

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Predicting the ground-state structure of sodium boride

Xin-Ling He, Xiao Dong, QuanSheng Wu, Zhisheng Zhao, Qiang Zhu, Artem R. Oganov, Yongjun Tian, Dongli Yu, Xiang-Feng Zhou, and Hui-Tian Wang Phys. Rev. B **97**, 100102 — Published 26 March 2018 DOI: 10.1103/PhysRevB.97.100102

Predicting the Ground State Structure of Sodium Boride

Xin-Ling He, 1 Xiao Dong, 1 Quan
Sheng Wu, 2 Zhisheng Zhao, 3 Qiang Zhu,
 4 Artem R.

Oganov,^{5, 6, 7} Yongjun Tian,³ Dongli Yu,³ Xiang-Feng Zhou,^{1, *} and Hui-Tian Wang^{1, 8}

¹Key Laboratory of Weak-Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin 300071, China

²Institute of Physics, ÉcolePolytechniqueFédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

³State Key Laboratory of Metastable Materials Science and Technology,

Yanshan University, Qinhuangdao 066004, China

⁴Department of Physics and Astronomy, High Pressure Science and Engineering Center,

University of Nevada, Las Vegas, NV 89154, USA

⁵Skolkovo Institute of Science and Technology, 3 Nobel St., Moscow 143026, Russia

⁶Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia

⁷Department of Geosciences, Center for Materials by Design,

and Institute for Advanced Computational Science,

Stony Brook University, Stony Brook, New York 11794, USA

⁸National Laboratory of Solid State Microstructures and Collaborative Innovation

Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

Binary borides had been a subject of extensive research. However, the exact compositions and crystal structures of sodium borides remained controversial. Here, using the *ab initio* variable-composition evolutionary algorithm, a new stable Na_2B_{30} with $I2_12_12_1$ symmetry ($I2_12_12_1$ - Na_2B_{30}) is found, which is -7.38 meV/atom lower in energy than the experimental *Imma*- Na_2B_{30} structure. Interestingly, the *Imma*- Na_2B_{30} is predicted to be a topological nodal line semimetal, which may result in superior electronic transport. In contrast, $I2_12_12_1$ - Na_2B_{30} is an ultrahard semiconductor with an unprecedented open-framework structure, whose interstitial helical boron sublattice enhances its hardness and energetic stability.

PACS numbers: 61.50.Ah, 61.05.cp, 71.20.Ps

The discovery of high-temperature superconductivity, superhardness, ferromagnetism and quantum topological properties in metal borides has attracted much attention owing to many interesting fundamental issues and huge potential applications.^{1–6} For alkali metal borides, only a few compounds have been precisely determined with regard to their compositions and structures. This is mainly limited by the synthesis and characterization of these materials, e.g., it is difficult to conduct a controlled reaction between the low-melting alkali metals with boron under ambient pressure, and products are often microcrystalline powders, rather than single crystals.^{7–10} So far, there are only two sodium borides, orthorhombic Na_3B_{20} and Na_2B_{30} (or monoclinic Na_2B_{29}), which were successfully synthesized at ambient pressure.^{7–9} However, the exact structure and composition of "Imma-Na₂B₃₀" are still controversial. Previously, Naslain and Kasper refined the structure as orthorhombic Na_2B_{30} (designated as ϕ phase). This structure consists principally of B_{12} icosahedra with interstitial boron triangular units, in which Na atoms are accommodated in the cages formed by icosahedra.⁷ Since the unit cell of Na₃B₂₀ contains four formula units, it could be written as 4*NaB₃B₁₂. However, by using X-ray diffraction (XRD), neutron diffraction, electron microscopy and solid-state NMR spectroscopy. Albert *et al* revised the structure as monoclinic Na_2B_{29} (2*NaB₃B₁₂+2*NaB₂B₁₂) with two of interstitial B atoms per unit cell unoccupied (Cm- Na_2B_{29}).⁸ To study the controversy, we performed *ab ini*tio calculations for the two structural models and found

that: (1) the relaxed Na₂B₂₉ had orthorhombic symmetry (Imm2-Na₂B₂₉), which is inconsistent with the reported monoclinic symmetry;⁸ (2) Imma-Na₂B₃₀ is energetically more favorable than Imm2-Na₂B₂₉ in the Na-B system; (3) The band structure shows that Imma-Na₂B₃₀ is a topological nodal line semimetal, rather than a metal.¹¹ These intriguing results inspire us to further explore the polymorphism, phase diagram, and properties of this important compound.

To find stable Na-B compounds and structures, we utilized the *ab initio* evolutionary algorithm $USPEX^{12}$ allowing up to 40 atoms per primitive cell, and searching for all stable stoichiometries and their corresponding structures simultaneously. A phase is deemed stable if its enthalpy of formation from either elements or any other possible compounds is negative, and such method has been successfully applied to various bulk systems.^{13–16} Structure relaxations and total energy calculations used the all-electron-projector-augmented wave¹⁷ (PAW) method as implemented in the VASP package¹⁸ with $[1s^2]$ cores for each Na and B atoms, the exchange-correlation energy was treated within the generalized gradient approximation (GGA), using the functional of Perdew, Burke, and Ernzerhof (PBE).¹⁹ In addition, the local density approximation (LDA) with the functional of Ceperley and Alder,²⁰ as parametrized by Perdew and Zunger,²¹ was also employed to confirm the energetic stability. The plane-wave cutoff energy of 500 eV and uniform Γ -centered k-points grids with the resolution of $2\pi \times 0.04$ Å⁻¹ were used. Denser k-

FIG. 1. The calculated convex hull for the Na-B system, using *bcc*-Na and α -boron structures for pure elements. Here, $\Delta H_{formation}(Na_xB_{1-x}) = H(Na_xB_{1-x})-xH(Na)-(1-x)H(B)$. The inset shows the enthalpy difference between *Imma*-Na₂B₃₀ and *I*2₁2₁2₁-Na₂B₃₀ as a function of pressure.

points grids were tested, but produced indistinguishable results. The convergence for terminating the electronic self-consisting cycle and the force criterion for structure relaxation were set to 10^{-6} eV and 10^{-2} eV/Å, respectively. The phonon dispersion curves were calculated using the finite displacement method as implemented in the PHONOPY package,²² where the precision convergence criteria for the total energy was 10^{-6} eV. Elastic tensors were computed by stress-strain relations. Combined with Voigt-Reuss-Hill approximation,²³ the bulk and shear moduli were calculated by CASTEP code at the GGA-PBE level.²⁴ Powder XRD patterns were simulated using the REFLEX software. Topological properties were investigated by constructing maximally localized Wannier functions²⁵ using WannierTools code.²⁶

The convex hull plotted in Fig. 1 showed two stable compounds at ambient pressure. One can see that there are indeed only two stable stoichiometries, Na₃B₂₀ and Na_2B_{30} , consistent with the available experimental reports. Especially, the predicted lattice constants and atomic position of the Na_3B_{20} are in excellent agreement with the experimental values.⁹ This illustrates the power, reliability and accuracy of the USPEX method. However, the experimental Imm2-Na₂B₂₉ structure has a positive formation energy (3.03 meV/atom), and is far from the convex hull. Additionally, structure search also found a new monoclinic Na_2B_{29} (C2-Na₂B₂₉), which had lower formation energy (-2.45 meV/atom) than Imm2-Na₂B₂₉, but still above the convex hull formed by Na_3B_{20} and Na_2B_{30} , indicating that both structures of Na_2B_{29} are at most metastable phases. Unexpectedly, it was not the much-discussed *Imma*-Na₂B₃₀, but a new polymorph $I2_12_12_1$ -Na₂B₃₀ that appeared on the convex hull, and therefore predicted to be one of the true ground-state phases in the Na-B system, because it has lower en-

FIG. 2. Structures of Imma-Na₂B₃₀ and $I2_12_12_1$ -Na₂B₃₀. (a) Projection of Imma-Na₂B₃₀ along [100] direction. (b) Projection of Imma-Na₂B₃₀ along [010] direction. (c) Projection of $I2_12_12_1$ -Na₂B₃₀ along [100] direction. (d) Projection of $I2_12_12_1$ -Na₂B₃₀ along [010] direction. The Na and B atoms are colored in purple and brown, and the interstitial B atoms in the two structures are magnified for clarity.

thalpy than the mixture of elemental Na and B, or any other mixtures. As shown in Table 1, the GGA-PBE results show that $I2_12_12_1$ -Na₂B₃₀ is -6.37 meV/atom and -60.84 meV/atom lower in formation energy than the *Imma*-Na₂B₃₀ and *Imm2*-Na₂B₂₉ structures. The LDA calculations show the corresponding values are -18.14 meV/atom and -77.34 meV/atom accordingly, i.e., both GGA-PBE and LDA give the same ranking of structures by stability. Inclusion of zero point energy from GGA-PBE results only was strengthening our conclusion: $I2_12_12_1$ -Na₂B₃₀ is now more stable than *Imma*-Na₂B₃₀ by -7.38 meV/atom. Moreover, the enthalpy difference (as a function of pressure; see the inset of Fig. 1) confirm that $I2_12_12_1$ -Na₂B₃₀ is more stable than *Imma*-Na₂B₃₀ at any pressure.

These two crystal structures are compared in Fig. 2. For the Imma-Na₂B₃₀ structure, the Na atom sits at Na (0.000 0.250 0.089), six inequivalent B atoms occupy sites B1 (0.202 0.089 0.915), B2 (0.169 0.002 0.713), B3 (0.395 0.250 0.144), B4 (0.649 0.250 0.903), B5 (0.000 0.250 0.497), and B6 (0.915 0.250 0.796). Among them, Na, B3, and B5 are interstitial atoms, i.e., not belonging to any B₁₂-icosahedra. The icosahedra are connected either by direct inter-icosahedral B-B bonds (two-electron-twocenter bonds with the lengths of 1.766 Å and 1.755 Å) or by three-center bonds with bond lengths of 2.078 Å and 1.746 Å (see Figs. 2a and 2b). The Imm2-Na₂B₂₉ structure, as mentioned above, is just a modified version of Imma-Na₂B₃₀, obtained by removing two interstitial B atoms from their interstitial triangular boron units in the unit cell, resulting in 3.33% boron vacancy concentration. On the other hand, atomic positions in the $I2_12_12_1$ -Na₂B₃₀ structure are completely different from those of Imma-Na₂B₃₀ (see Figs. 2c and 2d): Na (0.000 0.250 0.149), eight inequivalent B atoms occupy sites B1 (0.587 0.741 0.363), B2 (0.332 0.996 0.039), B3 (0.171 0.478 0.953), B4 (0.191 0.095 0.337), B5 (0.917 0.238 0.469), B6 (0.189 0.419 0.339), B7 (0.840 0.232 0.663), and B8 $(0.368 \ 0.000 \ 0.250)$. Among them, the interstitial B1 and B8 atoms form a peculiar helical sublattice, which link B₁₂-icosahedra by multicenter B-B-B bonds with varied bond lengths ranging from 1.711 to 2.058 Å.

Table 1 compares calculated properties of various models of Na₂B₃₀ and Na₂B₂₉ with experimental values. All three models have similar lattice constants and densities (compare lattice parameters of $I2_12_12_1$ -Na₂B₃₀ with the experimental values,^{7,8} the maximum difference in lattice parameters a, b, and c are 1.16%, 2.56%, and 2.25%), and all three are in good agreement with experimental results. It is unsurprising that Imma-Na₂B₃₀ and Imm2-Na₂B₂₉ have similar lattice constants because they are just two versions of the same structure, while $I2_12_12_1$ -Na₂B₃₀ has a completely different structural topology. Therefore, we simulated the X-ray diffraction patterns of the Imm2- Na_2B_{29} , Imma- Na_2B_{30} , and $I2_12_12_1$ - Na_2B_{30} structures, and compared them with the experimental results.⁸ As shown in Fig. 3a, there is good agreement, both for the positions and intensities of most peaks, for all of three models and experiment, including the (200), (211), (301), (220), (312), (213), (321) and (325) peaks. Other simulated peaks with 2θ from 45° to 70° are too weak to be used for quantitative analysis.⁸ Note that (101)peak is absent in $I2_12_12_1$ -Na₂B₃₀ and the intensities of

TABLE I. Lattice constants, energy of formation (ΔE_f , with the unit of meV/atom), density (ρ), shear modulus (G), bulk modulus (B) and the calculated Vickers hardness (H_v) of sodium borides. Some experimental values (from Refs. 7 and 8) are also listed for comparison.

Parameters	Na_2B_{30}	$\mathrm{Na_2B_{30}}$	Na_2B_{29}	Experiments
Symmetry	$I2_{1}2_{1}2_{1}$	Imma	Imm2	$Cm^8, Imma^7$
a (Å)	10.42	10.29	10.34	$10.40^8, 10.30^7$
b (Å)	5.70	5.84	5.82	$5.86^8, 5.85^7$
c (Å)	8.23	8.42	8.31	$8.33^8, 8.42^7$
ΔE_f (GGA)	-57.81	-51.44	3.03	N/A
ΔE_f (LDA)	-63.37	-45.23	13.97	N/A
$ ho (g/cm^{-3})$	2.52	2.43	2.39	$2.34^8, 2.44^7$
G (GPa)	189.02	162.50	142.03	N/A
B (GPa)	190.05	179.32	167.22	N/A
H_v (GPa)	37.40	30.23	25.53	N/A

FIG. 3. (a) Simulated XRD patterns of the Imm2-Na₂B₂₉, Imma-Na₂B₃₀ and $I2_12_12_1$ -Na₂B₃₀ with the wavelength of 1.54056 Å at ambient pressure compared with the experimental results. (b) Simulated TEM patterns of the Imm2-Na₂B₂₉, (c) Imma-Na₂B₃₀, (d) $I2_12_12_1$ -Na₂B₃₀, (e) experimental result at normal conditions.

(011) and (002) peaks deviate from experimental values to some extent. We speculate that the $I2_12_12_1$ -Na₂B₃₀ may coexist with Imma-Na₂B₃₀ (or Na₂B₂₉) at ambient conditions. Moreover, the comparison of the measured electron diffraction pattern (TEM) along [010] direction (Fig. 3b) showed that the diffraction spots of all three models again match well with the experimental data.⁸ Since the $I2_12_12_1$ -Na₂B₃₀ structure is very different from Imma-Na₂B₃₀ or Imm2-Na₂B₂₉, this example shows that very different structures can have very similar XRD and TEM patterns, making structure determination ambiguous, and in such cases input from theory is invaluable.

Figure 4 shows band structures of Imma-Na₂B₃₀, Imm2-Na₂B₂₉, and $I2_12_12_1$ -Na₂B₃₀ from GGA-PBE calculations. Previously, Imma-Na₂B₃₀ was thought to be a metal.¹¹ However, our calculations show that valence and conduction bands exhibit linear dispersion at the Fermi level (Fig. 4a). Further band analysis of Imma-Na₂B₃₀ indicates that the crossing points form two perpendicular nodal rings (Fig. 4b), which are dominantly originated from the p orbitals of B atoms. Therefore, Imma-Na₂B₃₀ is a topological nodal line semimetal. The particular nodal rings should be protected by the combination of inversion and time-reversal symmetry,²⁷ which are expected to have more intensive nonlinear electromagnetic response than Dirac semimetals with a single cone, and thus possess a higher efficiency of carrier trans-

FIG. 4. (a) Band structure of Imma-Na₂B₃₀ at ambient pressure. (b) Several high-symmetry points in the Brillouin zone of Imma-Na₂B₃₀ are labelled. The multiple nodal rings center at Z point and the color bar indicates the energy of each nodal point. (c) and (d) show the band structures of Imm2-Na₂B₂₉ and $I2_12_12_1$ -Na₂B₃₀ at ambient pressure. (e) and (f) show the band crossings (indicated by yellow dotted lines) of Imma-Na₂B₃₀ formed by the valence and conduction bands in the vicinity of Z point.

port at the Fermi level via multiple Dirac channels.²⁸ In Imm2-Na₂B₂₉, due to very close structure similarity, the nodal rings could be preserved. However, because of minor concentration of B vacancies, the Fermi level is shifted down by 0.62 eV, to the valence band (Fig. 4c), consequently the hybridized bonding states located at the valence band are partially filled, hence Imm2-Na₂B₂₉ is metallic. In contrast, $I2_12_12_1$ -Na₂B₃₀ is an indirectgap semiconductor with a band gap of 1.6 eV (Fig. 4d). Therefore, as mentioned above, in view of the energetic stability, we see the order of stability $I2_12_12_1$ -Na₂B₃₀ >Imma-Na₂B₃₀ >Imm2-Na₂B₂₉, which is in accordance with the electronic stability among the three compounds, that is, the semiconducting $I2_12_12_1$ -Na₂B₃₀ >semimetallic Imma-Na₂B₃₀ >metallic Imm2-Na₂B₂₉.

Phonon densities of states (PDOS) of $I2_12_12_1$ -Na₂B₃₀ and Imma-Na₂B₃₀ phases are shown in Fig. 5a, both of them are dynamically stable at ambient pressure. In addition, the temperature dependence of the free energy of $I2_12_12_1$ -Na₂B₃₀ and Imma-Na₂B₃₀ is shown in Fig. 5b: $I2_12_12_1$ -Na₂B₃₀ is always more stable than Imma-

FIG. 5. (a) Phonon DOS of $I2_12_12_1$ -Na₂B₃₀ and Imma-Na₂B₃₀ at ambient pressure. (b) The temperature dependence of the free energy for $I2_12_12_1$ -Na₂B₃₀ and Imma-Na₂B₃₀ at ambient pressure. The insets show the free energies near 500 and 1000 K.

 Na_2B_{30} at least up to the temperature of 1000 K. We also calculated charge distributions of Imma-Na₂B₃₀ and $I2_12_12_1$ -Na₂B₃₀. Bader charges show significant difference for the interstitial B atoms: in Imma-Na₂B₃₀, they are +0.38 and -1.15e for B3 and B5 atoms, whereas they are +0.03 and +0.07e for the interstitial B1 and B8 atoms of the $I2_12_12_1$ -Na₂B₃₀ structure. More homogeneous Bader charges in the interstitial sublattice correlate with their greater thermodynamic stability at ambient pressure, in agreement with the proposed correlations between local bonding configurations and energetic stability.^{29,30} Hence the free energy, electronic stability, formation energy, and charge transfer support that $I2_12_12_1$ -Na₂B₃₀ is a true thermodynamic ground state, unlike Imm2-Na₂B₂₉ and Imma-Na₂B₃₀. Furthermore, boron-rich sodium borides are expected to have superior mechanical properties, e.g., high hardness. According to models,^{31,32} Vickers hardness was estimated as $H_v = 0.92k^{1.137}G^{0.708}$ and k = G/B, where G and B are shear modulus and bulk modulus. The calculated hardnesses for Imm2-Na₂B₂₉, Imma-Na₂B₃₀, and $I2_{1}2_{1}2_{1}$ -Na₂B₃₀ (see Table 1) are 25.5, 30.2, and 37.5 GPa, respectively. Thus the semiconducting $I2_12_12_1$ - Na_2B_{30} phase is harder than semimetallic *Imma*-Na₂B₃₀

or metallic Imm2-Na₂B₂₉, owing to its special interstitial helical structure, which enhances the energetic stability and hardness.

In conclusion, we performed a systematic search for stable compounds of sodium and boron and identified semiconducting $I2_12_12_1$ -Na₂B₃₀ as a new ground state structure, which has an unprecedented 3D boron framework with the peculiar interstitial helical structure. Recently, a new silicon allotrope with a quasidirect bandgap was synthesized by using a novel two-step synthesis methodology³³ (consisting of synthesis of Na₄Si₂₄ and then removing the Na atoms from the open-framework Na₄Si₂₄ structure by the thermal 'degassing' process). Since the channel-like boron host structure is also present in $I2_12_12_1$ -Na₂B₃₀ (along the *b*-axis), one can attempt to synthesize a new boron allotrope ($I2_12_12_1$ -B₃₀) by using the same approach.

This work was supported by the National Science Foundation of China (Grants 11674176, 51772263), Tianjin Science Foundation for Distinguished Young Scholars (Grant No. 17JCJQJC44400), and the 111 Project (Grant B07013). A. R. O. thanks Russian Science Foundation (Grant number 16-13-10459), and the Foreign Talents Introduction and Academic Exchange Program (GrantB08040). Q. Z. is grateful for support from the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement DE-NA0001982. X. D. thanks the computing resources of Tianhe II and the support of Chinese National Supercomputer Center in Guangzhou. Q. W. was supported by the Swiss National Science Foundation through the National Competence Centers in Research MARVEL.

- * xfzhou@nankai.edu.cn; zxf888@163.com
- ¹ J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature **410**, 63 (2001).
- ² H. Y. Chung, M. B. Weinberger, J. B. Levine, R. W. Cumberland, A. Kavner, J. M. Yang, S. H. Tolbert, and R. B. Kaner, Science **316**, 436 (2007).
- ³ R. Mohammadi, A. T. Lech, M. Xie, B. E. Weaver, M. T. Yeung, S. H. Tolbert, and R. B. Kaner, Proc. Natl. Acad. Sci. USA **108**, 10958 (2011).
- ⁴ G. Akopov, M. T. Yeung, and R. B. Kaner, Adv. Mater. 29, 1604506 (2017).
- ⁵ H. Jang, G. Friemel, J. Ollivier, A. V. Dukhnenko, N. Y. Shitsevalova, V. B. Filipov, B. Keimer D. S. Inosov, Nat. Mater. **13**, 682 (2014).
- ⁶ M. Neupane, N. Alidoust, S.-Y. Xu, T. Kondo, Y. Ishida, D. J. Kim, C. Liu, I. Belopolski, Y. J. Jo, T.-R. Chang, H.-T. Jeng, T. Durakiewicz, L. Balicas, H. Lin, A. Bansil, S. Shin, Z. Fisk, and M. Z. Hasan, Nat. Commun. 4, 2991 (2013).
- ⁷ R. Naslain, and J. S. Kasper, J. Solid State Chem 1, 150 (1970).
- ⁸ B. Albert, K. Hofmann, C. Fild, H. Eckert, M. Schleifer, and R. Grurhn, Chem. Eur. J. 6, 2531 (2000).
- ⁹ B. Albert, Angew. Chem. Int. Ed. **37**, 1117 (1998).
- ¹⁰ B. Albert, and H. Hillebrecht, Angew. Chem. Int. Ed. 48, 8640 (2009).
- ¹¹ https://www.materialsproject.org/
- ¹² A. R. Oganov, and C. W. Glass, J. Chem. Phys. **124**, 244704 (2006).
- ¹³ W. Zhang, A. R. Oganov, A. F. Goncharov, Q. Zhu, S. E. Boulfelfel, A. O. Lyakhov, M. Somayazulu, and V. B. Prakapenka, Science **342**, 1502 (2013).
- ¹⁴ Q. Zhu, D. Y. Jung, A. R. Oganov, C. W. Glass, C. Gatti, and A. O. Lyakhov, Nat. Chem. 5, 61 (2013).
- ¹⁵ Y. L. Li, S. N. Wang, A. R. Oganov, H. Gou, J. S. Smith, and T. A. Strobel, Nat. Commun. 6, 6974 (2015).
- ¹⁶ X. Dong, A. R. Oganov, A. F. Goncharov, E. Stavrou, S.

Lobanov, G. Saleh, G. R. Qian, Q. Zhu, C. Gatti, V. L. Deringer, R. Dronskowski, X. F. Zhou, V. B. Prakapenka, Z. Konôpková, I. A. Popov, A. I. Boldyrev and H. T. Wang, Nat. Chem. **9**, 440 (2017).

- ¹⁷ P. E. Blöchl, Phys. Rev. B **50**, 17953 (1994).
- ¹⁸ G. Kresse, and J. Furthmller, Phys. Rev. B 54, 11169 (1996).
- ¹⁹ J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. **77**, 3865 (1996).
- ²⁰ D. M. Ceperley, and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
- ²¹ J. P. Perdew, and A. Zunger, Phys. Rev. B 23, 5048 (1981).
- ²² A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008).
- ²³ R. Hill, Proc. Phys. Soc. London **65**, 350 (1952).
- ²⁴ S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, Z. f Krist **220**, 567 (2005).
- ²⁵ A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun. **178**, 685 (2008).
- ²⁶ Q. S. Wu, S. N. Zhang, H. F. Song, M. Troyera, and A. A. Soluyanov, arXiv:1703.07789.
- ²⁷ Q. Xu, R. Yu, Z. Fang, X. Dai, and H. M. Weng, Phys. Rev. B **95**, 045136 (2017).
- ²⁸ Y. Jiao, F. Ma, C. Zhang, J. Bell, S. Sanvito, and A. Du, Phys. Rev. Lett. **119**, 016403 (2017).
- ²⁹ X. F. Zhou, G. R. Qian, J. Zhou, B. Xu, Y. Tian, and H. T. Wang, Phys. Rev. B **79**, 212102 (2009).
- ³⁰ X. F. Zhou, A. R. Oganov, G. R. Qian, and Q. Zhu, Phys. Rev. Lett. **109**, 245503 (2012).
- ³¹ Y. Tian, B. Xu, and Z. Zhao, Int. J. Refract. Met. Hard Mater. **33**, 93 (2012).
- ³² X. Q. Chen, H. Niu, D. Li, and Y. Li, Intermetallics **19**, 1275 (2011).
- ³³ D. Y. Kim, S. Stefanoski, O. O. Kurakevych, and T. A. Strobel, Nat. Mater. **14**, 169 (2015).