshold pc corresponds to the magnetic field near
the coercive field. Near pc, L obeys the scaling relation26:

L = L0|p− pc|−νdh = L0|p− pc|−(1+ν), (11)

where for the 2D case considered here, the correlation
length exponent ν is 4

3
27 and the fractal dimension of

the hull dh is (1 + ν)/ν28. Using Eqs. (6)-(11), we have
gtrans → 0 as p→ pc.

Next, we computed G12 and G13 using Eqs. (4) and
(5), respectively, for a specific disorder realization. Fig-
ure 4 shows the numerically calculated G12 and G13 as
a function of p − pc near the percolation threshold pc.
As seen from the plot, the conductance G12 ' e2/h for
p < pc and G12 ' 0 for p > pc with an exponentially flat
e2/2h plateau at pc while the conductance G13 ' 0 for
p < pc and p > pc with an e2/h peak at pc. Close to pc,
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FIG. 4. Conductance (a) G12 and (b) G13 as a function of p
near the percolation threshold pc. G12 exhibits a half-integer
quantized plateau at p = pc while G13 shows an integer quan-
tized peak at p = pc. Red dashed lines denote (a) G = e2/2h
and (b) G = e2/h. We set L0 in Eq. (11) to be η/2000 so that
the conductance plateaus have a small width near pc. Pa-
rameters used here are the same as those used in Fig. 3. The
plateau width is stable to relatively low temperatures where
the plateau width does not change in the low-temperature
regime.

we can write G12 and G13 by using Eqs. (4)-(11) as

G12 ≈
{
e2

2h (1 + e−2α|p−pc|
−(1+ν)

), for p = pc−,
e2

2h (1− e−2α|p−pc|−(1+ν)

), for p = pc+,
(12)

and

G13 ≈
{
e2

h (1− e−4α|p−pc|−(1+ν)

), for p = pc−,
e2

h (1− e−2α|p−pc|−(1+ν)

), for p = pc+,
(13)

where α is the inverse length-scale for the exponential
decay of gtrans. At p = pc, G12 and G13 are per-
fectly quantized at e2/2h and e2/h, respectively, with
exponentially flat plateaus. These plateaus, which origi-
nate from the disorder effect, resemble the experimental
data14 claimed to be the signatures of CMEMs. The
width of the disorder-induced plateau decreases with de-
creasing pairing amplitude ∆ as discussed in the Supple-
mental Material29.

Our results, based on a classical percolation model for
the QH transition, are valid at high temperatures where
the chiral edge becomes effectively long enough to pro-
duce the plateaus in Fig. 4. This classical percolation
picture is a reasonable description of the QH transition
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away from the critical point or at a relatively high tem-
perature15 or in the presence of dephasing arising from
the interplay of interaction, disorder and temperature30.
Such dephasing requires the equilibration rate of quasi-
particles in the loop being fast compared to tunneling
as in our simple model of dephasing. The equilibration
rate goes to zero as T → 0. However, for appropriate
interaction strengths and pairing potentials, the condi-
tion of strong dephasing can be satisfied to arbitrarily
low temperatures leading to a weakly temperature de-
pendent plateau at low temperatures31. On the other
hand, the plateau that arises from thermal fluctuations
(without quasiparticle leakage between the chiral edge
and adjacent chiral loops) is strongly temperature de-
pendent31.

The e2/2h plateau shown in Fig. 4 would describe re-
sults not only in phases other than the N = 1 TSC but
also in the N = 1 phase for temperatures above the topo-
logical gap. At such high temperatures, gtrans would van-
ish because the edge quasiparticles could escape into the
bulk by thermal excitations which makes it difficult to
ascribe the conductance plateau to the topological prop-
erties of the TSC. Additionally, it has been proposed that
in the limit of strong disorder, the gapped N = 1 TSC
may be replaced by a gapless Majorana metal phase even
at zero temperature32 which may also produce an e2/2h
plateau.

While our results do not contradict the theoretical ex-
istence of the N = 1 TSC phase (which is likely though

not inevitable) in the vicinity of the QAH transition, the
nearly quantized e2/2h conductance plateau observed in
the recent experiment14 cannot serve as an experimen-
tal evidence for the N = 1 TSC as it is likely to arise
outside the TSC phase as well. In principle, observing
the stabilization of the plateau to a more perfectly quan-
tized plateau as temperature is lowered together with
either a hard superconducting gap from the electrical
conductance measurement (which is unlikely for a dis-
ordered system) or a thermal transport gap would be
the signatures of an N = 1 TSC. Another smoking-
gun signature is the half-quantized thermal conductiv-
ity KH = (πkB)2T/6h33 which would rule out the clas-
sical percolation-based model and the Majorana metal
phase as they would have a large non-universal longitu-
dinal thermal conductance.
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