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We show that a quantum phase transition from ergodic to many-body localized (MBL) phases
can be induced via periodic pulsed manipulation of spin systems. Such a transition is enabled by
the interplay between weak disorder and slow heating rates. Specifically, we demonstrate that the
Hamiltonian of a weakly disordered ergodic spin system can be effectively engineered, by using
sufficiently fast coherent controls, to yield a stable MBL phase, which in turn completely suppresses
the energy absorption from external control field. Our results imply that a broad class of existing
many-body systems can be used to probe non-equilibrium phases of matter for a long time, limited
only by coupling to external environment.

Pulsed coherent manipulation is an indispensable tool
in almost every branch of quantum science and technol-
ogy. First introduced as spin echo in nuclear magnetic
resonance (NMR) experiments [1], a sequence of pulsed
controls has proven highly successful in isolating quan-
tum systems from unwanted noise sources. Since then
a variety of specialized dynamical decoupling techniques
have been developed, ranging from frequency selective
decouplings for quantum metrology to complex compos-
ite pulses for high fidelity quantum gate operations [2–5].

Periodic manipulation of a many-body system has been
utilized in order to effectively engineer interaction and to
probe exotic quantum phases of strongly interacting sys-
tems [6–16]. Indeed, in a number of systems ranging from
ultracold atoms, molecules, and, ions to solid-state spin
defects, coherent interactions among many particles and
time-dependent controls are already being used for quan-
tum simulations of strongly correlated dynamics [17–23].
Despite its apparent success, this pulsed Hamiltonian en-
gineering approach is generally prone to heating and im-
prefections. In particular, it has been commonly believed
that periodic external controls generically heat up an er-
godic many-body system, eventually leading it to infi-
nite temperature, featureless states [24–26]. Likewise,
any imperfections in pulsed manipulations may accumu-
late over a long time, resulting in uncontrolled dynam-
ics. Therefore, it may seem that the ultimate fate of any
driven ergodic system corresponds to featureless, inco-
herent states.

In this paper, we demonstrate that a periodic con-
trol field can induce a phase transition of an isolated,
ergodic system with weak disorder into a stable many-
body localized (MBL) phase with completely suppressed
energy absorption [27]. In such a case, the system re-
tains the memory of its initial state for asymptotically
long time. This is in contrast to previously studied sit-
uations where systems under periodic driving ultimately
thermalize [24–26] unless the original system is localized
by strong disorder [10–12]. Our result challenges the er-
godicity assumption of statistical physics in a wide range
of driven systems, where the presence of weak disorder
is often inevitable. It also implies that dynamical de-

coupling with a finite repetition rate is sufficient for sim-
ulating MBL phases in existing experimental platforms
for very long times limited only by coupling to external
environment.

This seemingly counter-intuitive phase transition can
be understood as a consequence of the interplay be-
tween weak disorder and parametrically suppressed heat-
ing [28–31]. The key idea is to utilize external driving in
order to suppress transport of a system, similar to dy-
namical localization [32–35]. The addition of weak disor-
der can completely suppress the transport and energy
absorption, leading to many-body localization. More
specifically, we focus on a situation where dynamical de-
coupling is employed to engineer an effective MBL hamil-
tonian that is valid for a long but a priori finite lifetime
t∗ without substantial heating. We show that the result-
ing spectral properties of such a system further suppress
energy absorptions, effectively extending t∗. Then, the
evolution features completely suppressed heating, ulti-
mately leading to the exact localization. Furthermore,
since localization is robust against local perturbation, we
find that the dynamically induced MBL phase remains
stable even in the presence of certain systematic experi-
mental imperfections.

In what follows we first focus on a specific many-body
spin model Hamiltonian, initially in the ergodic phase,
and show that carefully chosen sequences of pulses can
localize the system. We prove the existence of MBL tran-
sition by using a time-dependent local unitary transfor-
mation which maps the dynamics of our model into that
of previously studied systems [11]. We also present in-
tuitive analytical arguments illustrating the mechanism
of this transition as well as exact numerical simulations
with finite size scaling supporting this conclusion. Fi-
nally, we generalize our analysis to a broad class of qudit
(d-level systems) ensembles with global manipulations.
Model.— We consider a chain of spin-1/2 particles

with Heisenberg interactions between nearest neighbor-
ing pairs, described by the following Hamiltonian:

H0 =
∑
i

hiS
z
i +

∑
i

J
(
Sxi S

x
i+1 + Syi S

y
i+1 + Szi S

z
i+1

)
,
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where Sµi (µ ∈ {x, y, z}) is the Pauli spin-1/2 operator for
a particle at site i, hi is a random on-site field uniformly
and independently distributed among [−W,W ], and J
is the interaction strength between nearest neighboring
spins. Dynamics governed by Hamiltonian H0 has been
explored in detail [36, 37]. For a fixed value of J the
system is ergodic if the disorder strength W is smaller
than a critical value Wc. For W > Wc, the system ex-
hibits MBL dynamics. Extensive numerical simulations
in Ref. [36, 37] suggest that Wc/J ≈ 3.5± 1.0.

In what follows we focus on W = J , which resides
deeply in the ergodic phase. However, the dynamics can
be many-body localized by periodically applying pulses
P (θ) = exp [−i

∑
j θS

z
2j ], which rotate every spin on even

sites by an angle θ along the ẑ axis. This conceptually
simple sequence resembles a spin echo technique, which
isolates the static magnetic field of a single spin from un-
wanted coupling to the environment. In our case, it is
used to suppress spin exchange interactions while pre-
serving on-site potential disorder. Such a suppressed
transport by periodic driving is also known as dynam-
ical localization and has been previously studied in both
theory and experiments [32–35]. When this pulse is re-
peated with period τ , the system undergoes dynamics
governed by Floquet unitary [38]:

UF (θ, τ) = P (θ) exp [−iH0τ ]. (1)

In order to understand the dynamics under Eq. (1), we
move into the so-called toggling frame [6], where a time-
dependent local unitary transformation eliminates P (θ).
As an example, for θ = π we work in the frame that ro-
tates by P (π) after each pulse, where the effective Hamil-
tonian becomes periodic in 2τ [39]. More specifically, the
unitary evolution over two cycles can be written as

(UF )2 = P (π)e−iH0τP (π)e−iH0τ (2)

= T e−i
∫ 2τ
0

H(t)dt, (3)

where we introduced a time-dependent Hamiltonian
H(t) = Hz +H⊥(t) with

Hz =
∑
i

hiS
z
i +

∑
i

JSzi S
z
i+1 (4)

H⊥(t) = Θ(t)J
∑
i

(Sxi S
x
i+1 + Syi S

y
i+1). (5)

Here Hz corresponds to the time averaged component
of H(t), and H⊥ is the remaining time-dependent com-
ponent with rectangular envelope function Θ(t) that is
periodic in 2τ : Θ(t) = sgn[sin (πt/τ)].

Since Hz describes a trivially localized phase, our task
is reduced to performing the stability analysis of this
phase upon the time-dependent driving H⊥(t). Such a
problem has been rigorously analyzed in Ref. [10–12, 40],
where it has been shown that a MBL system remains lo-
calized as long as the fundamental frequency ω0 of the

time-dependent perturbation is large compared to per-
turbation strength J and on-site disorder energy scale h.
In our case, h ∼ J , and the required condition corre-
sponds to a rapid repetition of the pulse sequence with
ω0 ≡ π/τ � J . Since moving into the toggling frame
only involves a strictly local unitary transformation P (θ),
the localization in this frame also implies the localization
in the original basis, which completes the proof that the
dynamics under UF belongs to a MBL phase [27].

In order to clarify the mechanism of the localization,
we next present an intuitive picture of dynamically in-
duced localization based on the combination of slow heat-
ing rates and spectral response of a typical MBL system.
Underlying principles of the analysis are closely related
to frameworks introduced in Ref. [11, 26, 28, 29]. We
rewrite the envelope function as

Θ(t) =
∑
m

1− (−1)m

iπm
eimω0t, (6)

where m enumerates harmonics of the fundamental fre-
quency. The components of this time-dependent pertur-
bation become relevant only when they resonantly couple
two many-body states with energy separation ∆E ≈ mω0

for some m ∈ Z. When ω0 � J and the perturba-
tions are local, such resonant processes are absent since
a rearrangement of a single spin alone cannot accommo-
date the absorption of a large energy quantum. Instead,
H⊥(t) affects the dynamics of the system via higher or-
der processes, which renormalize the effective Hamilto-
nian. These corrections can be perturbatively analyzed
with a small parameter J/ω0, and it has been shown
that, for a generic quantum many-body system, such
perturbation theory is asymptotic with optimal order
k∗ ≡ ω0/J [11, 28, 29]. The physical meaning of k∗

is the minimal number of particles that need to cooper-
atively rearrange in order to absorb or emit one unit of
energy quantum from external driving. The perturbative
procedure integrates out the processes that affect k < k∗

spins, producing an effective Hamiltonian [11, 28, 29]:

Heff(t) = H∗eff + V ∗(t), H∗eff = Hz +

k∗−1∑
k=2

H(k) (7)

where H∗eff denotes the static part of the effective Hamil-
tonian, which includes corrections H(k) up to order
k∗ − 1, and V ∗ contains all remaining time-dependent
AC perturbations that can potentially heat up the sys-
tem. While V ∗ now contains k ≥ k∗ spin processes, the
quantum amplitude for rearranging O(k) nearby spins
becomes exponentially small in k: Ak ∼ J(J/ω0)k−1.
Hence, the dynamics of the system can be approximated
by H∗eff for a long but finite time t∗ ∼ 1/Ak∗ [41].

In our case, the static part of the effective Hamilto-
nian H∗eff is perturbatively close to Hz, and therefore it
remains in the MBL phase for J � ω0. Moreover, ow-
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Figure 1. Averaged level statistics 〈r〉 as a function of τ for
various system sizes N = 10, 12, 14, and 16. Black dot-
ted lines indicate the expected values of 〈r〉 in two limits:
the distribution from circular orthogonal ensemble (top) and
Poissonian distributions (bottom). For sufficiently fast pulses
τ < τc, the level statistics approaches to the value correspond-
ing to Poissonian distribution, indicating that the system be-
longs to a MBL phase. The transition becomes sharper as
system size increases. Each data point has been averaged
over at least 100 disorder realizations

ing to this localization of H∗eff the remaining AC correc-
tions given by V ∗(t) do not typically lead to resonant
energy absorption, indicating that the system fails to
heat up. This is in strong contrast to the case where
the static part of the effective Hamiltonian describes an
ergodic phase – then the AC corrections do lead to res-
onant processes, and the system eventually heats up to
infinite temperature (though at a rate exponentially slow
in ω0) [11, 28, 29].

To show that AC corrections are non-resonant, we con-
sider k > k∗-th order perturbative process in V ∗(t). Due
to the locality of H∗eff and H⊥(t), such a process may re-
arrange only up to k+2ξ spins, where ξ is the localization
length of H∗eff. Since typical many-body level spacing of

k-spin rearrangement scales as δk ∼
√
kJ/2k, the proba-

bility of having a resonant k-body process becomes

Pk(heating) ∼ Ak
δk+2ξ

∼ 22ξ+1

√
k + 2ξ

(
2J

ω0

)k−1

, (8)

which is exponentially small in increasing k for ω0 �
J . This indicates that the system fails to heat up and
remains in the MBL phase.

Numerical simulations.—In order to corroborate our
analytical arguments and check their self-consistency, we
performed numerical simulations based on exact diago-
nalization of unitary evolution UF for system sizes up
to N = 16. We extract quasi energy εi ∈ [−π, π] from
eigenvalues of UF by taking the imaginary parts of their
logarithms. We identify the MBL phase transition using

a parameter 〈r〉 which characterizes level statistics of εi:

〈r〉 =

〈
min (∆εi,∆εi+1)

max (∆εi,∆εi+1)

〉
, (9)

where ∆εi ≡ εi+1− εi and the averaging 〈·〉 is taken over
both the entire spectrum and disorder realizations of UF .
If the system belongs to an ergodic phase 〈r〉 ≈ 0.53, cor-
responding to the value for a circular orthogonal ensem-
ble (COE), while if it is in the MBL phase 〈r〉 ≈ 0.386,
corresponding to the value for the Poisson statistics that
lacks level repulsion. We compute 〈r〉 as a function of τ
and θ for varying system sizes N = 10, . . . , 16 as sum-
marized in Fig. 1. The value of 〈r〉 changes between two
expected values as a function of τ (in units of 2π/J).
As the system size is increased, the transition of 〈r〉 val-
ues becomes sharper, suggesting a quantum phase tran-
sition in a thermodynamic limit. We extract a critical
point 2π/τc ∼ 4J . We note that, at this extracted crit-
ical point, the fundamental driving frequency ω0 is still
smaller than the many-body band width ∼ 7J of the fi-
nite size system (N = 16), confirming that our numerics
cannot be explained by a trivial finite-size effect.

In order to demonstrate the interacting nature of the
MBL phase, we numerically probe the logarithmic growth
of entanglement entropy [42, 43]. For a system of size
N , we prepare an initial state |ψ0〉 with total N/2 spin
up excitations such that every pair of nearby sites are
oppositely polarized:

|ψ0〉 =

N/2∏
i=1

[√
2(Sx2i−1 + Sx2i)

]
| ↓〉⊗N . (10)

After Floquet time evolution for n cycles, we compute
the entanglement entropy S(n) along the cut at the mid-
dle of the system. As illustrated in Fig. 2, we find qualita-
tively distinct behaviors in two cases: a long pulse period
(Jτ = 2π/2) and a short pulse period (Jτ = 2π/6). In
the former case, S(n) quickly saturates to a value that is
close to the theoretical bound S∞ of an infinite temper-
ature ensemble. In the latter case, however, S(n) grows
logarithmically over multiple decades and saturates to a
value SMBL that is much smaller than S∞. The differ-
ence between the two saturation values originates from
the absence of transport in a localized phase, in which
case entanglement entropy can only increase via phase
correlations [43]. Indeed, SMBL is close to the theoretical
prediction corresponding to maximal entanglement en-
tropy achievable from |ψ0〉 for completely localized spin
excitations but with phase correlations [44]. Once sat-
urated, the entanglement entropy does not grow further
even for multiple decades, indicating the absence of slow
heating. We also check the robustness of our MBL phase
with respect to finite deviation ε of the rotation angle θ
from π. As demonstrated in Fig. 3, we find that the MBL
phase is stable over a range of ε, in which a dynamical
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Figure 2. Slow growth of entanglement entropy in a system
of N = 16 particles. For a sufficiently fast pulse sequence
with Jτ = 2π/6 (blue), the entanglement entropy grows only
logarithmically in time, while, for a slow pulse sequence with
Jτ = 2π/2 (red), it grows rapidly and saturates. The satu-
ration values are different in two cases since spin excitations
cannot propagate in a localized phase. Data has been aver-
aged up to 100 disorder realizations. Two dotted lines indicate
theoretical bounds for infinite temperature ensemble (top), in
which all microscopic configurations are equally populated,
and for an ideal MBL limit (bottom), in which spin excita-
tions are completely localized while they still get entangled
via Ising-type interactions.

phase transition can be induced by a fast enough pulse
sequence.

Generalization and discussions— Our analysis can be
generalized to a variety of quantum systems where global
manipulations of spin ensembles are available for dy-
namical decoupling techniques. Consider, for example, a
WAHUHA sequence that consists of four global spin ro-
tations that are separated by uneven time durations [6].
When the sequence is applied to a chain of dipolar inter-
acting spin-1/2 particles with disordered on-site magnetic
field, the time averaged Hamiltonian displays exactly
vanishing interactions while the disorder is only reduced
by a constant factor, e.g. hiS

z
i 7→ hi(S

x
i − S

y
i + Szi )/3.

Therefore, as long as the total duration of the pulses is
sufficiently short, the chain of spin-1/2 particles can be
turned to a strict MBL system [45–47], whose lifetime
is only limited by coupling to the environment. Indeed
a closely related experiment has been already performed
in Ref. [22], where slow development of correlations is
observed in an effective one dimensional spin system.
More generally, we envision exploiting an ensemble of d-
level systems with pair-wise short-range interactions and
strong disorder. Such experimental settings are ubiq-
uitous ranging from ultracold atoms, ions, molecules to
solid state spin defects or superconducting qubits [17–21].
One can design a finite k-pulse sequence with time sep-
arations τk; if the sequence cancels the transport terms
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Figure 3. Averaged level statistics 〈r〉 as a function of ε = θ−π
for a fixed value Jτ = 2π/5.5. The finite size scaling suggest
that the observed MBL transition is valid for a finite range of
θ close to π. Each data point has been averaged over at least
100 disorder realizations.

of the interactions and preserves weak disorder, one ex-
pects that a system can be dynamically induced to a
MBL phase. For an ensemble of d-level systems, the con-
ditions for cancellation of interactions have been recently
identified in Ref. [48].

One intriguing future possibility is to dynamically
engineer Hamiltonians of long-range interacting sys-
tems [48]. On one hand, such a technique has al-
ready been used for observation of stable non-equilibrium
states [20] in the so-called critical regime [21, 49], where
the ergodicity is only marginally retained via rare long-
range resonances. On the other hand, recent work [50]
theoretically showed that the range of interactions can be
effectively reduced via time modulated controls. While
the scheme presented in Ref. [50] is relevant for short time
evolution, the generalization of the scheme for asymp-
totically long time presents an intriguing avenue for fu-
ture studies. In combination with the present results,
this may open the possibility of studying the interplay
between long-range interactions and dimensionality of a
system for a MBL phase transition, which still remains
as an open question [45–47].

We have demonstrated that an ergodic interacting sys-
tem with weak disorder can be transformed into a MBL
phase via dynamical decoupling techniques. Our analyt-
ical arguments illustrate how the combination of slow
heating and weak disorder leads to complete suppres-
sion of energy absorption. From a practical perspec-
tive, our results provide a theoretical support for using
driven systems for studying quantum phase transitions
among MBL phases such as paramagnetic MBL to time-
crystalline MBL. Our results demonstrate that the non-
equilibrium phases created in our approach can be stable
against experimental imperfections and that their life-
times are only limited by coupling to environment. In
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addition, by tuning the pulse repetition rates, one can
study the interplay between disorder and heating of a
system.
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Note added: During the completion of this work, we
became aware of a related contribution [51], in which
driving induced MBL for ultracold atoms was suggested.
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